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Symmetric Encryption II



Design Principles of Block Ciphers

● Confusion-diffusion paradigm 

○ split a block into small chunks 

○ define a substitution on each chunk separately (confusion) 

○ mix outputs from different chunks by rearranging bits (diffusion) 

○ repeat to strengthen the result



Design Principles of Block Ciphers

● For this type of algorithm to be reversible, each operation needs to 

be invertible



Design Principles of Block Ciphers

● Let’s denote one iteration or round by function g 

○ The initial state s0 is the message m itself 

○ In round i: 

■ g’s input is round key ki and state si − 1 

■ g’s output is state si 

○ The ciphertext c is the final state sNr, where Nr is the number of rounds 

○ Decryption algorithm applies g−1 iteratively 

■ the order of round keys is reversed 

■ set sNr = c, compute si − 1 = g−1( ki , si )



Design Principles of Block Ciphers

● Another way to realize confusion-diffusion paradigm is through 

Feistel network 

○ in Feistel network each state is divided into halves of the same length: Li 

and Ri 

○ in one round: 

■ Li = Ri − 1 

■ Ri = Li − 1 ⊕ f (ki, Ri − 1)



Design Principles of Block Ciphers

● Are there any advantages over the previous design? 

○ operations no longer need to be reversible, as the inverse of the 

algorithm is not used! 

○ reverse one round’s computation as Ri − 1 = Li and L i − 1 = R i ⊕ f ( k i, R i − 1)



Design Principles of Block Ciphers

● In both types of networks, the substitution and permutation 

algorithms must be carefully designed 

○ choosing random substitution/permutation strategies leads to 

significantly weaker ciphers 

○ each bit difference in S-box input creates at least 2-bit difference in its 

output 

○ mixing permutation ensures that difference in one S-box propagates to 

at least 2 S-boxes in next round



Block Ciphers

● Larger key size means greater security 

○ for n-bit keys, brute force search takes 2n/2 time on average 

○ More rounds often provide better protection 

■ the number of rounds must be large enough for proper mixing 

○ Larger block size offers increased security 

■ security of a cipher also depends on the block length



Data Encryption Standard (DES)

● In 1973 National Institute of Standards and Technology (NIST) 

published a solicitation for cryptosystems 

● DES was developed by IBM and adopted as a standard in 1977 

● It was expected to be used as a standard for 10–15 years 

● Was replaced only in 2001 with AES (Advanced Encryption Standard)

● DES characteristics: 

○ key size is 56 bits 

○ block size is 64 bits 

○ number of rounds is 16



Data Encryption Standard (DES)

● DES uses Feistel network 

○ Feistel network is used in many block ciphers such as DES, RC5, etc. 

○ not used in AES 

○ in DES, each Li and Ri is 32 bits long; ki is 48 bits long



Data Encryption Standard (DES)

● DES has a fixed initial 

permutation IP prior to 16 

rounds of encryption 

○ The inverse permutation 

IP−1 is applied at the end



DES f function

● The f function f(ki, Ri−1) 

○ first expands Ri−1 from 32 to 48 bits (ki is 48 bits 

long) 

○ XORs expanded Ri−1 with ki 

○ applies substitution to the result using S-boxes 

○ and finally permutes the value



DES

● There are 8 S-boxes 

○ S-boxes are the only non-linear elements in DES design 

○ they are crucial for the security of the cipher

● Example S1

input to each S-box is 6 bits b1b2b3b4b5b6 

● row = b1b6, column = b2b3b4b5 

● output is 4 bits



DES

More about S-boxes.. 

● a modified version of IBM’s proposal was accepted as the standard 

● some of the design choices of S-boxes weren’t public, which triggered 

criticism 

● in late 1980s – early 1990s differential cryptanalysis techniques were 

discovered 

● it was then revealed that DES S-boxes were designed to prevent such 

attacks 

● such cryptanalysis techniques were known almost 20 years before they 

were discovered by others



DES Key Schedule

● Key computation consists of: 

○ circular shift 

○ permutation 

○ contraction



DES Weak Keys

● The master key k is used to generate 16 round keys 

● Some keys result in the same round key to be generated in 

more than one round 

○ this reduces complexity of the cipher 

● Solution: check for weak keys at key generation 

● DES has 4 weak keys: 

