CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Announcement

- HW1 is due tomorrow
- HW2 will be released today

- Biometric authentication systems authenticate an individual based her physical characteristic
- Types of biometric used in authentication
 - \circ face
 - palm geometry
 - \circ fingerprint
 - \circ Iris
 - Signature
 - \circ Voice
- Most common uses of biometric authentication is for specific applications rather than computer authentication

- Like other authentication mechanisms, biometric authentication includes an enrollment phase during which a biometric is captured
 - the initial reading is often called a template
 - at authentication time, a new biometric reading is performed and is compared to the stored template
- Unlike other authentication mechanisms, biometric matching is approximate
 - each reading can be influenced by a variety of factors
 - e.g., light conditions, facial expressions, hair style, glasses, etc. for face recognition
 - some types of biometrics can match more accurately than others
 - e.g., iris vs. face or palm

- Biometric matching can be used to perform
 - \circ verification
 - user's biometric scan is used to match her own template only
 - identification
 - user's biometric scan is used to match a database of templates
- Identification might not always be possible
- Biometric systems attempt to minimize
 - false reject rate: authentic biometric is rejected
 - false accept rate: imposter biometric is accepted
- Depending on the environment, minimizing one of them might be more important than minimizing both

- New types of biometrics are being explored
 - brain waves, heart beats, etc.
- Many forms of traditional biometrics can be stolen
- Static biometrics can be replayed

- Current research direction: biometric key generation
 - the idea: a biometric can be used to generate a cryptographic key
 - the key can be reproduced using another biometric close enough to the original
 - no need to remember any information such as a password
 - the key can be used for authentication or encryption
 - key generation algorithm produces a helper data that can later aid in recovering the same key from a noisy version of the biometric
 - security requirements are strict
 - the helper data must leak minimal information about the biometric
 - compromise of the key must not lead to recovery of the biometric

Summary

- Entity authentication is an important topic with the main application in access control
- Various techniques exist ranging from time-invariant passwords to provably secure identification schemes
- Despite the weak security password-base authentication provides, it is the most widely used authentication mechanism
 - ease of use, user familiarity, no infrastructure requirements
- Next time
 - access control mechanisms

Liveness is Not Enough: Enhancing Fingerprint Authentication with Behavioral Biometrics to Defeat Puppet Attacks

Cong Wu, Kun He, Jing Chen, Ziming Zhao, Ruiying Du

USENIX Security' 20

The Prevailing Fingerprint Authentication

Fingerprint has replaced PINs and passwords as the most popular way to authenticate on mobile 82%

of consumers that have access to biometrics on their smartphone use it

PHOTO: https://www.fingerprints.com/

German, R. L., & Barber, K. S. (2018). Consumer attitudes about biometric authentication. *The University of Texas at Austin.*

Report: Yano Research Institute Ltd.

Attacks on Fingerprint Authentication

ICS > 35 > 35.240 > 35.240.15

ISO/IEC 30107-1:2016 Information technology — Biometric presentation attack detection — Part 1: Framework

Author: Lindsey O'Donnell April 8, 2020 / 9:00 am

15:30 minute read

😳 Write a comment

Share this article:

New research used 3D printing technology to bypass fingerprint scanners, and tested it against Apple, Samsung and Microsoft mobile products.

New research has found that it's possible to use 3D printing technology to create "fake fingerprints" that can bypass most fingerprint scanners used by popular devices. But, creating the attack remains costly and time-consuming.

Researchers with Cisco Talos created different threat models that use 3D printing technology, and then tested them on mobile devices (including the iPhone 8 and Samsung S10), laptops (including the Samsung Note 9, Lenovo Yoga and HP Pavilion X360) and smart devices (such as a smart padlock).

ACM NEWS

Attackers Can Bypass Fingerprint Authentication with an ~80% Success Rate

For decades, the use of fingerprints to authenticate users to computers, networks, and restricted areas was mostly limited to large and well-resourced organizations that used specialized and expensive equipment. That all changed in 2013 when Apple introduced TouchID. Within a few years, fingerprint-based validation became available to the masses as computer, phone, and lock manufacturers added sensors that gave users an alternative to passwords when unlocking the devices.

