
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Cryptographic Topics Covered

● What we’ve discussed so far:

○ symmetric encryption

○ message authentication codes

○ hash functions; password hashing

○ public-key encryption

○ digital signatures

● Today’s agenda:

○ public key certificates; public key infrastructure

○ (pseudo) random numbers and generators

Public Key Certificates

Secure Communication

● As previously discussed, we want to use fast symmetric key

cryptography for secure communication

● When there is no pre-established relationship and shared key,

public-key cryptography is used to agree on the key

○ the idea is for one party A to choose a key k and send it encrypted to

another party B using B’s public key

■ A sends EncpkB(k) to B

○ this logic forms the basis of different protocols used in practice (e.g.,

TLS)

● The question of (public) key authenticity arises

Public Keys and Trust

● If we want to use public-key cryptography, we are facing the key

distribution problem

○ how/where are public keys stored?

○ how do I obtain someone’s public key?

○ how can Bob know or “trust” that pkA is indeed Alice’s public key?

Alice
public key pkA
secret key skA

Bob
public key pkB
secret key skB

Public-Key Certificates

● Distribution of public keys can be done

○ by public announcement

■ a user distributes her key to recipients or broadcasts to community

○ through a publicly available directory

■ can obtain greater security by registering keys with a public directory

● Both approaches don’t protect against forgeries

● Digital certificates are used to address this problem

○ a certificate binds identity (and/or other information) to a public

key

Public-Key Certificates

● (Root of trust) Assume there is a trusted central authority CA with a

known public key pkCA

● CA produces certificate for Bob as certB = sigCA(pkB||Bob)

● Bob distributes (pkB, certB)

● Alice can verify that her copy of Bob’s key is genuine

● This technique is used in many applications

○ TLS/SSL, ssh, email, IPsec, etc.

Phishing Websites

Website Identity

● When you go to a site that uses HTTPS (connection security), the

website's server uses a certificate to prove the website's identity to

browsers, like Chrome.

● Anyone can create a certificate claiming to be whatever website they

want. To help you stay on safe on the web, a good browser requires

websites to use certificates from trusted organizations.

X.509 Identity Certificates

● Distinguished Name of user

○ C=US, O=Lawrence Berkely National Laboratory, OU=DSD, CN=Mary R.

Thompson

● DN of Issuer

○ C=US, O=Lawrence Berkely National Laboratory, CN=LBNL-CA

● Validity dates:

○ Not before <date>, Not after <date>

● User's public key

● Signed by CA

Certificate Authority

● A trusted third party - must be a secure server

● Signs and publishes X.509 Identity certificates

● Revokes certificates and publishes a Certification Revocation List (CRL)

● Many vendors

○ OpenSSL - open source, very simple

○ Netscape - free for limited number of certificates

○ Entrust - Can be run by enterprise or by Entrust

○ Verisign - Run by Verisign under contract to enterprise

○ RSA Security - Keon servers

Website Identity

Website Identity

Website Identity

Self-signed certificate?

● Technically, anyone can create their own SSL certificate by generating a

public-private key pairing and including all the information mentioned above.

Such certificates are called self-signed certificates because the digital signature

used, instead of being from a CA, would be the website's own private key.

● But with self-signed certificates, there's no outside authority to verify that the

origin server is who it claims to be. Browsers don't consider self-signed

certificates trustworthy and may still mark sites with one as "not secure," despite

the https:// URL. They may also terminate the connection altogether, blocking the

website from loading.

Public Key Infrastructure

Public Key Infrastructure
● Possibly the biggest challenge in public-key cryptography is ensuring the

authenticity of public keys

○ Alice wants to encrypt a message for Bob using his public key

○ but Alice doesn’t know Bob personally

● We have already seen that public keys can be managed through the use

of certificates

○ there is a trusted certification authority with a known public key

○ the CA issues certificates by signing a user’s identity along with her public key

○ Bob’s public key pkB is authentic if it matches his key in certB = sigCA (B, pkB)

