
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Background Knowledge:
Compiler, linker, and loader

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

Loading and Executing a Binary Program on Linux

Validation (permissions, memory requirements etc.)

Operating system starts by setting up a new process for the program
to run in, including a virtual address space.

The operating system maps an interpreter into the process’s virtual
memory.

Interpreter, e.g., /lib/ld-linux.so in Linux

The interpreter loads the binary into its virtual address space (the
same space in which the interpreter is loaded).

It then parses the binary to find out (among other things) which
dynamic libraries the binary uses.

The interpreter maps these into the virtual address space (using
mmap or an equivalent function) and then performs any necessary
last-minute relocations in the binary’s code sections to fill in the
correct addresses for references to the dynamic libraries.

1. Copying the command-line arguments on the stack

2. Initializing registers (e.g., the stack pointer)

3. Jumping to the program entry point (_start)

Compiling a C program behind the scene (add_32 add_64)

#include "add.h"

#define BASE 50

int add(int a, int b)
{ return a + b +
BASE;}

#ifndef ADD_H
#define ADD_H

int add(int, int);

#endif

/* This program has an integer overflow vulnerability. */
#include "add.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define USAGE "Add two integers with 50. Usage: add a b\n"

int main(int argc, char *argv[])
{
 int a = 0;
 int b = 0;

 if (argc != 3)
 {
 printf(USAGE);
 return 0;}

 a = atoi(argv[1]);
 b = atoi(argv[2]);
 printf("%d + %d + 50 = %d\n", a, b, add(a, b));
}

gcc -Wall -save-temps -P -m32 -O2 add.c main.c -o add_32

add.c add.h main.c

gcc -Wall -save-temps -P -O2 add.c main.c -o add_64

Background Knowledge:
x86 architecture

Data Types

There are 5 integer data types:

Byte – 8 bits.
Word – 16 bits.
Dword, Doubleword – 32 bits.
Quadword – 64 bits.
Double quadword – 128 bits.

Endianness

● Little Endian (Intel, ARM)
Least significant byte has lowest address
Dword address: 0x0
Value: 0x78563412

● Big Endian
Least significant byte has highest address
Dword address: 0x0
Value: 0x12345678

0x12Address 0

0x34Address 1

0x56Address 2

0x78Address 3

Base Registers

There are
● Eight 32-bit “general-purpose” registers,
● One 32-bit EFLAGS register,
● One 32-bit instruction pointer register (eip), and
● Other special-purpose registers.

The General-Purpose Registers

● 8 general-purpose
registers

● esp is the stack pointer
● ebp is the base pointer
● esi and edi are source and

destination index registers
for array and string
operations

The General-Purpose Registers

● The registers eax, ebx, ecx,
and edx may be accessed as
32-bit, 16-bit, or 8-bit
registers.

● The other four registers can
be accessed as 32-bit or
16-bit.

EFLAGS Register

The various bits of the 32-bit EFLAGS register are set (1) or reset/clear (0)
according to the results of certain operations.

We will be interested in, at most, the bits

CF – carry flag
PF – parity flag
ZF – zero flag
SF – sign flag

Instruction Pointer (EIP)

Finally, there is the EIP register, which is the instruction pointer (program
counter). Register EIP holds the address of the next instruction to be
executed.

Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

Instructions

Each instruction is of the form

label: mnemonic operand1, operand2, operand3
The label is optional.

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .

Each operand is either
● An immediate value,
● A register, or
● A memory address.

Source and Destination Operands

Each operand is either a source operand or a destination operand.

A source operand, in general, may be
● An immediate value,
● A register, or
● A memory address.

A destination operand, in general, may be
● A register, or
● A memory address.

Instructions

hlt – 0 operands
halts the central processing unit (CPU) until the next external interrupt is
fired

inc – 1 operand; inc <reg>, inc <mem>

add – 2 operands; add <reg>,<reg>

imul – 1, 2, or 3 operands; imul <reg32>,<reg32>,<con>

Intel Syntax Assembly and Disassembly

Machine instructions generally fall into three categories: data movement,
arithmetic/logic, and control-flow.

<reg32> Any 32-bit register (eax, ebx, ecx, edx, esi, edi, esp, or ebp)
<reg16> Any 16-bit register (ax, bx, cx, or dx)
<reg8> Any 8-bit register (ah, bh, ch, dh, al, bl, cl, or dl)
<reg> Any register
<mem> A memory address (e.g., [eax] or [eax + ebx*4]); [] square brackets
<con32> Any 32-bit immediate
<con16> Any 16-bit immediate
<con8> Any 8-bit immediate
<con> Any 8-, 16-, or 32-bit immediate

Addressing Memory

Move from source (operand 2) to destination (operand 1)

mov [eax], ebx (read as MOVE FROM x to y) Load 4 bytes from the memory
address in EBX into EAX.

mov eax, [esi - 4] Move 4 bytes at memory address ESI - 4 into EAX. */

mov [esi + eax * 1], cl Move the contents of CL into the byte at address
ESI+EAX*1.

mov edx, [esi + ebx*4] Move the 4 bytes of data at address ESI+4*EBX into
EDX.