Although hackers managed to defeat TouchID with a fake fingerprint less than 48 hours after the technology was rolled out in the iPhone 5, fingerprint-based authentication over the past few years has become much harder to defeat. Today, fingerprints

Puppet Attack

A

Police 'visit funeral home to unlock dead man's phone'

Police in Florida have been criticised for allegedly entering a funeral home in a futile bid to unlock a dead man's smartphone.

hi guys,

6-year-old uses sleeping mom's thumb to go on Amazon shopping spree

by WKRC | Wednesday, December 28th 2016

6-year-old uses sleeping mom's thumb to go on Amazon shopping spree (Provided by/used with permission: Bethany Johnson Howell)

Child uses sleeping mom's fingerprints to buy Pokemon gifts

When you want to buy \$250 worth of Pokemon presents, desperate times call for desperate measures.

Alfred Ng 💯 Dec. 27, 2016 6:25 a.m. PT

⇒ [16

I got drunk last night and got robbed because I was using Touch ID :-(

laDouche

③ 23 April 2018

December 2014 edited December 2014

f 😒 🍠 🗹 < Share

not looking to blame anyone but thought i'd share my tale of sorrow here...

long story short, i was at a party last night and i passed out after some heavy drinking. i woke up this morning and walked to an atm machine wanting to get some cash out for a cab. to my amazement, the transaction was declined. so i whipped out my shiny new iphone 6, fired up 1password, placed my thumb for the touchid, and logged in to my online banking website.

Puppet Attack

Police 'visit funeral home to unlock dead man's phone'

f 😒 😏 🗹 < Share

6-year-old uses sleeping mom's thumb to go on Amazon shopping spree

Child uses sleeping mom's fingerprints to buy Pokemon gifts

When you want to buy \$250 worth of Pokemon presents, desperate times call for desperate measures.

Police in Florida have been criticise a futile bid to unlock a dead man's s

Existing liveness detection methods all fail in defeating puppet attacks.

I got drunk last night and got robbed because I was using Touch ID :-(

laDouche

ember 2014 edited December 2014

hi guys,

not looking to blame anyone but thought i'd share my tale of sorrow here...

long story short, i was at a party last night and i passed out after some heavy drinking, i woke up this morning and walked to an atm machine wanting to get some cash out for a cab. to my amazement, the transaction was declined, so i whipped out my shiny new iphone 6, fired up 1password, placed my thumb for the touchid, and logged in to my online banking website.

Our Approach

Fingerprint

Fingertip-touch behavior

Complement fingerprint authentication with fingertip-touch behavioral characteristics

Data capture

Data capture

Behavior characterizing

Data capture

Behavior characterizing

Feature extraction

Data capture

Behavior characterizing

Feature extraction

Model training /Authentication

Time- and Frequency- Domain Features (TFF)

Domain	Feature	Description	Normalized Fisher Score of $(a_x, a_y, a_z, a', \phi, \theta, \psi)$
53 5	Mean	The mean of the time series.	(0.45, 0.01, 0.22, 0.68, 0.86, 0.84, 0.84)
	Standard deviation	The standard deviation of the time series.	(0.24, 0.56, 0.31, 0.41, 0.58, 0.32, 0.74)
0	Relative standard deviation	The extent of variability in relation to its mean.	(0.34, 0.15, 0.12, 0.56, 0.71, 0.64, 0.82)
Tim	Sum of absolute differences	The sum over the absolute value of consecutive changes in the time series.	(0.32, 0.27, 0.72 , 0.52, 0.53, 0.72 , 0.78)
	Absolute energy	The absolute energy of the time series.	(0.63, 0.98, 0.85, 0.57, 0.72, 0.57, 0.37)
	Autocorrelation	The autocorrelation of the time series.	(0.00, 0.14, 0.15, 0.21, 0.94, 0.62, 0.64)
	Spectral centroid	The center of mass of the spectrum is located.	(0.34, 0.21, 0.38, 0.12, 0.78, 0.98, 0.78)
7	Spectral spread	The average spread of the spectrum in relation to its cen- troid.	(0.66, 0.36, 0.32, 0.78, 0.46, 0.82, 0.96)
Inency	Spectral skewness	The measurement of the asymmetry of the probability dis- tribution of a real-valued random variable about its mean.	(0.85, 0.45, 0.58, 0.84, 0.56, 0.85, 1.00)
nec	Spectral kurtosis	The shape of a probability distribution.	(0.34, 0.17, 0.70, 0.86, 0.62, 0.51, 0.42)
щ	Power spectral density	Average of distribution of power into frequency compo- nents.	(0.90, 0.71, 0.86, 0.26, 0.85, 0.68, 0.82)
	Spectral entropy	The complexity of the signal in the frequency domain.	$(\boldsymbol{0.94}, 0.32, \boldsymbol{0.82}, 0.21, \boldsymbol{0.96}, \boldsymbol{0.82}, \boldsymbol{0.89})$

