
CY 5770 Software Vulnerabilities and Security

Fall 2024
4 Credits
Meeting twice a week; T 11:45 am - 1:25 pm, R 2:50 pm - 4:30 pm

Instructor

Dr. Ziming Zhao
Email: z.zhao@northeastern.edu
Office: Room 513, 177 Huntington Ave, Boston, MA
Office hours: T 1:30 PM - 2:30 PM or by appointment

Course Description

This course is designed to provide students with good understanding of the theories, principles, tech-
niques and tools used for software and system hacking and hardening. Students will study, in-depth,
binary reverse engineering, vulnerability classes, vulnerability analysis, exploit and shellcode develop-
ment, defensive solutions, etc. to understand how to crack and protect native software. In particular,
this class covers offensive techniques including stack-based buffer overflow, heap security, format string
vulnerability, return-oriented programming, etc. This class also covers defensive techniques including
canaries, shadow stack, address space layout randomization, control-flow integrity, seccomp, etc. A key
part of studying security is putting skills to the test in practice. In this class the progress of students are
evaluated by hacking binary challenges.

Topics

1. Background knowledge

(a) Principles of compiler, linker and loader

(b) x86 and x86-64 architectures

(c) x86 and x86-64 instruction sets

(d) Embedded and IoT architectures, e.g., ARM Cortex-A and Cortex-M

(e) Assembly and reversing engineering with AT&T and Intel syntax

(f) Linux file permissions

(g) Set-UID programs

1



(h) ELF file format, PLT, GOT

(i) Memory map of a Linux process (x86 and x86-64)

(j) System calls

(k) Environment variables

(l) Tools: gcc, gdb, pwndbg, objdump, ltrace, strace, env, readelf, /proc/PID/maps,
pmap, tmux, IDA Pro, Ghidra, binary ninja

2. Stack-based bufferoverflow

(a) C local and global variables

(b) C calling conventions (x86 and x86-64)

(c) How stack works

(d) Overflow local variables

(e) Overflow RET; shellcode in exploits; shellcode in environment variable; shellcode in pro-
gram arguments;

(f) Frame pointer attack

(g) Return-to-libc attacks

(h) Tools: pwntools

3. Defenses against stack-based buffer overflow

(a) Base and bound check

(b) Data Execution Prevention (DEP)

(c) Stack Canaries: GCC implementation for x86 and x86-64

(d) Shadow stack: (1) traditional; (2) parallel

(e) SafeStack

(f) Address space layout randomization (ASLR) and how to bypass it

(g) FORTIFY SOURCE

(h) Tools: ldd

4. Developing Shellcode

(a) Writing, compiling, and testing x86 and x86-64 assembly code

(b) System calls on Intel (x86 and x86-64)

(c) Constraints on shellcoding: (1) zero-free shellcode; (2) ASCII-only shellcode; (3) English
shellcode

5. Format string vulnerability

(a) Format string

6. Heap security

(a) Dynamic allocator, ptmalloc, tcache, malloc(), free()

2



(b) Use after free (UAF) vulnerabilities

(c) Double free vulnerabilities

7. Integer overflow vulnerability

(a) Integer overflow vulnerability

8. Return-oriented programming

(a) ROP

(b) Blind ROP

(c) Jump-oriented programming

(d) Control-Flow Integrity (CFI)

(e) Tools: ROPgadget, pwntools

9. Data-oriented attacks

(a) Direct data manipulation

(b) Data-oriented programming

(c) Data-Flow Integrity (DFI)

10. Race conditions

(a) Race in file systems

(b) Process and thread

(c) Race in memory

Grading Policy

Students will be evaluated on their performance on the homework and CTFs. Attendance check will be
performed in each class. Table 1 shows the grade breakdown.

