
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Symmetric Encryption II

Design Principles of Block Ciphers

● Confusion-diffusion paradigm

○ split a block into small chunks

○ define a substitution on each chunk separately (confusion)

○ mix outputs from different chunks by rearranging bits (diffusion)

○ repeat to strengthen the result

Design Principles of Block Ciphers

● For this type of algorithm to be reversible, each operation needs to

be invertible

Design Principles of Block Ciphers

● Let’s denote one iteration or round by function g

○ The initial state s0 is the message m itself

○ In round i:

■ g’s input is round key ki and state si − 1

■ g’s output is state si

○ The ciphertext c is the final state sNr, where Nr is the number of rounds

○ Decryption algorithm applies g−1 iteratively

■ the order of round keys is reversed

■ set sNr = c, compute si − 1 = g−1(ki , si)

Design Principles of Block Ciphers

● Another way to realize confusion-diffusion paradigm is through

Feistel network

○ in Feistel network each state is divided into halves of the same length: Li

and Ri

○ in one round:

■ Li = Ri − 1

■ Ri = Li − 1 ⊕ f (ki, Ri − 1)

Design Principles of Block Ciphers

● Are there any advantages over the previous design?

○ operations no longer need to be reversible, as the inverse of the

algorithm is not used!

○ reverse one round’s computation as Ri − 1 = Li and L i − 1 = R i ⊕ f (k i, R i − 1)

Design Principles of Block Ciphers

● In both types of networks, the substitution and permutation

algorithms must be carefully designed

○ choosing random substitution/permutation strategies leads to

significantly weaker ciphers

○ each bit difference in S-box input creates at least 2-bit difference in its

output

○ mixing permutation ensures that difference in one S-box propagates to

at least 2 S-boxes in next round

Block Ciphers

● Larger key size means greater security

○ for n-bit keys, brute force search takes 2n/2 time on average

○ More rounds often provide better protection

■ the number of rounds must be large enough for proper mixing

○ Larger block size offers increased security

■ security of a cipher also depends on the block length

Data Encryption Standard (DES)

● In 1973 National Institute of Standards and Technology (NIST)

published a solicitation for cryptosystems

● DES was developed by IBM and adopted as a standard in 1977

● It was expected to be used as a standard for 10–15 years

● Was replaced only in 2001 with AES (Advanced Encryption Standard)

● DES characteristics:

○ key size is 56 bits

○ block size is 64 bits

○ number of rounds is 16

Data Encryption Standard (DES)

● DES uses Feistel network

○ Feistel network is used in many block ciphers such as DES, RC5, etc.

○ not used in AES

○ in DES, each Li and Ri is 32 bits long; ki is 48 bits long

Data Encryption Standard (DES)

● DES has a fixed initial

permutation IP prior to 16

rounds of encryption

○ The inverse permutation

IP−1 is applied at the end

DES f function

● The f function f(ki, Ri−1)

○ first expands Ri−1 from 32 to 48 bits (ki is 48 bits

long)

○ XORs expanded Ri−1 with ki

○ applies substitution to the result using S-boxes

○ and finally permutes the value

DES

● There are 8 S-boxes

○ S-boxes are the only non-linear elements in DES design

○ they are crucial for the security of the cipher

● Example S1

input to each S-box is 6 bits b1b2b3b4b5b6

● row = b1b6, column = b2b3b4b5

● output is 4 bits

DES

More about S-boxes..

● a modified version of IBM’s proposal was accepted as the standard

● some of the design choices of S-boxes weren’t public, which triggered

criticism

● in late 1980s – early 1990s differential cryptanalysis techniques were

discovered

● it was then revealed that DES S-boxes were designed to prevent such

attacks

● such cryptanalysis techniques were known almost 20 years before they

were discovered by others

DES Key Schedule

● Key computation consists of:

○ circular shift

○ permutation

○ contraction

DES Weak Keys

● The master key k is used to generate 16 round keys

● Some keys result in the same round key to be generated in

more than one round

○ this reduces complexity of the cipher

● Solution: check for weak keys at key generation

● DES has 4 weak keys:

