CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

The Postal Analogy

A- Write a 20 page letter to a foreign country.
P- Translate the letter so the receiver can read it.
S- Insure the intended recipient can receive letter.

T- Separate and number pages. Like registered
mail, tracks delivery and requests another package
if one is “lost” or “damaged” in the mail.

N- Postal Center sorting letters by zip code to route
them closer to destination.

D- Local Post Office determining which vehicles to
deliver letters.

TCP & UDP

Thunderbird

Silverlight FireFox Skype Kazaa MPlayer
Skype/Kazaa
SMTP POP HTTP P2P Protocol RTP
TCP UDP
IPv4
PPP Ethernet 802.11 ‘ DOCSIS

M

Coaxial Cable

Twisted Pair

Optical
Fiber

CDMA

TDMA

Transport Layer

« The transport layer is located between the network
layer and the application layer. So, it is responsible for

providing services to the application layer; it receives
services from the network layer.

« Extend network layer (IP)'s service from host-to-host
delivery to process-to-process delivery.

Processes communicating

* Within same host, two processes
communicate using inter-process
communication (defined by OS).

* Processes in different hosts communicate
by exchanging messages

Processes communicating

*Client process: process that initiates
communication

*Server process: process that waits to be contacted

* Applications with P2P architectures have client
processes & server processes

Protocol Field in an IP Datagram

bit# 0 7,8 15 |16 23 |24 31
. header .
version length DS ECN total length (in bytes)
o DM
Identification 0 FlF Fragment offset
time-to-live (TTL) protocol header checksum

source IP address

Protocol Number Protocol Name Abbreviation
1 Internet Control Message Protocol ICMP
i | 2 Internet Group Management Protocol | IGMP
6 Transmission Control Protocol TCP
17 User Datagram Protocol UDP
-— |
41 IPv6 encapsulation ENCAP
89 Open Shortest Path First OSPF

132 Stream Control Transmission Protocol | SCTP

Addressing Processes

*To receive messages, a process must have an
identifier

TCP Header

TCP Header
Offsets Octet 0 1 2 3

Octet | Bit o 1| 2| 3| 4(5| 6| 7| 8(9(/10|11|12(13|14|15|16(17|18|19|20(21|22|23|24(25|26|27|28(29|30|31

0 0 Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
C|E|(U|(A|[P|[R|[S|F
Reserved N . 5
12 96 Data offset o 2 L IR i ol I el 1 T o] (s Window Size
R|(E|(G|(K|(H|T|N|N
16 128 Checksum Urgent pointer (if URG set)
20 160

Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)

Addressing Processes

*To receive messages, a process must
have an identifier

UDP Header

Source port Destination port
Length Checksu m

Addressing Processes

» Identifier includes both IP address and
port numbers associated with process
on host.

» Example port numbers:
* HTTP server: 80
* DNS: 53

Transmission Control Protocol

Connection-oriented: setup required between client and
server processes

Reliable transport between sending and receiving process
Flow control: sender won't overwhelm receiver
Congestion control: throttle sender when network overloaded

Streaming: Data is read as a byte stream, no distinguishing
indications are transmitted to signal message (segment)
boundaries.

Does not provide: timing, minimum throughput guarantees

User Datagram Protocol

e Unreliable data transfer between sending and receiving
process

» Datagrams - Packets are sent individually. Packets have
definite boundaries which are honored upon receipt,
meaning a read operation at the receiver socket will yield
an entire message as it was originally sent.

* Does not provide: connection setup, reliability, flow
control, congestion control, timing, throughput guarantee

* Lightweight - There is no ordering of messages, no tracking
connections, etc. It is a small transport layer designed on
top of IP.

UDP

* Lightweight communication between processes

 Avoid overhead and delays of ordered, reliable
delivery

* Send messages to and receive them from a socket

8 to 65,535 bytes
8 bytes

Header Data

a. UDP user datagram

0 16 31
Source port number Destination port number

Total length Checksum

b. Header format

Why UDP?

* No delay for connection establishment

« As soon as an application process sends into
transport layer

* avoids introducing any unnecessary delays

* No connection state

* No allocation of buffers, parameters, sequence
#s, etc.

 Easier to handle many active clients at once

« Small packet header overhead
* Only eight-bytes long

Who uses UDP?

