
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Announcements

● HW2 Posted. Contact us if you cannot use the VM.

● Course Evaluation starts today

○ If 90% of the class submit a review, everyone gets 10 bonus points

● Wednesday’s class will be delivered on-line on the 10th 9PM

● Midterm exam on 15th. Preparation guide will be posted on by 7th

Access Control

Lecture Outline

● Access control principles

○ access control matrices

○ access control lists

○ capability tickets

● Types of access control

○ discretionary access control

○ mandatory access control

○ role-based access control

○ attribute-based access control

Access Control Basics
● What is access control?

○ prevention of an unauthorized use of a resource or use in an unauthorized

manner

● In some sense, all of security is concerned with access control

● We look at a more specific notion of access control model

● An access control model specifies who is allowed to access what resource

and what type of access is permitted

○ it may also specify when access is permitted

● What makes it hard?

○ interaction between different types of access

Related Security Concepts

● In a broader context, access control is related to the following concepts

○ authentication, identity and credential management

■ creation, maintenance, and verification of user or entity identity and/or credentials

○ authorization and information flow

■ granting rights or privileges based on established trust assumptions and imposing controls on

information flow

○ audit and integrity protection

■ system monitoring to ensure proper use of resources and compliance with policies

■ detection of breaches in security and taking corresponding actions and/or making

recommendations

Access Control Model Basics

● Reference monitor mediates access to resources

○ complete mediation means controlling all accesses to resources

Access Control Principles

● Least privilege

○ each entity is granted the minimum privileges necessary to perform its work

○ limits the damage caused by error or intentional unintended behavior

● Separation of duty

○ practice of dividing privileges associated with one task among several

individuals

○ limits the damage a single individual can do

Access Control Principles

● There is a set of resources or objects, O, to be protected

○ directories, files, devices, peripherals, even facilities

● There is a set of subjects, S, that may obtain access to the resources

○ each subject can have a number of attributes (name, role, groups)

○ each subject is normally accountable for its actions

● Access right or privilege describes the type of access

○ read, write, execute, delete, search

● Access control requirements form rules

○ subject s has read access to object o

Access Control Matrix
● The rules can be represented as an access control matrix

● Example

C = call, R = receive, T = transfer

● Often access control matrices are sparse and can instead be represented

as access control lists (ACLs)

Internal Local Long distance International

Public CRT

Students CRT CRT R R

Staff CRT CRT CRT R

Administration CRT CRT CRT CRT

Access Control Lists
● In ACLs each object has a list of subjects authorized to access it and their

types of access

○ for each object, a column of the access control matrix is stored

● Example of ACLs for previous system

Internal:

Local:

Long distance:

International:

● Do Linux/Unix permission bits constitute ACLs?

 Public/CRT, Students/CRT, Staff/CRT, Administration/CRT

 Students/CRT, Staff/CRT, Administration/CRT

 Students/R, Staff/CRT, Administration/CRT

 Students/R, Staff/R, Administration/CRT

Linux File Permissions: Permission Groups

Each file and directory has three user-based permission groups:

Owner – A user is the owner of the file. By default, the person who created a file
becomes its owner. The Owner permissions apply only the owner of the file or
directory

Group – A group can contain multiple users. All users belonging to a group will
have the same access permissions to the file. The Group permissions apply only
to the group that has been assigned to the file or directory

Others – The others permissions apply to all other users on the system.

Permission Types

Each file or directory has three basic permission types defined for all the 3 user
types:

Read – The Read permission refers to a user’s capability to read the contents of
the file.

Write – The Write permissions refer to a user’s capability to write or modify a file
or directory.

Execute – The Execute permission affects a user’s capability to execute a file or
view the contents of a directory.

File type: First field in the output is file type. If the there is a – it means it
is a plain file. If there is d it means it is a directory, c represents a
character device, b represents a block device.

Permissions for owner, group, and others

Link count

Owner: This field provide info about the creator of the file.

Group

File size

Last modify time

filename

Is Linux File Permission an ACL?