○ 0000000 0000000

○ 0000000 FFFFFFF

○ FFFFFFF 0000000

○ FFFFFFF FFFFFFF

Attacks on DES

● Brute force attack: try all possible 256 keys

○ time-consuming, but no storage requirements

● Differential cryptanalysis: traces the difference of two messages

through each round of the algorithm

○ was discovered in early 90s

○ not effective against DES

● Linear cryptanalysis: tries to find linear approximations to

describe DES transformations

○ was discovered in 1993

○ has no practical implication

Brute Force Search Attacks on DES

● It was conjectured in 1970s that a cracker machine could be

built for $20 million

● In 1990s RSA Laboratories called several DES challenges

○ Challenge II-2 was solved in 1998 by Electronic Frontier Foundation

■ a DES Cracker machine was built for less than $250,000 and found the key was in

56 hours

○ Challenge III was solved in 1999 by the DES Cracker in cooperation

with a worldwide network of 100,000 computers

■ the key was found in 22 hours 15 minutes

■ http://www.distributed.net/des

Increasing Security of DES

● DES uses a 56-bit key and this raised concerns

● One proposed solution is double DES

○ apply DES twice by using two different keys k1 and k2

○ encryption c = Ek2(Ek1(m))

○ decryption m = Dk1(Dk2(c))

● The resulting key is 2 · 56 = 112 bits, so it should be more

secure, right?

○ an attack called meet-in-the-middle discovers keys k1 and k2 with

256 computation and storage

○ better, but not substantially than regular DES

Triple DES

● Triple DES with two keys k1 and k2:

○ encryption c = Ek1(Dk2(Ek1(m)))

○ decryption m = Dk1(Ek2(Dk1(c)))

○ key space is 2 · 56 = 112 bits

● Triple DES with three keys k1, k2, and k3:

○ encryption c = Ek3(Dk2(Ek1(m)))

○ decryption m = Dk1(Ek2(Dk3(c)))

○ key space is 3 · 56 = 168 bits

● There is no known practical attack against either version

● Can be made backward compatible by setting k1 = k2 or k3 = k2

Summary of Attacks on DES

● DES – best attack: brute force search

○ 255 work on average

○ no other requirements

● Double DES

○ best attack: meet-in-the-middle

○ requires 2 plaintext-ciphertext pairs

○ requires 256 space and about 256 work

● Triple DES

○ best practical attack: brute force search

Symmetric Encryption

● So far we’ve covered:

○ what secure symmetric encryption is

○ high-level design of block ciphers

○ DES

● Next, we’ll talk about:

○ AES

○ block cipher encryption modes

Advanced Encryption Standard (AES)

● In 1997 NIST made a formal call for an unclassified publicly disclosed
encryption algorithm available worldwide and royalty-free
○ the goal was to replace DES with a new standard called AES
○ the algorithm must be a symmetric block cipher
○ the algorithm must support (at a minimum) 128-bit blocks and key sizes

of 128, 192, and 256 bits

● The evaluation criteria were:
○ security
○ speed and memory requirements
○ algorithm and implementation characteristics

AES

● During encryption:

○ the block is copied into the state matrix

○ the state is modified at each round of encryption and decryption

○ the final state is copied to the ciphertext

AES

● The key schedule in AES:

○ the key is treated as a 4 × 4 matrix as well

○ the key is then expanded into an array of words

○ each word is 4 bytes and there are 44 words (for 128-bit key)

○ four distinct words serve as a round key for each round

AES

● Rijndael doesn’t have a Feistel structure

○ 2 out of 5 AES candidates (including Rijndael) don’t use Feistel structure

○ they process the entire block in parallel during each round

● The operations are (3 substitution and 1 permutation operations):

○ SUBBYTES: byte-by-byte substitution using an S-box

○ SHIFTROWS: a simple permutation

○ MIXCOLUMNS: a substitution using mod 28 arithmetics

○ ADDROUNDKEY: a simple XOR of the current state with a portion of the

expanded key

AES

● At a high-level, encryption proceeds as follows:

○ set initial state s0 = m

○ perform operation ADDROUNDKEY (XORs ki and si)

○ for each of the first Nr − 1 rounds:

■ perform a substitution operation SUBBYTES on si and an S-box

■ perform a permutation SHIFTROWS on si

■ perform an operation MIXCOLUMNS on si
■ perform ADDROUNDKEY

○ the last round is the same except no MIXCOLUMNS is used

○ set the ciphertext c = sNr

AES

● More about Rijndael design. . .