Table 1: Time- and frequency-domain features and their normalized fisher's scores.

CNN-based Features (CNF)

Figure 3: Characterized fingertip-touch behaviors of three users under STFT. From left to right, spectrograms of a_x , a_y , a_z , a', θ , ϕ , ψ .

One-class Classifier

$$r_{XY} = rac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

$$egin{aligned} \min_{R,a} R^2 + C \sum_{i=1}^n \zeta_i \ s.\,t.\, ||x_i-a||^2 &\leq R^2 + \zeta_i, i=1,\ldots,n \ &\zeta_i &\geq 0, i=1,\ldots,n \end{aligned}$$

Pearson coefficient-based similarity comparison (PCC) One-class support vector machine (OCSVM)

Local outlier factor (LOF)

Isolation forest (IF)

Data Collection

Table 3: Summary of the compiled datasets

Dataset	Week of Collection	# of Subjects / Attackers	Postures	Device	# of Data Points
1	1 †, 8 and 9 ‡	90	Sitting, standing, lying, walking, running	OnePlus3	63,000
2A 2B	2, 3, 5, 7 10, 11, 12, 13	² 4, 24, 22, 21 62, 61, 59, 53	Sitting	OnePlus3	18,200 47,000
3	Added Aug. 2019	- 64	Sitting	Xperia XZ1, Oneplus5, Vivo X21	3,200
$\overline{4}A$					3,600
4B 4C	2 †, 10 and 11 ‡	15	Sitting	OnePlus3	3,600 3,600

Datasets

- 90 subjects in the data collection.
- Compiled three datasets in different postures¹, periods², and devices³.
- Compiled one attack dataset⁴ by considering three attacks with 15 subjects as adversaries.

Figure 4: Artificial fingerprint replica. The left is the mold used to capture fingerprint; the right is a fake fingerprint crafted using silicone rubber.

Reliability Evaluation

Figure 5: ROC curves of different feature sets under different one-class classifiers.

Figure 6: BAC under different classifiers and different feature sets at varying training set sizes.

Reliability Evaluation

1.0		1.0	Carrow and the second s		1.0
Feature Set + Classifier	BAC	FAR	FRR	AUC	0.9 N
TFF + PCC	84.41	11.85	19.34	0.9169	2871 PCC, auc=0.9888
TFF + OC-SVM	91.49	5.56	11.45	0.9656	0,77 UCS VM, all-05975 UCF, auc=0.9975
TFF + LOF	93.28	4.32	9.13	0.9767	0.25 0.30 0.60 0.05 0.10 0.15 0.20 0.25
TFF + IF	96.07	2.51	5.35	0.9915	FAR (c) The union of two feature sets
CNF + PCC	94.65	3.30	7.40	0.9871	
CNF + OC-SVM	90.69	6.41	12.21	0.9532	different one-class classifiers.
CNF + LOF	97.99	0.86	3.16	0.9974	Finding: CNF+LOF achieve
CNF + IF	93.63	3.72	9.06	0.9789	almost the best performan
UnF + PCC	94.76	2.86	7.62	0.9888	with the lowest FAR
UnF + OC-SVM	93.78	4.06	8.37	0.9806	
UnF + LOF	98.02	1.52	2.43	0.9975	CC-SVM PP OC-SV LOF LOF
UnF + IF	96.88	2.03	4.21	0.9938	
Training	g set size		Train	ing set size	Training set size
(a) Time- and frequenc	y-domain featu	res	(b) CNN-ba	sed features	(c) The union of two feature sets

Figure 6: BAC under different classifiers and different feature sets at varying training set sizes.