Public Key Infrastructure
● A public-key infrastructure (PKI) is a system for managing trust in the

public keys through the use of certificates

○ it is the basis of a pervasive security infrastructure whose services are

implemented and delivered using public-key techniques

● Ideally, a PKI should function without active participation of the user

○ when we say that a network user Alice performs various operations, it is

implies that her software does this

○ Alice might not be even aware of the PKI-related procedures

● A PKI’s goal is to eliminate the need for users to share precomputed

symmetric keys and enable the use of public-key cryptography

Public Key Infrastructure
● There are many components to a PKI

○ certificate issuance

■ before a certificate can be issued, the identity and credentials of the user must be verified

using non-cryptographic means

■ a secure procedure must be used to generate the public and private keys for the certificate’s

owner

○ certificate revocation

■ this is done before a certificate’s expiration date under unforeseen circumstances

■ for example, if a private key is lost or stolen

■ additional infrastructure is need to recognize revoked certificates

Public Key Infrastructure
● PKI components (cont.)

○ key backup/recovery/update

■ key backup refers to secure storage of users’ private keys by the administrator of the PKI

■ key recovery is a protocol that allows a lost or forgotten key to be restored or re-activated

■ key update occurs when a key is to be changed (e.g., a certificate is about to expire)

○ timestamping

■ the times at which a key is issued, revoked, or updated may be important

■ such timestamps are often included in the certificate

Public Key Infrastructure
● Once a PKI is built and operational, it allows various applications to be

built on top of it

○ such applications can be called PKI-enabled services

● Examples of PKI-enabled services include

○ secure communication

■ secure email protocols include Secure Multipurpose Internet Mail Extensions (S/MIME) and

Pretty Good Privacy (PGP)

■ secure web service access is provided through Secure Sockets Layer (SSL) or Transport Layer

Security (TLS)

■ secure virtual private networks (VPNs) use the Internet Protocol Security (IPsec) protocols

Public Key Infrastructure
● Examples of PKI-enabled services (cont.)

○ access control

■ access control provides the means of managing user privileges through authentication,

authorization, and delegation

■ access control normally requires user authentication via a password or cryptographic

identification scheme

○ privacy architecture

■ a privacy architecture permits the use of anonymous or pseudonymous credentials

■ such credentials (or certificates) allow an individual to show membership or another property

without specifying their identity

Access control/Authentication without Password

Access control/Authentication without Password

GitHub/SSH Example

Push code without inputting GitHub password each time.
● Login GitHub website with Username/Passwd
● Add RSA public key in your profile

Certificates
● Certificates are important building blocks of PKIs

● It is generally assumed that there is a trusted CA

○ each user has access to an authentic copy of the CA’s public key

● In its simplest form, a certificate is a CA’s signature on an identity

and the identity’s public key

● A valid CA’s signature of this form is treated as a confirmation that

the public key belongs to that identity

○ i.e., it is assumed that the CA verifies the identity before signing any

given key

● X.509 v3 is a popular type of certificate

Certificates
● X.509 certificates contain the following fields:

○ data

■ version

■ serial number

■ signature algorithm

■ issuer name

■ validity period

■ subject name

■ subject public key and public key algorithm

■ optional fields

○ signature on all of the above field

Certificates
● X.509 certificates were originally defined using X.500 names for

subjects
● X.500 names have a hierarchical format:

C = US
O = University at Buffalo
OU = Department of Computer Science and Engineering
CN = Ziming Zhao

○ here C denotes country, O denotes organization, OU denotes
organizational unit, and CN denotes common name

● This format ensures that everyone has a unique global name
○ it could be used as a global phone directory

● No global X.500 directory exists today

Certificates
● Example X.509 certificate

Data:
Version: 3
Serial Number: 32:73:4D:44:25:6E:73:C2
Certificate Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
Issuer: CN = Google Internet Authority G3

O = Google Trust Services
C = US

Validity:
Not Before: September 25, 2018, 7:43:00 AM GMT
Not After : December 18, 2018, 7:43:00 AM GMT

Subject: C = US, ST = California, L = Mountain View,
O = Google LLC,
CN = www.google.com

Certificates
● Example X.509 certificate (cont.)

