CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Last Class

e User-chosen secrets for authentication

o Text-based password

o Picture gesture authentication

Entity Authentication
Identification mechanisms are often divided into 3 types based on how

the identity evidence is gathered

o user knows a secret
m examples include passwords, personal identification numbers (PINs), secret keys, mother’s
maiden name, etc.
O uSer possesses a token
m these are normally hardware tokens such as magnetic-striped cards or custom-designed
devices for time-variant passwords
o user has a physical attribute

m characteristics inherent to the user such as biometrics, handwritten signatures, keystroke

dynamics, facial and hand geometries, voice, etc.

Remote Authentication
Now assume we want to use passwords for remote authentication

o will it work?
Passwords observed on the network are trivially susceptible to replay
o initially remote login and file transfer programs, such as telnet,
communicated passwords in the clear
o now encryption is used (ssh, scp, etc.)
Authentication based on time-invariant passwords is therefore a weak
form of authentication
o this form of authentication is nevertheless the most common

A natural way to improve security is to use one-time passwords

One-Time Passwords
e In authentication based on one-time passwords each password is used

only once

e Such authentication can be realized in the following ways:

o the user and the system initially agree on a sequence of passwords
m simple solution but requires maintenance of the shared list

o the user updates her password with each instance of the authentication

protocol
m e.g., the user might send the new password encrypted under a key derived from the current
password

m this method crucially relies on the correct communication of the new password to the system

One-Time Passwords

e Leslie Lamport, 1984

2013 Turing Award: For fundamental
contributions to the theory and practice of
distributed and concurrent systems, notably
the invention of concepts such as causality
and logical clocks, safety and liveness,
replicated state machines, and sequential
consistency.

Technical Note Anita K. Jones
Operating Systems Editor

Password Authentication with
Insecure Communication

Leslie Lamport
SRI International

A method of user password authentication is de-
scribed which is secure even if an intruder can read the
system’s data, and can tamper with or eavesdrop on the
communication between the user and the system. The
method assumes a secure one-way encryption function
and can be impl d with a micr in the
user’s terminal.

Key Words and Phrases: security, authentication,
passwords, one-way function

CR Categories: 4.35, 4.39

P

I. The Problem

In remotely accessed computer systems, a user iden-
tifies himself to the system by sending a secret password.
There are three ways an intruder could learn the user’s
secret password and then impersonate him when inter-
acting with the system:

(1) By gaining access to the information stored inside
the system, e.g., reading the system’s password file.

(2) By intercepting the user’s communication with the
system, e.g., eavesdropping on the line connecting
the user’s terminal with the system, or observing the
execution of the password checking program.

(3) By the user’s inadvertent disclosure of his password,

ample, a voice print. Such a mechanism is beyond the
scope of this paper, so we restrict ourselves to the prob-
lem of removing the first two weaknesses.

II. The Solution

The first weakness can be eliminated by using a one-
way function to encode the password. A one-way function
is a mapping F from some set of words into itself such
that:

(1) Given a word x, it is easy to compute F(x).
(2) Given a word y, it is not feasible to compute a word
x such that y = F(x).

We will not bother to specify precisely what “easy” and
“feasible” mean, so our reasoning will be informal. Note
that given F(x), it is always possible to find x by an
exhaustive search. We require that such a computation
be too costly to be practical. A one-way function F can
be constructed from a secure encryption algorithm: one
computes F(x) by encrypting a standard word using x
as a key [1].

Instead of storing the user’s password x, the system
stores only the value y = F(x). The user identifies himself
by sending x to the system; the system authenticates his
identity by computing F(x) and checking that it equals
the stored value y. Authentication is easy, since our first
assumption about F is that it is easy to compute F(x)
from x. Anyone examining the system’s permanently
stored information can discover only y, and by the second
assumption about F it will be infeasible for him to
compute a value x such that y = F(x). This is a widely
used scheme, and is described in [2] and [3].