○ 0000000 0000000 

○ 0000000 FFFFFFF 

○ FFFFFFF 0000000 

○ FFFFFFF FFFFFFF



Attacks on DES

● Brute force attack: try all possible 256 keys 

○ time-consuming, but no storage requirements 

● Differential cryptanalysis: traces the difference of two messages 

through each round of the algorithm 

○ was discovered in early 90s 

○ not effective against DES 

● Linear cryptanalysis: tries to find linear approximations to 

describe DES transformations 

○ was discovered in 1993 

○ has no practical implication



Brute Force Search Attacks on DES

● It was conjectured in 1970s that a cracker machine could be 

built for $20 million 

● In 1990s RSA Laboratories called several DES challenges

○ Challenge II-2 was solved in 1998 by Electronic Frontier Foundation

■ a DES Cracker machine was built for less than $250,000 and found the key was in 

56 hours 

○ Challenge III was solved in 1999 by the DES Cracker in cooperation 

with a worldwide network of 100,000 computers 

■ the key was found in 22 hours 15 minutes 

■ http://www.distributed.net/des



Increasing Security of DES

● DES uses a 56-bit key and this raised concerns 

● One proposed solution is double DES 

○ apply DES twice by using two different keys k1 and k2 

○ encryption c = Ek2(Ek1(m)) 

○ decryption m = Dk1(Dk2(c)) 

● The resulting key is 2 · 56 = 112 bits, so it should be more 

secure, right? 

○ an attack called meet-in-the-middle discovers keys k1 and k2 with 

256 computation and storage 

○ better, but not substantially than regular DES



Triple DES

● Triple DES with two keys k1 and k2: 

○ encryption c = Ek1(Dk2(Ek1(m))) 

○ decryption m = Dk1(Ek2(Dk1(c))) 

○ key space is 2 · 56 = 112 bits 

● Triple DES with three keys k1, k2, and k3: 

○ encryption c = Ek3(Dk2(Ek1(m))) 

○ decryption m = Dk1(Ek2(Dk3(c))) 

○ key space is 3 · 56 = 168 bits 

● There is no known practical attack against either version 

● Can be made backward compatible by setting k1 = k2 or k3 = k2



Summary of Attacks on DES

● DES – best attack: brute force search 

○ 255 work on average 

○ no other requirements 

● Double DES 

○ best attack: meet-in-the-middle 

○ requires 2 plaintext-ciphertext pairs 

○ requires 256 space and about 256 work 

● Triple DES 

○ best practical attack: brute force search



Symmetric Encryption

● So far we’ve covered:

○ what secure symmetric encryption is 

○ high-level design of block ciphers 

○ DES

● Next, we’ll talk about: 

○ AES

○ block cipher encryption modes



Advanced Encryption Standard (AES)

● In 1997 NIST made a formal call for an unclassified publicly disclosed 
encryption algorithm available worldwide and royalty-free
○ the goal was to replace DES with a new standard called AES
○ the algorithm must be a symmetric block cipher
○ the algorithm must support (at a minimum) 128-bit blocks and key sizes 

of 128, 192, and 256 bits 

● The evaluation criteria were: 
○ security
○ speed and memory requirements
○ algorithm and implementation characteristics



AES

● During encryption:

○ the block is copied into the state matrix

○ the state is modified at each round of encryption and decryption

○ the final state is copied to the ciphertext



AES

● The key schedule in AES:

○ the key is treated as a 4 × 4 matrix as well

○ the key is then expanded into an array of words

○ each word is 4 bytes and there are 44 words (for 128-bit key)

○ four distinct words serve as a round key for each round



AES

● Rijndael doesn’t have a Feistel structure

○ 2 out of 5 AES candidates (including Rijndael) don’t use Feistel structure

○ they process the entire block in parallel during each round

● The operations are (3 substitution and 1 permutation operations):

○ SUBBYTES: byte-by-byte substitution using an S-box

○ SHIFTROWS: a simple permutation

○ MIXCOLUMNS: a substitution using mod 28 arithmetics

○ ADDROUNDKEY: a simple XOR of the current state with a portion of the 

expanded key



AES

● At a high-level, encryption proceeds as follows:

○ set initial state s0 = m

○ perform operation ADDROUNDKEY (XORs ki and si)

○ for each of the first Nr − 1 rounds: 

■ perform a substitution operation SUBBYTES on si and an S-box

■ perform a permutation SHIFTROWS on si

■ perform an operation MIXCOLUMNS on si
■ perform ADDROUNDKEY

○ the last round is the same except no MIXCOLUMNS is used

○ set the ciphertext c = sNr



AES

● More about Rijndael design. . .