Subject Public Key Info:
Public Key Algorithm:

Algorithm Identifier: Elliptic Curve Public Key
Algorithm Parameters: ANSI X9.62 elliptic curve prime256v1 (aka
secp256r1, NIST P-256)

Subject’s Public Key:
Key size: 256 bits
Base point order length: 256 bits
Public value: 04 5a cd 02 99 d4 9a a0 ab 0f 9f c0 9e d1 c5 2d . . .

Certificate Signature Value:
Size: 256 Bytes / 2048 Bits
88 14 32 8e 8f 32 95 8f d4 a4 85 0d 2f 55 23 78 4b 58 6d cf b4 5e 1c 2b a8 3f
1c 6c 83 7e 6a fa …

Certificates
● Certificate life-cycle management has several phases, which include:

○ registration

○ key generation (and backup), key distribution

○ certificate issuance

○ certificate retrieval and validation

○ certificate expiration

● Additionally, we might have:

○ key update

○ key recovery

○ certificate revocation

Certificates

● During the validation, the following steps take place

○ verify the integrity and authenticity of the certificate by verifying the CA’s

signature

■ it is assumed that the CA’s keys is known a priori or can be reliably verified using external

resources

○ verify that the certificate has not expired

○ verify that the certificate has not been revoked

○ if applicable, verify that the certificate’s usage complies with the policy

constraints specified in the certificate’s optional fields

Certificates
● A PKI needs a mechanism to verify that a certificate has not been revoked

prior to its expiration date

● A certificate revocation list (CRL) is the most common technique

○ a CRL is a list of the serial numbers of certificates that are revoked but not

expired

○ this list is prepared by the CA and is signed

○ it is updated periodically and is made available at a public directory

● For efficiency reasons, delta CRLs can be used

○ instead of containing all revoked certificates, delta CRLs contain the changes

since the most recent previously issued CRL or delta CRL

● Alternatively, an online certificate status protocol can be used to query a
certificate’s status in real time

Trust Models
● Often there is more than one CA that can sign certificates

○ a certificate can be verified by following a certificate path from a trusted CA to
a given certificate

○ each certificate in the path is signed by the owner of the previous certificate in
the path

○ if all certificates in the path can be verified, the last certificate is considered to
be valid

● A trust model specifies the way in which a certificate path should be
constructed, e.g.,
○ for example, strict hierarchy; networked PKIs; web browser model; and

user-centric model (or web of trust)

Trust Models
● Strict hierarchy model

○ there is a single root CA that has a self-signed self-issued certificate
■ the root CA is called trust anchor

○ the root CA may issue certificates for other CAs
○ any CA can issue certificates for end users

Trust Models
● Strict hierarchy model

○ what is the meaning of a directed edge?

○ usage example: Alice would like to verify a certificate of user U3

■ U3 sends to Alice

■ Alice performs certificate path validation

Trust Models

● Networked PKIs model
○ sometimes it might be desirable to connect root CAs of two or more different

PKI domains
■ this can be called PKI networking and it creates one large PKI with users in different domains

○ cases when one CA signs the certificate of another CA are called
cross-certification

○ in mesh configuration, there are several root CAs and all of them cross-certify
one another
■ the number of cross-certifications for n root CAs is __________

○ in hub-and-spoke configuration, root CAs each cross-certify independently
with a new hub CA
■ the number of cross-certifications for n root CAs is __________

Trust Models
● Networked PKIs model (cont.)

○ example mesh configuration

○ example hub-and-spoke configuration

Trust Models

● Networked PKIs model (cont.)

○ to validate Bob’s certificate, Alice must be able to find a path of certificates

from her trust anchor CArooti to Bob

■ this process is called path discovery

○ assume that Bob’s certificate is signed by CArootj

○ what path does Alice construct in mesh configuration?

○ in hub-and-spoke configuration?