Evaluation of Presentation Attacks

Mean/standard deviation of FAR and prediction score

Attack	FAR	Score
ARA	0.08/0.06	-0.29/0.15
PA	0.12/0.08	-0.62/0.13
MA	0.25/0.14	-0.37/0.10

FAR and kernel density of prediction score under attacks

Limitations

Behavior variability with time elapsing?

PHOTO: iconfinder.com

PHOTO: https://parker-marker.com/

EchoHand: High Accuracy and Presentation Attack Resistant Hand Authentication on Commodity Mobile Devices

Cong Wu, Jing Chen, Kun He, Ziming Zhao,

Ruiying Du, Chen Zhang

Promising Hand Authentication

Hand authentication is promising

Existing Hand Authentications

Palm vein, blood flowing pattern of hand Relying on infrared camera.

Palm print, i.e., skin texture of palm region

Vulnerable to presentation attack.

Hand geometry features, e.g., finger length, width, hand shape, size

- 3D hand geometry authentication rely on dedicated hardware, e.g., depth * camera:
- 2D hand geometry authentication suffer from presentation attack. *

Motivation

Key idea: complement camera-based hand geometry recognition of one hand with active acoustic sensing of the other holding hand.

Acoustic Sensing

Multi-path propagation of acoustic signal

- Path I: traveling through the device
- Path 2: traveling through the air, reflecting the by the hand holding device, and direct transmission
- Path 3: traveling through the air, and reflecting by other surrounding objects

Table 1: Propagation speed, distance, delay, and energy levelof different propagation paths

Path	Speed (m/s)	Distance (cm) †	Delay (ms) / Points	Energy
1	>3,000	15.2	0.05/-19	Medium
2	~343	[15.2, 15.2×2]	[0.44/0, 0.89/22]	High
3	~343	[15.2×2, ∞]	[0.87/22, ∞]	Low

†: As an example, we use the distance of Pixel 3A in which the microphone and bottom speaker are 15.2cm apart.

Acoustic Sensing

Multi-path propagation of acoustic signal

- Path I: traveling through the device
- Path 2: traveling through the air, reflecting the by the hand holding

Figure 4: IR estimations using cross-correlation of the received signal and the transmitted signal for two subjects: the magnitude of IR from two subjects (a); the magnitude of IR from the same subject at two times with 48kHz sampling rate (b); trace of the real/imaginary parts from two subjects (c); trace of the real/imaginary parts from the same subject at two times (d)

2	~343	[15.2, 15.2×2]	[0.44/0, 0.89/22]	High
3	~343	$[15.2 \times 2, \infty]$	$[0.87/22, \infty]$	Low

†: As an example, we use the distance of Pixel 3A in which the microphone and bottom speaker are 15.2cm apart.

Data Capturer

Acoustic signal transmitting and receiving

- Select ZC sequence as the base signal.
- Modulate the signal to a inaudible high-frequency band.
- Use bottom speaker to play, and top microphone to record echoes.

Data Preprocessor

Acoustic data preprocessing

- Noise removal and signal demodulation to reconstruct the baseband signal.
- Extracting the target signal shaped by the holding hand(Path 2) based on the relative energy and delay of different paths.

Table 1: Propagation speed, distance, delay, and energy level of different propagation paths

Path	Speed (m/s)	Distance (cm) †	Delay (ms) / Points	Energy
1	>3,000	15.2	0.05/-19	Medium
2	~343	[15.2, 15.2×2]	[0.44/0, 0.89/22]	High
3	~343	[15.2×2, ∞]	[0.87/22, ∞]	Low

†: As an example, we use the distance of Pixel 3A in which the microphone and bottom speaker are 15.2cm apart.

