
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Operating System Security

Review

● Previous topics

○ authentication

○ access control

○ database security

○ session establishment and key management

Overview
● The next topics

○ OS access controls and security mechanisms

■ memory protection

■ processor modes

■ authentication and file access control

■ process privileges

○ software security

■ input validation

■ buffer overflow

■ other vulnerabilities

Computer System Components
● Hardware

○ provides basic computing resources, i.e., CPU, memory, I/O devices

● Operating system

○ controls and coordinates the use of the hardware among various application

programs

● System and application programs

○ define the ways in which system resources are used to solve computing

problems of users

● Users

○ people, machines, other computers

Security Goals of OSs

● Goal 1: enable multiple users to securely share resources

○ separation and sharing of processes, memory, files, devices, etc.

○ what does it involve?

■ memory protection

■ processor modes

■ authentication

■ file access control

Security Goals of OSs

● Goal 2: ensure secure operation in a networked environment

○ what does it involve?

■ authentication

■ access control

■ secure communication (using cryptography)

■ logging and auditing

■ intrusion detection and prevention

■ recovery

Memory Protection
● The operating system enforces access control to memory

● The goal is to ensure that a user’s process cannot access other processes’

memory

○ fence: hard separation between user and OS space

○ relocation: address adjustment to account for OS space

○ base/bounds registers: start and end of user addresses

○ segmentation: address space separation within a program

○ paging: memory partitioning independent of access decisions

● The operating system and user processes need to have different

privileges

CPU Modes
● System mode

○ a.k.a. privileged mode, master mode, supervisor mode, kernel mode

○ can execute any instruction and access any memory location

○ e.g., accessing hardware devices, enabling and disabling interrupts, accessing

memory management units, modifying registers, etc.

● User mode

○ access to memory is limited, some instructions cannot be executed

○ e.g., cannot disable interrupts, arbitrarily change processor state, access

memory management units, etc.

● Transition from user mode to system mode must be done through well

defined call gates (system calls)

Operating System Protection
● System calls are guarded gates from user mode into kernel mode

○ they use a special CPU instruction (often an interrupt) to transfer control to a

predefined entry point in more privileged code

○ they allow to specify where the more privileged code will be entered and the

processor state at the time of the entry

○ privileged code examines the processor state and/or the stack set by less

privileged code and determines whether to allow the request

● Part of the OS runs in the kernel mode (OS kernel)

● Other parts of the OS run in user mode, including service programs and

user applications, as processes

● Superuser (or root) privileges are different from kernel mode rights

Types of Kernels
● Monolithic kernel

○ one big kernel provides all services

○ e.g., file system, network services, device drivers, etc.

○ all kernel code is run in one address space

○ different services directly affect each other

○ example: Unix variants

■ Linux kernel had over 25 million lines of code in 2018

■ advantages: efficiency

■ disadvantages: complexity, bugs in one part affect the entire kernel

○ kernels with loadable kernel modules are still monolithic

Types of Kernels
● Microkernel

○ minimal kernel that provides only the mechanisms needed to implement OS

services

○ e.g., low-level address space management, threat management, and

inter-process communication (IPC)

○ operating system services are provided by user-mode servers

■ these include device drivers, protocol stacks, file systems and user-interface code

○ advantages: better achieves the least privilege, can tolerate failures/errors in

device drivers, etc.

○ disadvantages: performance, failure in key OS services still brings the

system down

Example Architectures: Linux

Example Architectures: Windows NT

Security Mechanisms in User Space
● Types of security mechanisms

○ authentication

○ access control

○ logging and auditing

■ record system information to a log

■ what should we record?

● full range of data and events, normal and suspicious

● e.g., every logon attempt, permission changes, network connection events, system calls,

access to selected applications, system management events

■ how can we record such data?

Security Mechanisms in User Space
● Types of security mechanisms (cont.)

○ logging and auditing

■ recording can be done at system level, application level, and user level

■ examples include application logging, system call interception, packet sniffing, etc.

■ audit trails must be protected!