Trust Models

● Web browser model

○ most web browsers come preconfigured with a set of independent root CAs

○ all of them are considered to be trusted by a user of the browser

○ security considerations for this model:

■ users normally don’t have information about the security of these pre-configured root CAs

■ the list is editable, but many users are not even aware of it

■ there might be no mechanism to revoke a root CA from a web browser

■ there might be no automated way to update root CAs’ certificates

■ if permitted, most users choose to proceed with expired certificates

Trust Models

● Pretty Good Privacy (PGP)

○ PGP is used for email, where each user is her own CA

○ a PGP certificate contains an email address (UID), a public key (PK), and one or

more signatures on this (UID, PK) pair

○ when a Alice creates her key, she first self-signs it:

cert(Alice) = (data, sigA(data)), where

data = (UID = alice@buffalo.edu, PK = 0xBEEF1234)

○ later, other users may add their signatures to Alice’s key, so she has

cert(Alice) = (data, sigA(data), sigB(data), sigC(data), . . .)

Trust Models

● Pretty Good Privacy (PGP) (cont.)

○ when Bob wants to sign Alice’s key, he needs to

■ retrieve a copy of Alice’s key (from Alice or a key server)

■ verify Alice’s identity

■ ensure that the key he has for Alice is the same as what Alice has

● this is done by comparing the fingerprints of Alice’s key and Bob’s version of Alice’s key

■ sign Alice’s key

■ send the updated certificate to Alice or a key server

○ if Bob performed all checks, he is likely to trust the key

○ he can encrypt emails to Alice or receive signed emails from her

Trust Models

● Pretty Good Privacy (PGP) (cont.)

○ Alice keeps a collection of certificates she obtained from different sources in

a data structure called a keyring

○ she is able to declare how much she trusts the owner of a certificate

■ often the choices are implicitly trusted, completely trusted, partially trusted, or untrusted

○ Alice’s own key is implicitly trusted

○ if Alice is convinced that Bob’s public key is valid and Bob would not to sign

invalid keys, she declares Bob’s key completely trusted

○ she can also set how the trust of unknown keys is computed

■ e.g., she can set that keys with the distance larger than 3 from her should not be trusted

Trust Models

● PGP web of trust

○ each user can set the trust of a key at signing time and also choose how trust

of unsigned keys is computed

○ key servers are a convenient way of store and access keys

■ examples: keyserver.pgp.com, pgp.mit.edu, etc.

■ different key servers synchronize their datasets

S/MIME Client Certificates

● There are other certificate or PKI architectures for email

● UB offers client certificates for signing and encryption

○ the key is generated by UBIT and is signed by UB’s key

○ you can trust that signed emails from UB accounts were sent by the

account owners

○ see https://email.buffalo.edu/ClientCertificate.html for more

information

https://email.buffalo.edu/ClientCertificate.html

Future of PKI
● There are several difficulties that prevent a large-scale deployment

of PKIs

○ the first problem is who should be responsible for development,

maintenance, and regulation of PKIs

○ the second problem is what standards should be used in PKIs

○ the third problem is that different PKIs are needed in different

environments

○ also, a lack of PKI-compatible applications is slowing the deployment of

PKIs

■ this is a chicken-and-egg problem

Are There Alternatives?

● Emerging technologies might provide alternative solutions to having PKI

○ one example is contract signing using blockchain technology

■ blockchain offers immutable storage organized by time

■ contract signing could be realized using digital signatures

● this requires having an authentic copy of the signer’s key a s otherwise the security

guarantees don’t hold

■ by reliably storing one’s consent to executing the contract on the blockchain, we could have

similar legal protection

■ laws and regulations often lag behind technological changes

Summary

● Public key infrastructure targets solving the problem of public-key

management between users who don’t know each other

○ this is often addressed through the use of certificates

○ many different architectures for building trust exist

○ different applications use different models

■ multiple CA certificates on the web

■ web of trust in PGP

● No large-scale public PKI is currently in place

Random Numbers

Random Numbers

● All cryptographic constructions that are non-deterministic or

produce key material require randomness

○ choosing symmetric key as a random string

○ choosing large prime and other numbers for public-key constructions

○ choosing padding or other means of randomizing encryption

● What do we expect from a random bit sequence?