Addressing Memory

The size directives BYTE PTR, WORD PTR, and DWORD PTR serve this purpose,
indicating sizes of 1, 2, and 4 bytes respectively.

mov [ebx], 2 isn’t this ambiguous? We can have a default.

mov BYTE PTR [ebx], 2 Move 2 into the single byte at the address stored
in EBX.

mov WORD PTR [ebx], 2 Move the 16-bit integer representation of 2 into the 2
bytes starting at the address in EBX.

mov DWORD PTR [ebx], 2 Move the 32-bit integer representation of 2 into the 4
bytes starting at the address in EBX.

Data Movement Instructions

mov — Move

Syntax
mov <reg>, <reg>
mov <reg>, <mem>
mov <mem>, <reg>
mov <reg>, <con>
mov <mem>, <con>

Examples
mov eax, ebx — copy the value in EBX into EAX
mov byte ptr [var], 5 — store the value 5 into the byte at location var

Data Movement Instructions

push — Push on stack; decrements ESP by 4, then places the operand at the
location ESP points to.

Syntax
push <reg32>
push <mem>
push <con32>

Examples
push eax — push eax on the stack
push [var] — push the 4 bytes at address var onto the stack

Data Movement Instructions

pop — Pop from stack

Syntax
pop <reg32>
pop <mem>

Examples
pop edi — pop the top element of the stack into EDI.
pop [ebx] — pop the top element of the stack into memory at the four bytes
starting at location EBX.

LEA Instructions

lea — Load effective address; used for quick calculation

Syntax
lea <reg32>, <mem>

Examples
Lea edi, [ebx+4*esi] — the quantity EBX+8*ESI is placed in EDI.

Arithmetic and Logic Instructions

add eax, 10 — EAX is set to EAX + 10
addb byte ptr [eax], 10 — add 10 to the single byte stored at memory address
stored in EAX

sub al, ah — AL is set to AL - AH
sub eax, 216 — subtract 216 from the value stored in EAX

dec eax — subtract one from the contents of EAX

imul eax, [ebx] — multiply the contents of EAX by the 32-bit contents of the
memory at location EBX. Store the result in EAX.

shr ebx, cl — Store in EBX the floor of result of dividing the value of EBX by 2n
where n is the value in CL.

Control Flow Instructions

jmp — Jump

Transfers program control flow to the instruction at the memory location
indicated by the operand.

Syntax
jmp <label> # direct jump
jmp <reg32> # indirect jump

Example
jmp begin — Jump to the instruction labeled begin.

Control Flow Instructions

jcondition — Conditional jump

Syntax
je <label> (jump when equal)
jne <label> (jump when not equal)
jz <label> (jump when last result was zero)
jg <label> (jump when greater than)
jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)
jle <label> (jump when less than or equal to)

Example

cmp ebx, eax
jle done

Control Flow Instructions

cmp — Compare

Syntax
cmp <reg>, <reg>
cmp <mem>, <reg>
cmp <reg>, <mem>
cmp <con>, <reg>

Example
cmp byte ptr [ebx], 10
jeq loop

If the byte stored at the memory location in EBX is equal to the integer constant 10,
jump to the location labeled loop.

Control Flow Instructions

call — Subroutine call

The call instruction first pushes the current code location onto the
hardware supported stack in memory, and then performs an
unconditional jump to the code location indicated by the label
operand. Unlike the simple jump instructions, the call instruction saves
the location to return to when the subroutine completes.

Syntax
call <label>
call <reg32>
Call <mem>

Control Flow Instructions

ret — Subroutine return

The ret instruction implements a subroutine return mechanism. This
instruction pops a code location off the hardware supported in-memory
stack to the program counter.

Syntax
ret

The Run-time Stack

The run-time stack supports procedure calls and the passing of
parameters between procedures.

The stack is located in memory.

The stack grows towards low memory.

When we push a value, esp is decremented.

When we pop a value, esp is incremented.

Stack Instructions

enter — Create a function frame

Equivalent to:

push ebp
mov ebp, esp
sub esp, Imm

Stack Instructions

leave — Releases the function frame set up by an earlier ENTER instruction.

