
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

The Postal Analogy

• A- Write a 20 page letter to a foreign country.

• P- Translate the letter so the receiver can read it.

• S- Insure the intended recipient can receive letter.

• T- Separate and number pages. Like registered
mail, tracks delivery and requests another package
if one is “lost” or “damaged” in the mail.

• N- Postal Center sorting letters by zip code to route
them closer to destination.

• D- Local Post Office determining which vehicles to
deliver letters.

TCP & UDP

Transport Layer

• The transport layer is located between the network
layer and the application layer. So, it is responsible for
providing services to the application layer; it receives
services from the network layer.

• Extend network layer (IP)’s service from host-to-host
delivery to process-to-process delivery.

Processes communicating

• Within same host, two processes
communicate using inter-process
communication (defined by OS).

• Processes in different hosts communicate
by exchanging messages

Processes communicating

•Client process: process that initiates
communication

•Server process: process that waits to be contacted

•Applications with P2P architectures have client
processes & server processes

Protocol Field in an IP Datagram

Addressing Processes

•To receive messages, a process must have an
identifier

TCP Header

Addressing Processes

•To receive messages, a process must
have an identifier

UDP Header

Addressing Processes

• Identifier includes both IP address and
port numbers associated with process
on host.

• Example port numbers:
• HTTP server: 80
• DNS: 53

Transmission Control Protocol

• Connection-oriented: setup required between client and
server processes

• Reliable transport between sending and receiving process

• Flow control: sender won’t overwhelm receiver

• Congestion control: throttle sender when network overloaded

• Streaming: Data is read as a byte stream, no distinguishing
indications are transmitted to signal message (segment)
boundaries.

• Does not provide: timing, minimum throughput guarantees

User Datagram Protocol

•Unreliable data transfer between sending and receiving
process

• Datagrams – Packets are sent individually. Packets have
definite boundaries which are honored upon receipt,
meaning a read operation at the receiver socket will yield
an entire message as it was originally sent.

• Does not provide: connection setup, reliability, flow
control, congestion control, timing, throughput guarantee

• Lightweight – There is no ordering of messages, no tracking
connections, etc. It is a small transport layer designed on
top of IP.

UDP

• Lightweight communication between processes
• Avoid overhead and delays of ordered, reliable

delivery
• Send messages to and receive them from a socket

Why UDP?

• No delay for connection establishment
• As soon as an application process sends into

transport layer
• avoids introducing any unnecessary delays

• No connection state
• No allocation of buffers, parameters, sequence

#s, etc.
• Easier to handle many active clients at once

• Small packet header overhead
• Only eight-bytes long

Who uses UDP?

• Multimedia streaming
• Retransmitting lost/corrupted packets is not

worthwhile
• By the time the packet is retransmitted, it’s too late
• E.g., telephone calls, video conferencing, gaming

• Simple query protocols like Domain Name System
• Overhead of connection establishment is overkill
• Easier to have application retransmit if needed

UDP Spoofing – IP Spoofing

• As easy as IP spoofing, since UDP does not add any
other protection

Process P1 using Port
PortA on IP HostA

Process P2 using Port
PortB on IP HostB

Attacker P3 sends UDP
to HostB claiming it is
using PortA on IP HostA

TCP

• Connection-oriented
• Explicit set-up and tear-down of TCP

session/connection

• Reliable, in-order delivery
• Checksums to detect corrupted data
• Acknowledgments & retransmissions for

reliable delivery
• Sequence numbers to detect losses and

reorder data

TCP

• Stream-of-bytes
• Application sends and receives a stream of

bytes, not messages

• Flow control
• Prevent overflow of the receiver’s buffer space

• Congestion control
• Adapt to network congestion for the greater

good

TCP Header

Six Fields

Data loss and reordering

• Sequence Number

• Acknowledge Number

Sequence and Acknowledge Number

• Sequence Number: The bytes of data being transferred in
each connection are numbered by TCP.

• The numbering starts with an arbitrarily generated
number.

• Acknowledge Number: The value of the acknowledgment
field in a segment defines the number of the next byte a
party expects to receive.

Why Random Sequence Number?

• IP addresses and port #s uniquely identify a connection

• Eventually, though, these port #s do get used again

• There is a chance an old packet is still in flight and might be
associated with the new connection

Process A: IP1 Port1 Process B: IP2 Port2

Process C: IP1 Port1

Movie

Book

Movie Movie Book

Security Implications of Sequence Num

• Need to 1) spoof IP and Port; 2) use a valid
sequence number to inject malicious data to an
established connection

Process P1 using Port
PortA on IP HostA

Process P2 using Port
PortB on IP HostB

Attacker sends UDP to
HostB claiming it is using
PortA on IP HostA

TCP Three-way Handshake

TCP Three-way Handshake

TCP Three-way Handshake

• A SYN segment cannot carry data, but it
consumes one sequence number.

• A SYN + ACK segment cannot carry data, but
does consume one sequence number.

• An ACK segment, if carrying no data, consumes
no sequence number.