Linux file permissions are not considered an Access Control List (ACL)
because they only define three types of permissions for three categories
of users (owner, group, and others).

ACLs, on the other hand, allow for more fine-grained access control by
specifying permissions for individual users or groups.

However, Linux does support ACLs through the POSIX ACL system, which
allows for more complex permission structures beyond the basic file
permissions.

USENIX ATC 2003

Capability Lists
● With ACLs, it is hard to determine what privileges a subject has
● We can gather information about subject privileges in so-called capability

lists
○ for each subject, store a row of the access control matrix

● Example

Public:

Students:

Staff:

Administration:

● Each user has a number of capability tickets and might be allowed to loan

or give them to others

 Internal/CRT

 Internal/CRT, Local/CRT, Long dist/R, International/R

 Internal/CRT, Local/CRT, Long dist/CRT, International/R

 Internal/CRT, Local/CRT, Long dist/CRT, Intl/CRT

Access Control Triples

● To address drawbacks of all previous representations, we can have a table

with (s, o, a) triples

○ is not sparse like access control matrices

○ sort by objects to obtain ACLs

○ sort by subjects to obtain capability lists

● This data structure is commonly used in relational DBMSs

ACLs vs. Capability Lists

● The choice of ACLs vs capability lists affects many aspects of the system

○ ACL systems need a namespace for both objects and subjects, while a

capability ticket can serve both to designate a resource and to provide

authority

○ procedures such as access review and revocation are superior on a

per-object basis in ACL systems and on per-subject basis in capability systems

○ ACL systems require authentication of subjects, while capability systems

require unforgeability and control of propagation of capabilities

● Most real-world OSs use ACLs

Discretionary Access Control
● In mandatory access control (MAC) users are granted privileges, which

they cannot control or change

● Discretionary access control (DAC) has provisions for allowing subjects to

grant privileges to other subjects

○ as a result, the access control matrix A can change

● Let triple (s, o, a) represent an access right

● At time i, the state Xi of the system is characterized by (Si , Oi , Ai)

● Transition ti takes the system from state Xi to Xi+1

○ a single transition

○ series of transitions

Discretionary Access Control
● The access control matrix can be extended to include different types of

objects

○ the subjects themselves can also be objects

○ different types of objects can have different access operations defined for

them

■ e.g., stop and wake-up rights for processes, read and write access to memory, seek access to

disk drives

● For simplicity assume that we are dealing with one type of objects

● Suppose we have the following access rights

○ basic read and write

○ own: possessor can change their own privileges

○ copy or grant: possessor can extend its privileges to another subject

■ this is modeled by setting a copy flag on the access right

■ for example, right r cannot be copied, but r∗ can

● Grant right gives rise to the principle of attenuation of privilege:

○ a subject may not give rights it does not possess

● Each particular model has a set of rules that define acceptable

modifications to the access control matrix

Discretionary Access Control

● Primitive commands

○ create object o (with no access)

■

○ create subject s (with no access)

■ add s to the set of subjects and objects, set relevant access to ∅

○ add right r to object o for subject s

■ Ai+1 [s, o] = Ai [s, o] ∪ {r} , everything else stays the same

○ delete right r from Ai [s, o]

○ destroy subject s

○ destroy object o

Discretionary Access Control

● Building more useful commands

○ s creates object o

■ create object o with no access

■ add right own to object o for subject s

○ s adds right r to object o for subject s`

■ if (r ∗ ∈ Ai [s, o] or own ∈ Ai [s, o]), then

Ai+1[s` , o] = Ai [s` , o] ∪ {r}

■ leave the rest unchanged

○ s deletes object o

■ if (own ∈ Ai [s, o]), then remove all access rights ∀x ∈ Si from A[x, o] and destroy o

Discretionary Access Control

● Example: suppose we initially have

■ subject s1 creates s3

■ s1 grants to s3 read∗ on o1

■ s3 grants to s2 read on o1

■ can s1 revoke s2 ’s right on o1?

● Attenuation of privilege principle is usually ignored for the owner

○ why?