Equivalent to:

mov esp, ebp
pop ebp

Background Knowledge:
amd64 architecture

Registers on x86 and x86-64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

x86 vs. x86-64 (code/ladd)

/*
This program has an integer overflow vulnerability.
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

long long ladd(long long *xp, long long y)
{
 long long t = *xp + y;
 return t;
}

gcc -Wall -m32 -O2 main.c -o ladd

main.c

gcc -Wall -O2 main.c -o ladd64

int main(int argc, char *argv[])
{
 long long a = 0;
 long long b = 0;

 if (argc != 3)
 {
 printf("Usage: ladd a b\n");
 return 0;
 }

 printf("The sizeof(long long) is %d\n", sizeof(long long));

 a = atoll(argv[1]);
 b = atoll(argv[2]);

 printf("%lld + %lld = %lld\n", a, b, ladd(&a, b));
}

x86 vs. x86-64 (code/ladd)

000012c0 <ladd>:
 12c0: f3 0f 1e fb endbr32
 12c4: 8b 44 24 04 mov eax,DWORD PTR [esp+0x4]
 12c8: 8b 50 04 mov edx,DWORD PTR [eax+0x4]
 12cb: 8b 00 mov eax,DWORD PTR [eax]
 12cd: 03 44 24 08 add eax,DWORD PTR [esp+0x8]
 12d1: 13 54 24 0c adc edx,DWORD PTR [esp+0xc]
 12d5: c3 ret

x86-64

0000000000001220 <ladd>:
 1220: f3 0f 1e fa endbr64
 1224: 48 8b 07 mov rax,QWORD PTR [rdi]
 1227: 48 01 f0 add rax,rsi
 122a: c3 ret

x86

objdump -M intel -d ladd_32
objdump -M intel -d ladd_64

Background Knowledge:
Set-UID Programs

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

Real UID, Effective UID, and Saved UID

Each Linux/Unix process has 3 UIDs associated with it.

Real UID (RUID): This is the UID of the user/process that created THIS
process. It can be changed only if the running process has EUID=0.

Effective UID (EUID): This UID is used to evaluate privileges of the process
to perform a particular action. EUID can be changed either to RUID, or SUID
if EUID!=0. If EUID=0, it can be changed to anything.

Saved UID (SUID): If the binary image file, that was launched has a Set-UID
bit on, SUID will be the UID of the owner of the file. Otherwise, SUID will be
the RUID.

Set-UID Program

The kernel makes the decision whether a process has the privilege by
looking on the EUID of the process.

For non Set-UID programs, the effective uid and the real uid are the
same. For Set-UID programs, the effective uid is the owner of the
program, while the real uid is the user of the program.

What will happen is when a setuid binary executes, the process changes
its Effective User ID (EUID) from the default RUID to the owner of this
special binary executable file which in this case is - root.

Example: rdsecret

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

int main(int argc, char *argv[])
{
 FILE *fp = NULL;
 char buffer[100] = {0};

 // get ruid and euid
 uid_t uid = getuid();
 struct passwd *pw = getpwuid(uid);
 if (pw)
 {

printf("UID: %d, USER: %s.\n", uid, pw->pw_name);
 }

 uid_t euid = geteuid();
 pw = getpwuid(euid);

main.c

 if (pw)
 {

printf("EUID: %d, EUSER: %s.\n", euid, pw->pw_name);
 }

 print_flag();

 return(0);
}

void print_flag()
{

FILE *fp;
char buff[MAX_FLAG_SIZE];
fp = fopen("flag","r");
fread(buff, MAX_FLAG_SIZE, 1, fp);
printf("flag is : %s\n", buff);
fclose(fp);

}

https://mp.weixin.qq.com/s/GRY5tbRa3Oa-mD8PA4P2Xg

Background Knowledge:
ELF Binary Files

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core
dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

Command file

file /bin/ls

INTERP: defines the library that should be
used to load this ELF into memory.
LOAD: defines a part of the file that should be
loaded into memory.

Sections:
.text: the executable code of your program.
.plt and .got: used to resolve and dispatch
library calls.
.data: used for pre-initialized global writable
data (such as global arrays with initial values)
.rodata: used for global read-only data (such
as string constants)
.bss: used for uninitialized global writable
data (such as global arrays without initial
values)

Tools for ELF

gcc to make your ELF.
readelf to parse the ELF header.
objdump to parse the ELF header and disassemble the source code.
nm to view your ELF's symbols.
patchelf to change some ELF properties.
objcopy to swap out ELF sections.
strip to remove otherwise-helpful information (such as symbols).
kaitai struct (https://ide.kaitai.io/) to look through your ELF interactively.

https://ide.kaitai.io/

Background Knowledge:
Memory Map of a Linux Process

Memory Map of Linux Process (32 bit)

Each process in a multi-tasking OS runs in its own memory sandbox.

This sandbox is the virtual address space, which in 32-bit mode is
always a 4GB block of memory addresses.

These virtual addresses are mapped to physical memory by page tables,
which are maintained by the operating system kernel and consulted by
the processor.

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

NULL Pointer in C/C++

int * pInt = NULL;

In possible definitions of NULL in C/C++:

#define NULL ((char *)0)
#define NULL 0

//since C++11
#define NULL nullptr

/proc/pid_of_process/maps

Example processmap.c

#include <stdio.h>
#include <stdlib.h>

int main()
{

getchar();
return 0;

}

cat /proc/pid/maps
pmap -X pid
pmap -X `pidof pm`

Memory Map of Linux Process (64 bit system)