○ ADDROUNDKEY is the only operation that uses key

■ that’s why it is applied at the beginning and at the end

● all operations are reversible

● the decryption algorithm uses the expanded key in the reverse order

● the decryption algorithm, however, is not identical to the encryption

algorithm

AES

● The SUBBYTES operation

○ maps a state byte si,j to a new byte s′i,j using S-box

○ the S-box is a 16 × 16 matrix with a byte in each position

■ the S-box contains a permutation of all possible 256 8-bit values

■ the values are computed using a formula

■ it was designed to resist known cryptanalytic attacks (i.e., to have low correlation

between input bits and output bits)

AES
● The SUBBYTES operation

○ to compute the new s′i,j :

■ set x to the 4 leftmost bits of si,j and y to its 4 rightmost bits

■ use x as the row and y as the column to locate a cell in the S-box

■ use that cell value as s′i,j

○ the same procedure is performed on each byte of the state

AES
● The SHIFTROWS operation

○ performs circular left shift on state rows

■ 2nd row is shifted by 1 byte

■ 3rd row is shifted by 2 bytes

■ 4th row is shifted by 3 bytes

○ important because other operations operate on a single cell

AES
● The MIXCOLUMNS operation

○ multiplies the state by a fixed matrix

○ was designed to ensure good mixing among the bytes of each column

○ the coefficients 01, 02, and 03 are for implementation purposes

(multiplication involves at most a shift and an XOR)

AES

● Decryption:

○ inverse S-box is used in SUBBYTES

○ inverse shifts are performed in SHIFTROWS

○ inverse multiplication matrix is used in MIXCOLUMNS

● Key expansion:

○ was designed to resist known attacks and be efficient

○ knowledge of a part of the key or round key doesn’t enable calculation

of other key bits

○ round-dependent values are used in key expansion

AES

● Summary of Rijndael design

○ simple design but resistant to known attacks

○ very efficient on a variety of platforms including 8-bit and 64-bit

platforms

○ highly parallelizable

○ had the highest throughput in hardware among all AES candidates

○ well suited for restricted-space environments (very low RAM and ROM

requirements)

○ optimized for encryption (decryption is slower)

AES Hardware Implementation

● It’s been long known that hardware implementations of AES are

extremely fast

○ the speed of encryption is compared with the speed of disk read

● Hardware implementations however remained inaccessible to the

average user

● Recently Intel introduced new AES instruction set (AES-NI) in its

commodity processors

○ other processor manufacturers support it now as well

○ hardware acceleration can be easily used on many platforms

Secure Encryption

● For symmetric encryption to be secure, the key must be chosen

completely at random

○ cryptography failures are often due to incorrect implementations

● Using a strong block cipher is not enough for secure encryption!

○ if you need to send more than 1 block (i.e., 16 bytes) over the key lifetime,

applying plain block cipher to the message as will fail even weak

definitions of secure encryption

Enck(b1), Enck(b2), . . .

○ no deterministic encryption can be secure if multiple blocks are sent

Block Cipher Limitation

● Block length is fixed (n-bit)

● Need to Partition into n-bit blocks to encrypt large messages

Block Cipher Limitation

● Does not hide data patterns, unsuitable for long messages

● Susceptible to replay attacks

○ Example: a wired transfer transaction can be replayed by resending

the original message)

Encryption Modes

● Encryption modes indicate how messages longer than one block are

encrypted and decrypted

● 4 modes of operation were standardized in 1980 for Digital Encryption

Standard (DES)

○ can be used with any block cipher

○ electronic codebook mode (ECB), cipher feedback mode (CFB), cipher

block chaining mode (CBC), and output feedback mode (OFB)

● 5 modes were specified with the current standard Advanced

Encryption Standard (AES) in 2001

○ the 4 above and counter mode

Encryption Modes

● Electronic Codebook (ECB) mode

○ divide the message m into blocks m1m2. . .mℓ of size n each

○ encipher each block separately: for i = 1, . . ., ℓ, ci = Ek(mi), where E

denotes block cipher encryption

○ the resulting ciphertext is c = c1c2. . .cℓ

Encryption Modes

● Properties of ECB mode:

○ identical plaintext blocks result in identical ciphertexts (under the same

key)

○ each block can be encrypted and decrypted independently

○ this mode doesn’t result in secure encryption

● ECB mode is a plain invocation of the block cipher

○ it allows the block cipher to be used in other, more complex

cryptographic constructions

Encryption Modes

● Cipher Block Chaining (CBC) mode

○ set c0 = IV {0, 1}n (initialization vector)

○ encryption: for i = 1, . . ., ℓ, ci = Ek(mi ⊕ ci−1)

○ decryption: for i = 1, . . ., ℓ, mi = ci−1 ⊕ Dk(ci), where D is block cipher

decryption

R

Encryption Modes

● Properties of CBC mode:

○ this mode is CPA-secure (has a formal proof) if the block cipher can be

assumed to produce pseudo random output

○ a ciphertext block depends on all preceding plaintext blocks

○ sequential encryption, cannot use parallel hardware

○ IV must be random and communicated intact

■ if the IV is not random, security quickly degrades

■ if someone can fool the receiver into using a different IV, security issues arise

Encryption Modes

● Cipher Feedback (CFB) mode

○ the message is XORed with the encryption of the feedback from the

previous block

○ generate random IV and set initial input I1 = IV

○ encryption: ci = Ek(Ii) ⊕ mi ; Ii+1 = ci

○ decryption: mi = ci ⊕ Ek(Ii)

Encryption Modes

● This mode allows the block cipher to be used as a stream cipher

○ if our application requires that plaintext units shorter than the block are

transmitted without delay, we can use this mode

○ the message is transmitted in r-bit units (r is often 8 or 1)

Encryption Modes

● Cipher Feedback (CFB) mode:

○ input: key k, r-bit plaintext blocks m1 , . . .

○ output: n-bit IV , r-bit ciphertext blocks c1 , . . .

Encryption Modes

● Properties of CFB mode:

○ the mode is CPA-secure (under the same assumption that the block cipher

is strong)

○ similar to CBC, a ciphertext block depends on all previous plaintext blocks

○ throughput is decreased when the mode is used on small units

○ one encryption operation is applied per r bits, not per n bits

Encryption Modes

● Output Feedback (OFB) mode:

○ similar to CFB, but the feedback is from encryption output and is

independent of the message

Encryption Modes

● Output Feedback (OFB) mode:

○ n-bit feedback is recommended

○ using fewer bits for the feedback reduces the size of the cycle

● Properties of OFB:

○ the mode is CPA-secure

○ the key stream is plaintext-independent

○ similar to CFB, throughput is decreased for r < n, but the key stream can

be precomputed

Encryption Modes

● Counter (CRT) mode:

○ a counter is encrypted and XORed with a plaintext block

○ no feedback into the encryption function

■ initially set ctr = IV {0, 1}n
R

Encryption Modes

● Counter (CRT) mode:

○ encryption: for i = 1, . . ., ℓ, ci = Ek(ctr + i) ⊕ mi

○ decryption: for i = 1, . . ., ℓ, mi = Ek(ctr + i) ⊕ ci

● Properties:

○ there is no need to pad the last block to full block size

○ if the last plaintext block is incomplete, we just truncate the last cipher

block and transmit it

Encryption Modes

● Advantages of counter mode

○ Hardware and software efficiency: multiple blocks can be encrypted or

decrypted in parallel

○ Preprocessing: encryption can be done in advance; the rest is only XOR

○ Random access: ith block of plaintext or ciphertext can be processed

independently of others

○ Security: at least as secure as other modes (i.e., CPA-secure)

○ Simplicity: doesn’t require decryption or decryption key scheduling

● But what happens if the counter is reused?

Summary

● AES is the current block cipher standard

○ it offers strong security and fast performance

● Five encryption modes are specified as part of the standard

○ ECB mode is not for secure encryption

○ any other encryption mode achieves sufficient security

■ use one of these modes for encryption even if the message is a single block

● Strong randomness is required for cryptographic purposes

○ key generation, IV generation, etc.