Feature Extractor

Acoustic features

network.

- Analyze time-frequency spectrogram of magnitude and phase using continuous wavelet transform.
- Learn representative acoustic features using a pretrained

Figure 5: An example CWT result of the magnitude: the raw CWT result (a); the CWT result after applying threshold (b)

Time-frequency spectrogram

Build the feature extractor

Data Capturer - Hand Gesture

Hand gesture catching

- The fingers and palm should be approximately in the same plane.
- The fingers should be straight and not overlap with each other.

Data Preprocessor - Hand Gesture

Hand gesture image preprocessing

- Hand segmentation and contour detection, DeepLabv3 model.
- Hand image augmentation, scaling, rotation, translation, and shearing.

Hand segmentation, and contour detection

(c) Generated hand gesture images under the combination of four operations

Hand image augmentation

Feature Extractor - Hand Gesture

Hand geometry features

- Hand landmark detection and rectification
- Hand geometry features representation, e.g., finger length, length, distance palm size.

Table 4: List of extracted hand geometry features

	Feature		Description	# Of features
(Finger lei	ngth	Length of each finger, including 3-5, 6-9, 10-13, 14-7, and 18-21	5
	Finger wi	dth	Distance between pairs of finger joints, including 22-23, 24-25,	9
			26-27, 28-29, 30-31, 32-33, 34-35, 36-37, 38-39	
	Palm size		Area and length of polygons consisting with lines 1-3-6-10-14-	7
			18. Distance of 1-3, 1-6, 1-10, 1-14, 1-18	
	Finger	dis-	Distance between 2 adjacent fingers, including 2-6, 3-7, 4-8,	16
	tance		5-9, 6-10, 7-11, 8-12, 9-13, 10-14, 11-15, 12-16, etc.	

Authenticator

Only legitimate user's data is available in enrollment: one-class classifier.

Centroid classifier (CC)

Local outlier factor (LOF)

One-class support vector machine (OCSVM)

Evaluation Setup

Implementation

- Sampling rate, 48kHz.
- Signal length, 25ms.
- Frequency band, 17.46-22.54kHz (inaudible band).

Dataset

- **30 subjects** in the data collection.
- Compiled datasets under different settings and real environments, e.g., low light, audible noise, different devices, periods, and hardware settings.
- Compiled the attack dataset by **considering three attacks** with 6 subjects as adversaries.

Metrics

- ✤ False acceptance rate, false rejection rate
- Equal error rate (EER)
- Receiver operating characteristics (ROC) curve
- Area under the ROC curve (AUC)

Reliability Evaluation

Figure 15: ROC curves (a) and normalized FCS (b, c, d) when using acoustic features to complement hand geometry features

EER under CC, LOF, and OCSVM: 2.45%, 5.96%, and 6.82%

Table 5: The average EERs of gesture A, B, C, D, E (Figure 8)

	Classifier	А	В	С	D	E
	CC	7.38%	6.90%	7.52%	6.48%	7.70%
W. IA	LOF	11.15%	10.88%	11.80%	10.13%	12.15%
	OCSVM	9.31%	8.83%	8.96%	8.85%	9.37%
	CC	6.36%	6.16%	6.38%	6.06%	6.39%
W/o. IA	LOF	6.89%	5.70%	6.05%	5.91%	7.24%
	OCSVM	7.49%	6.97%	8.17%	7.10%	8.78%

Impact Factors Study

EER on Pixel 3A, Xiaomi 6, Redmi Note7, GALAXY On5: 2.45%, 7.24%, 3.69%, and 10.33%.

EER under lab and four real environments: 2.45%, 4.95%, 4.79%, 5.55%, and 6.53%

Covered bottom speaker and top microphone, EER: 22.68%.

Bottom speaker and bottom microphone, EER:18.32%.