While removing the first weakness, this method does
not eliminate the second—an eavesdropper can discover
the password x and subsequently impersonate the user.
To prevent this, one must use a sequence of passwords
X1, X2, . . ., X1000, Where x; is the password by which the
user identifies himself for the ith time. (Of course, the
value 1000 is quite arbitrary. The assumption we will
tacitly make is that 1000 is small enough so that it is

One-Time Passwords

e One-time password authentication mechanisms (cont.)

o the new password is derived with each instance of the authentication

protocol using a one-way hash function

m the system based on hash chains is called S/Key and is due to Lamport
m a user begins with secret kand produces a sequence of values
k, h(k), h(h(k)), . . ., h(k)
m password for ith identification session is p, = h*’ (k)
m The server is given hi(k) by the user
m when user authenticates (i + 1) st time with p_ , the server checks whether h(p.,.) = p,

m if hisinfeasible to invert, this convinces the server that the user is legitimate

One-Time Passwords
e Example of S/Key

o supposet=5

o atsetup stage
m user chooses kand computes h(k), h(h(k)), h’(k), h*(k), h>(k)
m uses gives h’(k) to the verifier

o during authentication

m atsession 1:
m atsession 2;

m atsession5:

Entity Authentication

e An even stronger form of authentication is one where the user

doesn’t have to send the secret to the verifier

©)

ideally you want to convince the verifier without leaking information

about your secret

such solutions exist and often involve the verifier sending a random
challenge to the claimant

the claimant uses the challenge and the secret to compute the response

anyone who monitors the channel, cannot deduce information about

the secret

Challenge-Response Techniques
e The goal of challenge-response techniques is to
o use a single secret for authentication
o provide evidence of the secret without leaking information about it
o proving possession of a secret without leaking information about it is
called a zero-knowledge proof of knowledge
e Challenge-response protocols can be built
o from simple cryptographic primitives (e.g, MACs and signature schemes)

o from scratch (Schnorr, Okamoto, and Guillou-Quisquater schemes)

Challenge-Response Techniques

e The basic form of such protocols is normally as follows:

©)

O

©)

©)

O

suppose Alice is authenticating to Bob

Alice has a secret s and Bob has a verification value v

Bob sends to Alice a challenge ¢ (chosen or computed anew)
Alice computes a response r = f(s, ¢) and sends it to Bob

Bob verifies rusing cand v

e Building a secure challenge-response protocol is non-trivial

©)

must be secure against active adversaries

m parallel session attack

m Mman-in-the-middle attack

Token-Based Authentication

e Authentication based on what you possess can be done using different types

of tokens

o memory cards

data is passively stored on a medium

a card reader can retrieve information stored on the card

e.g., magnetic stripe credit cards, ATM cards, hotel keys

memory cards provide a limited level of security (i.e., card contents
can be read by any reader and copied to another card)

memory cards are often combined with a password or PIN

using memory cards with computers requires special reader

Token-Based Authentication
e Types of authentication tokens (cont.)

o smart cards
= such cards have a built-in microprocessor, programmable read-only

memory and random-access memory (RAM)
= they can engage in different types of authentication protocols including

challenge-response

= such tokens can also be used to generate dynamic passwords
e each minute the device generates a new password

e the device and the verifier must be synchronized

= tamper-resistance of such tokens must be addressed
e it's been shown in the past that key material can be recovered with

relatively inexpensive equipment

Token-Based Authentication
e Types of authentication tokens (cont.)

o USB dongle
= USB tokens can also be used for authentication
= they can store static data as well as code
e recent dongles also include non-volatile memory
= no additional hardware such a special-purpose reader is necessary
= USB dongles are commonly used for copy protection of copyrighted
material
= dongle products often don't provide enough security to be used in

rigid security requirement environments

Authentication with Shared Secret

| am Alice

F(K-AliceBob, R)

Plaintext Communication

Authentication with Shared Secret

| am Alice

F(K-AliceBob, R)

R

Plaintext Communication

Authentication with Public Key

| am Alice

Sign(R)

Plaintext Commmunication

| am Alice

E(R, PublicKeyAlice)

R

Plaintext Commmunication

GSM 2G Authentication

Carrier

Its IMSI

R, SRES, Kc

<

SRES=A3(K,R)

= Kc=A8(K,R)

BN Station SRES ?= SRES

SIM Communication with Kc

Fake Base Station

My IMSI

SRES Ignore SRES

g Station ,
A8 is not secure

@ﬁ Communication with Kc N

Fake Base Station

$1500 from underground marketplace in 2013
Send out fake/spoofed SMS with phishing links

Fake Base Station

las: | Miss. !
' La

* Houston

LY ¢
Miami ¢

| Wl\rr'v
México :
. Republica

ESD America's map of all 19 fake mobile base station "interceptors” discovered in August 2014 (ESD America)