Area No. Items Points per Item Points for Area
Homework 14 45 630
Exams (CTFs) 2 360

Midterm Exam (CTF) 1 160
Final Exam (CTF) 1 200

Attendance 10 1 10
Anonymous Course Evaluation Bonus 2 12 24
Total 1024

Table 1: Grades Breakdown

Grading Chart

Table 2 presents the grading chart.

3



5770 (Undergraduate) 5770 (Graduate)
Points Grade Points Grade
874 - A 924 - A
850 - 874 A- 900 - 924 A-
820 - 850 B+ 870 - 900 B+
780 - 820 B 830 - 870 B
750 - 780 B- 800 - 830 B-
720 - 750 C+ 770 - 800 C+
650 - 720 C 700 - 770 C
550 - 650 D 600 - 700 D
0 - 550 F 0 - 600 F

Table 2: Final Letter Grades

Prerequisite

Students are expected to have a background in the C programming language. Solid background from the
following classes helps significantly: (1) Computer Organization; (2) Introduction to Computer Security;
and (3) Operating Systems. The instructor strives to keep this class self-contained.

Textbooks

There is no required textbooks for this course. The instructor will send out book chapters and other
reading materials throughout the semester. Some of the teaching materials of this course are based on
the following books:

• Randal Bryant, David O’Hallaron. Computer Systems: A Programmer’s Perspective, 3rd Edition.

• Dennis Andriesse. Practical Binary Analysis: Build Your Own Linux Tools for Binary Instrumentation,
Analysis, and Disassembly.

• Per Larsen, Ahmad-Reza Sadeghi. The Continuing Arms Race: Code-Reuse Attacks and Defenses.

Papers

Throughout the semester, we will discuss the following papers:

• Laszlo Szekeres, Mathias Payer, Tao Wei, Dawn Song. SoK: Eternal War in Memory. IEEE
Security and Privacy 2013.

• Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher,
John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. IEEE Security and Privacy 2016.

• Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86). ACM CCS 2007.

4



• Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, Zhenkai Liang. Jump-Oriented Programming: A
New Class of Code-Reuse Attack. ACM AsiaCCS 2011.

• Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, Dan Boneh. Hacking Blind. IEEE
Security and Privacy 2014.

• N Carlini, A Barresi, M Payer, D Wagner, TR Gross. Control-Flow bending: On the effectiveness
of Control-Flow integrity. USENIX Security Symposium, 2015

Academic Integrity (AI)

Academic integrity is critical to the learning process. It is your responsibility as a student to complete
your work in an honest fashion, upholding the expectations your individual instructors have for you in
this regard. The ultimate goal is to ensure that you learn the content in your courses in accordance
with NEU’s academic integrity principles, regardless of whether instruction is in-person or remote. As
an institution of higher learning, NEU expects students to behave honestly and ethically at all times,
especially when submitting work for evaluation in conjunction with any course or degree requirement.
Thank you for upholding your own personal integrity and ensuring NEU’s tradition of academic ex-
cellence. The academic integrity policy is available at https://osccr.sites.northeastern.
edu/academic-integrity-policy/

Course-specific AI Policy

Students are allowed to discuss homework assignments. However, students are NOT allowed to share
code, exploits, write-ups, and homework with each other. Plagiarism or any form of cheating in home-
work or exams (CTFs) is subject to serious academic penalty. All AI violations will be reported to the
NEU Office of Student Conduct and Conflict Resolution. There is a zero tolerance policy in this class.

• A minor AI violation of a specific homework assignment (i.e., plagiarism on one question) may
result in a 0 on that assignment.

• More serious AI violation may result in downgrade of the final grade and even an F or >F< on the
final grade, e.g., falsification.

• The college and university have policies to upgrade the penalty, which is independent of the course
policy.

CY-5770-FLAG-READ-SYLLABUS-0x9876

Syllabus Update

Information in the syllabus may be subject to change with reasonable advance notice.

5

https://osccr.sites.northeastern.edu/academic-integrity-policy/
https://osccr.sites.northeastern.edu/academic-integrity-policy/