Figure 18: ROC curves under landmark rectification (a), and

different hardware settings (b)

Evaluation of Attack Resistance

Kernel density of prediction score under attacks

Attack type	FAR	Prediction scores
Gesture spoofing attack	0.21%	-2.42/ 0.86
Presentation attack	0.62%	-1.60/ 1.21
Mimicry attack	1.35%	-2.11/ 1.37

Attack success rate: < 1.5%

Other Hand Authentications

Table 9: Comparison of existing mature commercial hand authentications, the latest related research work

Method	Required hardware	Description of hand features	EER	PAR ¹	Hand motion ²
		Commercial product			
Amazon One [9]	Unknown customized hardware (Maybe infrared camera, RGB camera)	Palm vein and palmprint patterns	N/A	1	X
Hand ID [10]	Infrared illuminator, TOF sensor ³	Palm vein patterns	N/A	1	×
PalmID [6]	Infrared camera	Palm vein patterns	N/A	1	×
PalmID [6]	RGB camera	Palmprint patterns	N/A	×	×
PalmSecure [12]	Near-infrared imaging camera	Palm vein patterns	N/A	1	×
Vein ID [11]	Near-infrared illuminator, common RGB camera	Finger vein patterns	N/A	~	X
		Research paper			
[60]	Leap motion controller ⁴	3D motion depth features of gesture movement	~ 2%	1	1
[27]	Leap motion controller	3D motion characteristics of fingertips and finger joints	< 4%	1	1
[50]	Multi-touch screen	Hand geometry and motion characteristics of swiping on a multi-touch touchscreen	5.84%	1	1
[33]	Optical scanner	Hand geometry features, including finger width and length	0.59%	×	×
[15]	Optical scanner	Hand geometry graph topology	3.05%	×	×
[23]	RGB camera, infrared lamp	Palm dorsal veins and hand geometry features	1.87%	1	X
[47]	IntelRealSense ⁵	Palm vein patterns	< 1%	1	X
[13]	RGB camera	Hand images features extracted from different layers of a neural network	~ 5.2%	×	X
[65]	Speaker, microphone	Time-domain, frequencey-domain, MFCC ⁶ , and chromagram features of structure-borne echos when holding a device (Without solid hand features)	~ 6%	1	X
[26]	Speaker, microphone, accelerometer	Spectrogram of microphone and accelerometer incurred by notification tones when holding a device (Without solid hand features)	~ 5%	~	×
EchoHand	RGB camera, speaker, microphone	Learning-based acoustic features of structure-borne and air-borne echos while sensing the hand holding device, hand geometry features including finger length, width, palm size and finger distance	~ 2.45%	1	X

¹ Presentation attack resistant. ² Require users to perform hand motion. ³ A type of depth camera with a range imaging camera system. ⁴ An infrared-based depth camera used for tracking motions. ⁵ A high quality LiDAR-based depth cameras. ⁶ Mel-frequency cepstral coefficients, a kind of typical acoustic features.

Limitation

Others: low sampling rate, poor lighting, off-normal shooting angles,

Summary

- EchoHand characterizes the holding hand using acoustic sensing to complement hand geometry features from the other hand.
- Comprehensive experiments to evaluate the effectiveness of EchoHand under different settings and real environments.
- Evaluation of attack resistance against three types of attacks, the overhead.

2012 IEEE Symposium on Security and Privacy

The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes*

Joseph Bonneau University of Cambridge Cambridge, UK jcb82@cl.cam.ac.uk Cormac Herley Microsoft Research Redmond, WA, USA cormac@microsoft.com Paul C. van Oorschot Carleton University Ottawa, ON, Canada paulv@scs.carleton.ca Frank Stajano[†] University of Cambridge Cambridge, UK frank.stajano@cl.cam.ac.uk