Mutual Authentication with Shared Secret

| am Alice, R2

>

R1, f(K-AliceBob, R2)

f(K-AliceBob, R1)

Reflection Attack

| am Alice, R2

R1, f(K-AliceBob, R2)

f(K-AliceBob, R1) ?

| am Alice, R1

R3, f(K-AliceBob, R1)

Reflection Attack

Lesson learned:
® Don't have Alice and Bob do exactly the same thing
O Different keys
O Different Challenges
® The initiator should be the first to prove its identity
® Assumption: initiator is more likely to be the bad guy

Mutual Authentication with Shared Secret

| am Alice, R2

:

R1, f(K-AliceBob, R2)

f(K-AliceBob, R1)

| am Alice

R1

f(K-AliceBob, R1), R2

f(K-AliceBob, R2)

Using Formal Methods to Verify a Protocol

ProVerif: Cryptographic protocol verifier in the formal model P rove r|f

Project participants:

Bruno Blanchet, Vincent Cheval ‘ T h e fa Cts I n P rove r If d e S C r I b e
Former participants:
what the attackers knows.
It can handle many different cryptographic primitives, including shared- and public-key cryptography (encryption and signatures), hast

. . .
The rules in ProVerif describe
« It can handle an “nboun(ge(ijnur;bel' of Zessi(;ms ofl the proltocolh(even in parallel) alild an l;nboulf\ded mes]sag;1 space. l'll'h(ijs resull;as beel
property is actually satisfied. The considered resolution algorithm terminates on a large class of protocols (the so-called "tagged" proto h OW th e atta C ke r Ca n | e a r n n eW

ProVerif can prove the following properties:

secrecy (the adversary cannot obtain the secret) fa CtS
authentication and more generally correspondence properties = an
strong secrecy (the adversary does not see the difference when the value of the secret changes)

equivalences between processes that differ only by terms

A survey of ProVerif with references to other papers is available at O cee i n C I u d i n g I e a r n i n g n eW fa Cts

Bruno Blanchet. Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif. Foundations and Trends in Privacy ar

by using the protocol.

« To install ProVerif, you need to download:
o Either:
= the source package ProVerif version 2.04 source (gzipped tar file) under the GNU General Public License
= or the binary package ProVerif version 2.04, for Windows, under the GNU General Public License

i : ey : .
e T ® The tool then tries to apply all
« User manual (also included in the documentation package)

the rules to learn a secret.

Xavier Allamigeon, Ben Smyth, Marc Sylvestre

ProVerif is an automatic cryptographic protocol verifier, in the formal model (so called Dolev-Yao model). This protocol verifier is based on .

« For Opam users, ProVerif can also be installed via Opam (opam install proverif).

Fast Identity Online (FIDO)

f [0 JHAHS THE ALLIANCE STANDARDS & TECHNOLOGY DISCOVER FIDO FIDO® CERTIFIED NEWS & EVENTS
ALLIANCE authentication

e The FIDO protocol suite

Save the Date! Authenticate 2023: Oct. 16-18 Carlsbad, CA ... Plus, watch the Authenticate 2022 videos in the media library on t

CUILE R aims at allowing users to
log in to remote services
Simpler, Stronger with a local and trusted

Authentication authenticator

Solving the World's Password Problem

—— B ¢ \With FIDO, relying services
do not need to store
user-chosen secrets or
: . their hashes, which
Apple, Google and Microsoft Commit . . .
e eliminates a major attack
surface for e-business

-

Fast Identity Online (FIDO)

' e No secrets on the Server
I side

| | . e Biometric Data (if used)
d lance never leaves device

simpler stronger
authentication

Home / Certification Overview /

FIDO® Certified

Fast Identity Online (FIDO)

Ahnlab

Company Name Al ab

Implementation Name A/l ol

AIDEEP

Company Name AUEEF

Implementation Name Touch x0 FIDO® A
Specification LA/
Specification UAF
Version 1 (
A Version 1 0
Type Authenticat :
Authenticator Level Functional Onk pe
Authenticator Level Funchonal Ont
Company URL M /v sdeep &
» -
AIDEEP &
PR
Company Name ADEEP (c iy Name AT Soka
Implementation Name Touch v X8 Ancdrosd S/W Authenmic a Implementation Name |
Specification LA/ s cation UAF
Version 1 (Version 10
Type Authentic atc PPN
Authenticator Level Functional Only Aihanicasar Lavel Funciloos! Only
Company URL 1 e
[P
Moot | Awans