○ ADDROUNDKEY is the only operation that uses key

■ that’s why it is applied at the beginning and at the end

● all operations are reversible

● the decryption algorithm uses the expanded key in the reverse order

● the decryption algorithm, however, is not identical to the encryption 

algorithm



AES

● The SUBBYTES operation

○ maps a state byte si,j to a new byte s′i,j using S-box

○ the S-box is a 16 × 16 matrix with a byte in each position

■ the S-box contains a permutation of all possible 256 8-bit values

■ the values are computed using a formula

■ it was designed to resist known cryptanalytic attacks (i.e., to have low correlation 

between input bits and output bits)



AES
● The SUBBYTES operation

○ to compute the new s′i,j :

■ set x to the 4 leftmost bits of si,j and y to its 4 rightmost bits

■ use x as the row and y as the column to locate a cell in the S-box

■ use that cell value as s′i,j 

 

   

○ the same procedure is performed on each byte of the state



AES
● The SHIFTROWS operation

○ performs circular left shift on state rows

■ 2nd row is shifted by 1 byte

■ 3rd row is shifted by 2 bytes

■ 4th row is shifted by 3 bytes

 

   

○ important because other operations operate on a single cell



AES
● The MIXCOLUMNS operation

○ multiplies the state by a fixed matrix

 

○ was designed to ensure good mixing among the bytes of each column

○ the coefficients 01, 02, and 03 are for implementation purposes 

(multiplication involves at most a shift and an XOR)



AES

● Decryption:

○ inverse S-box is used in SUBBYTES

○ inverse shifts are performed in SHIFTROWS

○ inverse multiplication matrix is used in MIXCOLUMNS

● Key expansion:

○ was designed to resist known attacks and be efficient

○ knowledge of a part of the key or round key doesn’t enable calculation 

of other key bits

○ round-dependent values are used in key expansion



AES

● Summary of Rijndael design

○ simple design but resistant to known attacks

○ very efficient on a variety of platforms including 8-bit and 64-bit 

platforms

○ highly parallelizable

○ had the highest throughput in hardware among all AES candidates

○ well suited for restricted-space environments (very low RAM and ROM 

requirements)

○ optimized for encryption (decryption is slower)



AES Hardware Implementation

● It’s been long known that hardware implementations of AES are 

extremely fast

○ the speed of encryption is compared with the speed of disk read

● Hardware implementations however remained inaccessible to the 

average user

● Recently Intel introduced new AES instruction set (AES-NI) in its 

commodity processors

○ other processor manufacturers support it now as well

○ hardware acceleration can be easily used on many platforms



Secure Encryption

● For symmetric encryption to be secure, the key must be chosen 

completely at random

○ cryptography failures are often due to incorrect implementations

● Using a strong block cipher is not enough for secure encryption!

○ if you need to send more than 1 block (i.e., 16 bytes) over the key lifetime, 

applying plain block cipher to the message as will fail even weak 

definitions of secure encryption

Enck(b1), Enck(b2), . . .

○ no deterministic encryption can be secure if multiple blocks are sent



Block Cipher Limitation

● Block length is fixed (n-bit)

● Need to Partition into n-bit blocks to encrypt large messages



Block Cipher Limitation

● Does not hide data patterns, unsuitable for long messages

● Susceptible to replay attacks

○ Example: a wired transfer transaction can be replayed by resending 

the original message)



Encryption Modes

● Encryption modes indicate how messages longer than one block are 

encrypted and decrypted

● 4 modes of operation were standardized in 1980 for Digital Encryption 

Standard (DES)

○ can be used with any block cipher

○ electronic codebook mode (ECB), cipher feedback mode (CFB), cipher 

block chaining mode (CBC), and output feedback mode (OFB)

● 5 modes were specified with the current standard Advanced 

Encryption Standard (AES) in 2001

○ the 4 above and counter mode



Encryption Modes

● Electronic Codebook (ECB) mode

○ divide the message m into blocks m1m2. . .mℓ of size n each

○ encipher each block separately: for i = 1, . . ., ℓ, ci = Ek(mi), where E 

denotes block cipher encryption

○ the resulting ciphertext is c = c1c2. . .cℓ



Encryption Modes

● Properties of ECB mode:

○ identical plaintext blocks result in identical ciphertexts (under the same 

key)

○ each block can be encrypted and decrypted independently

○ this mode doesn’t result in secure encryption

● ECB mode is a plain invocation of the block cipher

○ it allows the block cipher to be used in other, more complex 

cryptographic constructions



Encryption Modes

● Cipher Block Chaining (CBC) mode

○ set c0 = IV       {0, 1}n (initialization vector)

○ encryption: for i = 1, . . ., ℓ, ci = Ek(mi ⊕ ci−1)

○ decryption: for i = 1, . . ., ℓ, mi = ci−1 ⊕ Dk(ci), where D is block cipher 

decryption

R



Encryption Modes

● Properties of CBC mode:

○ this mode is CPA-secure (has a formal proof) if the block cipher can be 

assumed to produce pseudo random output

○ a ciphertext block depends on all preceding plaintext blocks

○ sequential encryption, cannot use parallel hardware

○ IV must be random and communicated intact

■ if the IV is not random, security quickly degrades

■ if someone can fool the receiver into using a different IV, security issues arise



Encryption Modes

● Cipher Feedback (CFB) mode

○ the message is XORed with the encryption of the feedback from the 

previous block

○ generate random IV and set initial input I1 = IV

○ encryption: ci = Ek(Ii ) ⊕ mi ; Ii+1 = ci

○ decryption: mi = ci ⊕ Ek(Ii)



Encryption Modes

● This mode allows the block cipher to be used as a stream cipher

○ if our application requires that plaintext units shorter than the block are 

transmitted without delay, we can use this mode

○ the message is transmitted in r-bit units (r is often 8 or 1)



Encryption Modes

● Cipher Feedback (CFB) mode:

○ input: key k, r-bit plaintext blocks m1 , . . .

○ output: n-bit IV , r-bit ciphertext blocks c1 , . . .



Encryption Modes

● Properties of CFB mode:

○ the mode is CPA-secure (under the same assumption that the block cipher 

is strong)

○ similar to CBC, a ciphertext block depends on all previous plaintext blocks

○ throughput is decreased when the mode is used on small units

○ one encryption operation is applied per r bits, not per n bits



Encryption Modes

● Output Feedback (OFB) mode:

○ similar to CFB, but the feedback is from encryption output and is 

independent of the message



Encryption Modes

● Output Feedback (OFB) mode:

○ n-bit feedback is recommended

○ using fewer bits for the feedback reduces the size of the cycle

● Properties of OFB:

○ the mode is CPA-secure

○ the key stream is plaintext-independent

○ similar to CFB, throughput is decreased for r < n, but the key stream can 

be precomputed



Encryption Modes

● Counter (CRT) mode:

○ a counter is encrypted and XORed with a plaintext block 

○ no feedback into the encryption function

■ initially set ctr = IV   {0, 1}n
R



Encryption Modes

● Counter (CRT) mode:

○ encryption: for i = 1, . . ., ℓ, ci = Ek(ctr + i) ⊕ mi

○ decryption: for i = 1, . . ., ℓ, mi = Ek(ctr + i) ⊕ ci

● Properties:

○ there is no need to pad the last block to full block size

○ if the last plaintext block is incomplete, we just truncate the last cipher 

block and transmit it



Encryption Modes

● Advantages of counter mode

○ Hardware and software efficiency: multiple blocks can be encrypted or 

decrypted in parallel

○ Preprocessing: encryption can be done in advance; the rest is only XOR

○ Random access: ith block of plaintext or ciphertext can be processed 

independently of others

○ Security: at least as secure as other modes (i.e., CPA-secure)

○ Simplicity: doesn’t require decryption or decryption key scheduling

● But what happens if the counter is reused?



Summary

● AES is the current block cipher standard

○ it offers strong security and fast performance

● Five encryption modes are specified as part of the standard

○ ECB mode is not for secure encryption

○ any other encryption mode achieves sufficient security

■ use one of these modes for encryption even if the message is a single block

● Strong randomness is required for cryptographic purposes

○ key generation, IV generation, etc.