Data Transfer after Handshake

Connection Termination Handshake

Data Transfer after Handshake

Expected Sequence
Number 8001

Expected Sequence
Number from 8001

to 18001
Window Size 10000

Incoming TCP Packet Validation Logic

Collaborative TCP Sequence Number Inference Attack — How to Crack Sequence Number Under A Second, CCS
2012

State Machine

Server
State

Client
State

Server
State

Client
State

Server
State

Client
State

Server
State

Client
State

Server
State

Client
State

SYN Flooding

C S
SYNC1
SYNC2

SYNC3

SYNC4

SYNC5

• Attacker sends many connection
requests

• May use spoofed source IP
addresses

• Victim allocates resources for
each request

• Connection requests exist until
timeout

• Resources exhausted ⇒ requests
rejected

• Donot need to guess sequence
number

TCP Reset Attack

HostB HostA

HostC

RST : Set
Valid Seq Num
Valid Ack Num
Src IP: HostB

Established TCP session

• rlogin is a software utility for Unix-like computer operating
systems that allows users to log in on another host via a
network, communicating via TCP port 513. (like Telnet, ssh)

rlogin

HostB HostA

User: AliceUser: Alice

rlogin Alice@HostA
Password: ******

• Alice can specify trusted hosts in ~/.rhosts.

• If a connection is from a trusted host, permission is
granted to log in remotely without having to supply a
password.

rlogin

HostB HostA

User:
Alice

.rhosts

HostB

rlogin Alice@HostA
ls -l

• Attacker from HostC can execute commands on
HostA

rlogin

HostB HostA

User:
Alice

.rhosts

HostB

rlogin Alice@HostA
With IP Spoofing

Not enough

HostC

• Attacker from HostC can execute commands on
HostA

rlogin

HostB HostA

User:
Alice

.rhosts

HostB

SYN : Set
Seq Num: ISNc
Src IP: HostB HostC

• Attacker from HostC can execute commands on
HostA

rlogin

HostB HostA

User:
Alice

.rhosts

HostB

HostC

SYN : Set | ACK : Set
Seq Num: ISNs
Ack Num: ISNc + 1
Dst IP : HostB

• Attacker from HostC can execute commands on
HostA

rlogin

HostB HostA

User:
Alice

.rhosts

HostB

HostC

ACK : Set
Seq Num: ISNc
Ack Num: ISNs+1
Src IP: HostB

• Robert Morris, 1985
• 4.2BSD maintains a global initial sequence number (all

processes share this), which is incremented by 64 after a
connection is started (NOT random);

TCP Seq Num Prediction

HostB HostA

User:
Alice

.rhosts

HostB

SYN : Set
Seq Num: ISNc
Src IP: HostCHostC

• Robert Morris, 1985
• 4.2BSD maintains a global initial sequence number (all

processes share this), which is incremented by 64 after a
connection is started (NOT random);

TCP Seq Num Prediction

HostB HostA

User:
Alice

.rhosts

HostB

HostC

SYN : Set | ACK : Set
Seq Num: ISNs
Ack Num: ISNc + 1
Dst IP : HostC

TCP Seq Num Prediction

HostB HostA

User:
Alice

.rhosts

HostB

SYN : Set
Seq Num: ISNc’
Src IP: HostB HostC

SYN : Set | ACK : Set
Seq Num: ISNs+64
Ack Num: ISNc’ + 1
Dst IP : HostB

• Robert Morris, 1985
• 4.2BSD maintains a global initial sequence number (all

processes share this), which is incremented by 64 after a
connection is started (NOT random);

TCP Seq Num Prediction

HostB HostA

User:
Alice

.rhosts

HostB

HostC

ACK : Set
Seq Num: ISNc’
Ack Num: ISNs+64
Src IP: HostB

SYN : Set | ACK : Set
Seq Num: ISNs+64
Ack Num: ISNc’ + 1
Dst IP : HostB

• Robert Morris, 1985
• 4.2BSD maintains a global initial sequence number (all

processes share this), which is incremented by 64 after a
connection is started (NOT random);

Defense

• Random sequence number

TCP Session Hijacking Attack

Hijack or inject data to an alive TCP connection

• TCP Session Hijacking

• TCP Injection

• Spoof IP address (relatively easy)

• Get the valid Seq & Ack numbers (relatively difficult)

HostB HostA

HostC

Valid Seq Num
Valid Ack Num
Src IP: HostB

TCP Session Hijacking Attack

Hijack or inject data to an alive TCP connection

• TCP Session Hijacking

• TCP Injection

• Spoof IP address (relatively easy)

• Get the valid Seq & Ack numbers (relatively difficult)

HostB HostA

HostC

Valid Seq Num
Valid Ack Num
Src IP: HostB

Established TCP session

TCP Session Hijacking Attack

HostB HostA
Valid Seq Num
Valid Ack Num
Src IP: HostB

Established TCP session

• Attacker sits on the data path between the
communicating two parties

TCP Session Hijacking Attack

• ISP injects rogue advertisements

Off-path TCP Session Hijacking Attack

HostB HostA

HostC

Valid Seq Num
Valid Ack Num
Src IP: HostB

Established TCP session
Browser 🡪🡪Server

1. Install unprivileged app on HostA
2. This app infers HostA-HostB seq and ack

number and other info using system bugs
3. Send those info back to HostC

Off-path TCP Session Hijacking Attack

HostB HostA

HostC

Valid Seq Num
Valid Ack Num
Src IP: HostB

Established TCP session
Browser 🡪🡪Server

1. Establish many legit connections to HostA
2. Because of the bugs in HostA kernel
3. HostC can infer the seq/ack num of the

connection between HostB and HostA