D
Company Name AT Soksor

Implementation Name 1 1DO® @ SmanOoe 72PN

Implementation Name Aware f Y Face Auhenticator (Androsd

Specification UAF Specification UAF
Version 1 (Version 10
Type Authertic st Type Authertc st

LEADING THE EFFORT

Google

B2 Microsoft

(intel)’ Lenovo

docomo @l
Piinsuncd QUALCOMW
arm N«

CONSUMER
ELECTRONICS

gemalto yubico
[@) synaptics RSA

nok Daon
nok
FEMAN RAON
(Hoemia

k@gigﬂ FING‘[ADmnvs
vmware © Onespan

SECURITY & BIOMETRICS

fco

ALLIANCE

aetna LINE

VISA amazon
facebook

Alibaba.com m:%
PayPal ==

Bankof America.

—
ING o
USAA® @ BCcard

mastercard

HIGH-ASSURANCE SERVICES

Fast Identity Online (FIDO)

Sirecom

-0 oesllen e

=
»

Y an.

3

User approval

Registration Begins Record fingerprint New authentication Trust established
key

Fast Identity Online (FIDO)

7w
C c D

' llLogin Challengf@

Login attempts User Approval Key Selected Login success

Fast Identity Online (FIDO)

e FIDO authenticator Registration:

o A user wishes to log in to remote services using a device that has a certified
UAF authenticator, e.g., fingerprint sensor. The authenticator has a trusted
attestation key (either RSA or ECDSA).

o The user logs in to a relying party, such as a banking website, using her
original credentials, e.g., text-based password. The authenticator records her
fingerprint, generates an authentication key for this website, signs the public
part of the new key with the attestation key, and sends it to the website.

o The website links the user’s online profile with the authentication key if it is
valid. As a result, the trust between the relying party and the authenticator is
established and the procedure of authenticator registration is completed.

e Insubsequent login attempts (the authentication procedure), the user only needs
to prove her identity to the local authenticator, upon the success of which the
website and the authenticator will run a challenge-response protocol with the
authentication key

Fast Identity Online (FIDO)

| HEEEER —

AUTHENTICATOR

Fast Identity Online (FIDO)

Touch ID for “BofA"”
n In with Online ID cmar*****

Can

Registration

AAID, sk

Fast Identity Online (FIDO)

AT kw Tok, CallerID FacetID

Authenticator ASM UAF Client

UName, AppID, SData, Chig UName, AppID. SData. Chlg

UName, AppID, pkar

<login by the original authentication method>

new random SData
new random Chlg

get trusted FacetIDs list from ApplD
check if FacetID in the facet list
get TLSData from TLS channel

zSData + SData

fep — (AppID, FacetID, Chlg, TLSData)

UName, fep

fc « hash(fcp)

ak « hash(AppID

| Tok || CallerID)

UName, AppID, ak, fc

ak « hash(ak || AppID)

verify the user

new (skav. pkav)

generate random KeylD

h & Ejyy (skav, ak, UName, KeyID)
new sign counter CNTR,

S « sign,, . (AAID, fc, KeyID,CNTRA,pkav)

skar

AAID, fe, KeylD, h

CNTRa, pkau. S, Certar

store CallerID, AppID, h, KeyID

AAID, fe, KeylD

z8Data, AAID, fe, KeyID

CNTRA. pkau, S. Certar

CNTRy, pkav, S, fep, Certar

zSData, AAID, fe, KeylD
CNTRy, pkav, S, fp, Certar

get TLSData from TLS channel
zfe « hash(ApplD || Chlg || TLSData)

check:
z8Data == SData
zfc == fe
fep. ApplD == ApplD

fep. TLSData
fep.Chlg == Chlg

TLSData

if right then:
CNTRg + CNTR4
store pkay. KeylD, AAID, CNTRs

if fep.FacetID is in the trusted FacetIDs list
CheckSign,, (S. (AAID, fe, KeylD,CNTRa,pkav))

il L

Authentication

Fast Identity Online (FIDO)

AAID, kw. CNTR4

Tok, CallerID, h

FacetID

Authenticator

[asm |

UAF Client —I

UName, AppID, AAID’
KeyID, pkay, CNTRg

Ijer Agent —I
I

Iﬁying Party—l
[

initiate authentication >

AppID, KeyID, SData, Chlg, [Tr]