				1	ι	Jsab	oility		-1	Dep	ploy	ab	ility				5	Secu	rity	1			1
Category	Scheme	Described in section	Reference	Memorywise-Effortless Scalable-for Liense	Nothing-to-Carry	Physically-Effortless	Easy-to-Learn Efficient-to-Use	Infrequent-Errors	Easy-Recovery-from-Loss	Accessible Neglizible-Cost-per-User	Server-Compatible	Browser-Compatible	Mature Non-Proprietary	Resilient-to-Physical-Observation	Resilient-to-Targeted-Impersonation	Resilient-to-Throttled-Guessing	Kesinen-to-Uninomed-Unessing	Resilient-to-Internal-Observation Resilient-to-Leaks-from-Other-Verifiers	Resilient-to-Phishing	Resilient-to-Theft	No-Trusted-Third-Party	Requiring-Explicit-Consent	Untinkable
(Incumbent)	Web passwords	Ш	[13]			,		0	•						0								
2	Firefox	IV-A	[22]	0 4	0	0						Ξ		0	0		_	-		•	•		•
Password manager	^S LastPass		[42]	0	0	0			0	. 0			•	0	0	0 0	D	K					
Dearry	URRSA	IV-B	[5]	•	E		•	0		•	0	•			0		1	0	۲		Ξ	• •	•
PIOXY	Impostor		[23]	0		•	•		•	•	•	0	•	۲	0		1	0	۲	•			
	OpenID	IV-C	[27]	0 4		0	0.		•	••		٠	••	0	0	0 (D		1	٠	Ξ	•	
Federated	Microsoft Passport		[43]	0	•	0	••		•	•		•	•	0	0	0 0	D			٠	Ξ	•	
	Facebook Connect		[44]	0 4	•	0	••	۲	•	••		•	•	0	0	0 0	D			•	Ξ		
	BrowserID		[45]	0 4	•	0	••		•	••	1	0	•	0	0	0 (D			•	Ξ	•	
	OTP over email		[46]	0		2	•	۲	•	••	Ξ	•	-	0	0	0 0	D			•	=	•	=
Graphical	PCCP	IV-D	[7]		•		• 0	0	•			•				o				•	•	•	
onepinen	PassGo		[47]		•		• •	0	•	-	Ξ	•	••							•	•	•	•
	GrIDsure (original)	IV-E	[30]				• •	0	•	=:	Ξ			-				1.4			•		
Cognitive	Weinshall		[48]		-		22					-		0							-		
C C D	Hopper Blum		[49]						_		Ξ	-		0	•						-		
	Word Association	IL I	[50]	_	-	_			-			-		-	-					-	-	-	
D	OIPW	IV-F	[33]		=			~			Ξ	-					4			-	-		
Paper tokens	S/KEY	2 S	[32]		=			~	-			-		1			4				-		
Vienal amonto	PIN+IAN DeceWindow		[51]		-		-	<u> </u>	~			-		C							-	-	-
visual crypto	Pass window	IVC	132		-			0			-	-	-								-	-	-
	Vubikey	11-0	[54]		=			0				-									=		
Hardwara takana	Ironkey		1541	0		0	0 0	0							0	and the		ö	1				
riardware tokens	CAP reader		1551			1941		0			1												
	Pico		[81				0	0				-								0			
	PhooIproof	IV-H	[36]	100110	0	1001	. 0	0		0 0	0	=	-					0					
	Cronto		156		0			0		0								0					
Phone-based	MP-Auth	X	[6]		0				0	00		=	-		0			212.2					
- mone based	OTP over SMS				0			0	0	0						•		0		0			
	Google 2-Step		[57]		0		. 0	0	0	•		•	•	0	0			K					
8	Fingerprint	IV-I	[38]	• •		0	. 0	-		0		Ξ	0		=					=	•	•	
Biometric	Iris		[39]			0	. 0			•		Ξ	•		=					=	•	0	=
	Voice		[40]			0	. 0			00		0	0		Ξ	0					•	•	=
	Personal knowledge		[58]	0	•)		0	•			٠			=					٠	•		
Recovery	Preference-based		[59]	o		•	. 0	•	0			•	==		0					•	•		
	Social re-auth.		[60]			•	• =	۰	=				0	0	=			0 0			=		2

•= offers the benefit; •= almost offers the benefit; *no circle* = does not offer the benefit.

IIII= better than passwords; ≡= worse than passwords; no background pattern = no change. We group related schemes into categories. For space reasons, in the present paper we describe at most one representative