Discretionary Access Control

DAC in Unix File System

● Access control is enforced by the operating system

● Files

○ how is a file identified?

○ where are permissions stored?

○ is directory a file?

● Users

○ each user has a unique ID

○ each user is a member of a primary group (and possibly other groups)

DAC in Unix File System

● Subjects are processes acting on behalf of users

○ each process is associated with a uid/gid pair

● Objects are files and processes

● Each file has information about: owner, group, and 12 permission bits

○ read/write/execute for owner, group, and others

○ suid, sgid, and sticky

● Example

DAC in Unix File System

● DAC is implemented by using commands chmod and chown

● A special user “superuser” or “root” is exempt from regular access control

constraints

● Many Unix systems support additional ACLs

○ owner (or administrator) can add to a file users or groups with specific access
privileges

○ the permissions are specified per user or group as regular three permission
bits

○ setfacl and getfacl commands change and list ACLs

● This is called extended ACL, while the traditional permission bits are called

minimal ACL

Security of Discretionary Access Control

● What is secure in the context of DAC?

○ a secure system doesn’t allow violations of policy

○ how can we use this definition?

● Alternative definition based on rights

○ start with access control matrix A that already includes all rights we want to

have

○ a leak occurs if commands can add right r to an element of A not containing r

○ a system is safe with respect to r if r cannot be leaked

Safety of DAC Models

● Assume we have an access control matrix

○ is it safe with respect to r?

○ is it safe with respect to w?

○ what if we disallow granting rights? object deletion?

● Safety of many useful models is undecidable

○ safety of certain models is tractable, but they tend not to apply to real world

Decidability of DAC Models

● Decidable
○ we are given a system, where each command consists of a single primitive

command
○ there exists an algorithm that will determine if the system with initial state X0

is safe with respect to right r
● Undecidable

○ we are now given a system that has non-primitive commands
○ given a system state, it is undecidable if the system is safe for a given generic

right
○ the safety problem can be reduced to the halting problem by simulating a

Turing machine

● Some other special DAC models can be decidable

Does Safety Mean Security?

● Does “safe” really mean secure?

● Example: Unix file system

○ root has access to all files

○ owner has access to their own files

○ is it safe with respect to file access right?

■ have to disallow chmod and chown commands

■ only “root” can get root privileges

■ only user can authenticate as themselves

● Safety doesn’t distinguish a leak from authorized transfer of rights

Security in DAC
● Solution is trust

○ subjects authorized to receive transfer of rights are considered “trusted”

○ trusted subjects are eliminated from the access control matrix

● Also, safety only works if maximum rights are known in advance

○ policy must specify all rights someone could get, not just what they have

○ how applicable is this?

● And safety is still undecidable for practical models

Mandatory Access Control
● In mandatory access control (MAC) users are granted privileges, which

they cannot control or change

○ useful for military applications

○ useful for regular operating systems

● The SELinux enhancement to the Linux kernel implements the Mandatory Access Control

(MAC) policy, which allows you to define a security policy that provides granular

permissions for all users, programs, processes, files, and devices.

MAC in Operating Systems
● The need for MAC

○ host compromise by network-based attacks is the root cause of many serious

security problems

■ worm, botnet, DDoS, phishing, spamming

○ hosts can be easily compromised

■ programs contain exploitable bugs

■ DAC mechanisms in OSs were not designed to take buggy software in mind

○ adding MAC to OSs is essential to deal with host compromise

■ last line of defense when everything else fails

● In MAC a system-wide security policy restricts access rights of subjects

Combining MAC and DAC

● It is common to combine mandatory and discretionary access

control in complex systems

○ modern operating systems is one significant example

● MAC and DAC are also combined in older models that implement

multilevel security (for military-style security classes)

○ Bell-Lapadula confidentiality model (1973)

○ Biba integrity model (1977)

Summary
● Access control is central in providing an adequate level of security

● Access control rights can be specified in the form of

○ access control matrix

○ access control lists

○ capability tickets

○ access control tables

● Types of access control

○ already covered DAC and MAC

○ will look at role-based access control (RBAC) and attribute-based access

control