● restricted access to the trails

● backing up to a different system

● enforcing write-only or write-once mechanisms

Security Mechanisms in User Space
● Types of security mechanisms (cont.)

○ intrusion detection and prevention

■ detect and report possible network and computer system intrusion or attacks

■ passive intrusion detection provides only detection

■ reactive intrusion detection provides intrusion prevention

■ types of intrusion detection systems (IDSs) vary, e.g., host-based, network-based, etc.

○ Recovery

■ if a break-in is detected, investigate the cause and assess the damage

■ bring the system to a stable state

Permissions in Unix

● Recall that we are dealing with uid and gid permissions

● Processes are subjects

○ associated with uid/gid pairs such as (ruid, rgid), (euid, egid), (suid, sgid)

● Objects are files

○ 12 permission bits

■ read/write/execute for user, group, and others

■ suid, sgid, sticky

● There are associated system calls for read, write and execute operations

Permissions in Unix

● Process uid model in modern Unix systems

○ each process has three user IDs

■ real user ID – owner of the process

■ effective user ID – used in most access control decisions

■ saved user ID – supported only on some systems

○ similarly, there are three group IDs

■ real group ID

■ effective group ID

■ saved group ID

Permissions in Unix

● What effect do suid, sgid, and sticky bits of files have?

● suid and sgid allow executables to inherit the uid and gid privileges,

respectively, of the file owner when executed

Permissions in Unix

● When a process is created by using fork

○ it inherits all three user IDs from its parent

● When a process executes a file using exec

○ it inherits three user IDs unless the suid bit of the file is set

○ if the suid bit is set, the effective uid and saved uid are assigned the user ID

of the file owner

● Why do we need suid/sgid bits?

○ some operations require higher (superuser) privileges than a process can

have

■ e.g., halting the system, listening on privileged ports (TCP/UDP port below 1024), etc.

Permissions in Unix

● Why do we need suid/sgid bits?

○ some operations are not modeled as files

○ system integrity requires not only controlling who can write, but also how it is

written

○ file level access control is not fine-grained enough

● Are there security implications of having programs with suid/sgid?

○ setuid programs are typically setuid root

○ this violates the least privilege principle

○ why is it bad?

○ how can an attacker exploit this problem?

Permissions in Unix

● Is there a way to make setuid programs safer?

● An existing solution is to change effective user IDs

○ a process that executes a setuid program can drop its privilege

○ there are two possibilities

■ drop privilege permanently

● removes the privileged uid from all three user IDs

■ drop privilege temporarily

● removes the privileged uid from it effective uid, but stores it in its saved id

● later the process may restore privilege by restoring privileged uid in its effective uid

Permissions in Unix

● Early Unix systems

○ there were two user IDs: real uid and effective uid

○ privileges could be dropped only permanently

● Later Unix systems

○ saved uid was introduced

○ privileges could be dropped temporarily

● There are different implementations with different system calls

○ can be inconsistent, incompatible

Computer Break-Ins

● What happens in a typical computer break-in?

○ get your foot in the door

■ steal a password file and run dictionary attack

■ sniff password off the network or through social engineering

■ use input vulnerability in network-facing programs

● e.g., web server, mail server, browser, etc.

○ use partial access to gain superuser privileges

■ break some mechanism on the system

■ often this means exploiting vulnerabilities in some local programs

Computer Break-Ins

● Steps involved in a typical computer break-in (cont.)

○ setup some way to return

■ install login program or web server with a back door

○ cover your tracks

■ disable intrusion detection, virus protection, system functions that show list of running

programs, . . .

○ perform desired attacks

■ break into other machines

■ take over the machine

■ . . .

OS Hardening

● It is critical to setup the OS with adequate security and maintain it

○ initial setup and patching

○ removing unnecessary services and applications

○ configuring users, groups, authentication

○ configuring permissions

○ installing additional security controls

○ testing the system security

Summary

● Operating systems security covers

○ memory protection

○ restricting access to critical resources

○ controlling process privileges

● Software security is next

○ it is a large topic that covers different types of attacks

○ buffer overflow is one of the most common software vulnerabilities

○ we’ll also look at safe code writing practices