○ uniform distribution: all possible values are equally likely

○ independence: no part of the sequence depends on its other parts

● Where do we find randomness?

Random Numbers
● Randomness can be gathered from physical, unpredictable

processes

● Example sources of true randomness

○ least significant bits of time between key strokes

○ noise from a mouse, video camera, and microphone

○ variation in response times of raw read requests from a disk

● Amount of required randomness may not be small

○ example: choosing a 1024-bit prime

● Instead of a true random number generator (TRNG) we can use a

pseudo-random number generator (PRNG)

Pseudo-Random Numbers
● A pseudo-random generator is an algorithm that

○ takes a short value, called a seed, as its input

○ produces a long string that is statistically close to a uniformly chosen

random string

○ for a k-bit long seed, a PRG has period of at most 2k bits

○ formally, PRG : { 0, 1 }k → { 0, 1 }ℓ(k) for some ℓ(k) > k

● The security requirement is that a computationally bounded adversary

cannot tell the output of a PRG apart from a truly random string of the

same size

○ in practice, a number of statistical tests are used to test the strength of a

PRG

Pseudo-Random Numbers
● PRGs are deterministic

○ the output is always the same on the same seed

○ for cryptographic purposes, it is crucial that the seed is hard to guess

■ i.e., use strong true randomness to generate a seed

● One of uses of a PRG is for symmetric key stream ciphers

○ two parties share a short key, which is used as a seed to a PRG

○ the resulting pseudo-random key string is used to encipher the data

○ portions of the pseudo-random string cannot be reused!

Pseudo-Random Numbers
● Example of a PRG

○ symmetric block ciphers, such as AES, can be used as PRGs

○ given a key k, produce a stream as Enck(0), Enck(1), . . ., where Enc is block

cipher encryption

● There are various tests that can be run on PRGs to determine how close

the output to a uniformly chosen string

● Of particular importance to cryptographically secure PRG is the next-bit

test

○ given m bits of a PRG’s output, it is infeasible for any

computationally-bounded adversary to predict the m + 1th bit with

probability non-negligibly greater than 1/2

Random and Pseudo-Random Numbers
● Regardless of how randomness was produced, it is absolutely crucial

that you use good randomness

○ insufficient amount of randomness leads to predictable keys

○ this is especially dangerous for long-term signing keys

● Examples of poor randomness in cryptographic applications

○ CVE-2006-1833: Intel RNG Driver in NetBSD may always generate the same

random number, Apr. 2006

○ CVE-2007-2453: Random number feature in Linux kernel does not properly

seed pools when there is no entropy, Jun. 2007

○ CVE-2008-0166: OpenSSL on Debian-based operating systems uses a

random number generator that generates predictable numbers, Jan. 2008

Linux /dev/random and /dev/urandom

● Both /dev/random and /dev/urandom are devices to provide a cryptographically secure

pseudorandom number generator.

● /dev/random blocks when there is not enough entropy available, which can cause performance

issues in certain situations. Entropy refers to the amount of randomness that can be gathered

from the environment, such as user input and hardware events, to generate secure random

numbers.

● /dev/urandom does not block and will always generate random numbers using a cryptographic

algorithm that uses a cryptographic key to generate random numbers. This means that

/dev/urandom can generate random numbers much faster than /dev/random. However, in some

situations, if there is not enough entropy available, /dev/urandom may use weaker sources of

randomness, which can potentially reduce the security of the generated random numbers.

Linux Random Number Generator 2.6.10

● The Linux random number generator is part of the kernel of all Linux distributions and is

based on generating randomness from entropy of operating system events.

● The output of this generator is used for almost every security protocol, including TLS/SSL

key generation, choosing TCP sequence numbers, and file system and email encryption.

Linux Random Number Generator 2.6.10

IEEE S&P 2006

Conclusions
● It is important to understand what security guarantees are expected

from a cryptographic tool

● It is important to use constructions that have been proven secure or

are widely believed to be secure

● The use of strong randomness is critical

● Implementing cryptographic constructions is hard!

○ bugs exist even in well-known and widely used cryptographic libraries

○ e.g., the Heartbleed Bug