I
new random SData
new random Chlg
[get Tr]

AppID, KeylD. SData, Chlg. [Tr]

z8Data + SData

get trust facet list from AppID
check if FacetID in the list
get TLSData from TLS channel

fep (AppID, FacetID, Chlg, TLSData)

Jep, KeyID, [Tr]

fe « hash(fep)
ak + hash(AppID

locate h by KeylD

|| Tok || CalleriD)

ak, fe, AppID, h, [Tr]

ak + hash(ak || AppID)
verify the user
(skav, zak, zUName, KeyID) « Dy, (h)
Check:
zak == ak
If right then:
[display and let the user verify the Tv]
[hTr + hash(T7)]
2CNTRA + CNTR, +1
new random n
$ « sign,,, (AAID,n, fc,[kTr], KeyI D, xCNTR,)

AAID, n._fe. [hTv]
KeylD, z<CNTRz, S

AAID, n, fe, [hTyr)

KeylD, tTCNTR4. S

2SData, AAID, n, fe, [KT¥]

zSData, AAID, n, fe. [hTr]

KeyID, xCNTRy, fep, S

KeyID, zCNTR 4, fep. S

get TLSData from TLS channel
locate pkay by (UName, AAID’, KeyID)

fe + hash(AppID || Chlg || TLSData)
Check:

zS8Data == SData

zfe == fc

fep.AppID == AppID

fep. TLSData == TLSData

fep.Chlg == Chlg

if fep.FacetID is in the trusted FacetIDs list

AAID == AAID’

ZCNTRy == CNTRs + 1

[ATr == hash(Tv)]

CheckSign,, (8. (AAID, fe, [nTr], KeyID,zCNTR)
If right then:

CNTRgs + 2CNTR4

—-—

Modeling FIDO using ProVerif

Protocol process UAFVerif

Formalizatio Modeling| =
———n——> ~ Security > | iebranchrboon; [:
fanch = Tcle ther ProVerif >

= properties . \
y A L

~ Assumptions and

UAF Preeise & F6rmal applied 1 calculus

specifications expressions

e Formalization

o Complex description of the protocol

o Ambiguous and implicit security properties

o Unclear security assumptions and threat model
e Modeling

o Encode expression with applied T calculus

o Different threat models
e UAFVerif

o Automatically change the threat model

o Identify minimal assumptions

Modeling FIDO using ProVerif

e Protocol process ~900LoC

@)
@)

Unbounded number of entities + unbounded sessions
Different threat models

e Security assumptions and security properties

@)

@)

Finding a bug of ProVerif 1.98 when analyzing authentication goals in
our threat model (fixed in ProVerif 2.01)

Modeling unlinkability with observational equivalence

e UAFVerif ~500LoC

@)

Automatically generate and analyze 400,000+ scenarios under
different assumptions.

Automatically identify minimal assumptions
More than 80 hours analyzing

Modeling FIDO using ProVerif

Verification results

1B 2B IR 2R
Auth. Type : -
login | step-up step-up login | step-up step-up
skay —-kw V-A|M —-kw VoA[M v —kw
C ak —tokN—-A[M —tokN—A|M X %S
’ CNTR (—kw A—A[M])V-M[A (—kw A—A[M])V-M[A] ~C[M]A-MJ[A] —C[M]A-MTA]
r B =C[U]A =CTUJA B =C[UJA =ClU]A
—M|[C|A—-A[M] - M[C]A—A[M] - M[C|A-A[M] - M[CIA-A[M]
A Basic —A[M]v-MI[A] vV vV -C[M]|A-M[A] Vv Vv
~ | NenR - i Y - J N
TABLE IV. MINIMAL ASSUMPTIONS REQUIRED FOR THE UAF AUTHENTICATION PROCESS TO ACHIEVE CONFIDENTIALITY PROPERTIES AND

AUTHENTICATION PROPERTIES.

Findings

KHAccesstoken mechanism is futile
o Attackers can easily compute the token and impersonate ASM
o Attackers can intercept token and impersonate ASM

Registration process is more vulnerable than authentication
o Over 100,000 authenticators share the same attestation key and ID
o No trust between ASM and authenticator before registration

UAF meets unlinkability property
o Any two relying parties cannot link the conversation to one user

UAF prevents phishing attack
o From malicious Relying party
o From malicious User agent