* Multimedia streaming
« Retransmitting lost/corrupted packets is not
worthwhile
* By the time the packet is retransmitted, it's too late
 E.g., telephone calls, video conferencing, gaming

» Simple query protocols like Domain Name System
* Overhead of connection establishment is overkill
 Easier to have application retransmit if needed

UDP Spoofing - IP Spoofing

* As easy as IP spoofing, since UDP does not add any
other protection

Process PI using Port Process P2 using Port
PortA on IP HostA PortB on IP HostB

Attacker P3 sends UDP

to HostB claiming it is
using PortA on IP HostA

TCP

 Connection-oriented

» Explicit set-up and tear-down of TCP
session/connection

 Reliable, in-order delivery
* Checksums to detect corrupted data
* Acknowledgments & retransmissions for
reliable delivery
« Sequence numbers to detect losses and
reorder data

TCP

« Stream-of-bytes
» Application sends and receives a stream of
bytes, not messages

Flow control
Prevent overflow of the receiver’s buffer space

« Congestion control
» Adapt to network congestion for the greater
good

TCP Header

H Header Data

Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN [Reserved U P | R Window size
4 bits 6 bits RN S | S B 16 bits
G|IK|H|T|N|N
Checksum Urgent pointer
16 bits 16 bits

Options and Padding

Six Fields

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment is valid SYN: Synchronize sequence numbers

PSH: Request for push FIN: Terminate the connection

URG PSH RS T

Data loss and reordering

» Sequence Number

» Acknowledge Number

Sequence and Acknowledge Number

« Sequence Number: The bytes of data being transferred in
each connection are numbered by TCP.

« The numbering starts with an arbitrarily generated
number.

* Acknowledge Number: The value of the acknowledgment
field in a segment defines the number of the next byte a
party expects to receive.

Why Random Sequence Number?

Movie Movie Book
Process A: IP1 Portl Process B: IP2 Port2

P
it 1
Process C: IP1 Portl

« [P addresses and port #s uniquely identify a connection
« Eventually, though, these port #s do get used again

« There is a chance an old packet is still in flight and might be
associated with the new connection

Security Implications of Sequence Num

* Need to 1) spoof IP and Port; 2) use a valid
sequence number to inject malicious data to an
established connection

Process PI using Port Process P2 using Port
PortA on IP HostA PortB on IP HostB

Attacker sends UDP to
HostB claiming it is using
PortA on IP HostA

TCP Three-way Handshake

\\ :‘ . . . il
Client Client transport Server transport Server
process layer A: ACK flag layer process
_ B 18
: Activei 5 Pgisél\]/ ¢
open : ;
Connect;ion
opened :
Connection
; opene

TCP Three-way Handshake

21: File Transfer Protocol (FTP)
22: Secure Shell (SSH)

\%h 23: Telnet remote login service .
Server

/Client Client transpa 25: Simple Mail Transfer Protocol (SMTP)

process layer 53: Domain Name System (DNS) service process
% I 80: Hypertext Transfer Protocol (HTTP) used in the World Wide Web %
- 110: Post Office Protocol (POP3)
: Act ; 119: Network News Transfer Protocol (NNTP) : Passive
tive: :
O%ége 123; Network Time Protocol (NTP) open

143: Internet Message Access Protocol (IMAP)

161: Simple Network Management Protocol (SNMP)
194: Internet Relay Chat (IRC)

443: HTTP Secure (HTTPS)

Connecﬁion
opened rwnd: 5000
| SYN TACK i
: _Seq: 8000 ;
W] 230k 15007
r'wnd: 1000

v ¢ ACK v

v
Time Time Time Time

Connection

TCP Three-way Handshake

* ASYN segment cannot carry data, but it
consumes one sequence number.

* ASYN + ACK segment cannot carry data, but
does consume one sequence number.

* An ACK segment, if carrying no data, consumes
no sequence number.

Data Transfer after Handshake

| Client Client transport

process ayer

P: PSH flag A: ACK flag

Server transport Server
ayer

1B

process

: Send
H request|
_—

Send
request]

v
Time Time

Data[]
bytes: 90011000

Datall

bytes: 15001—17000

8¢q: 10000

wnd: 10000

Connection Establishment

Connection Termination i
v

Time

Receive
kbbdudabh

Receivé

Send
request

Time

Connection Termination Handshake

Y Client Client transport Server transport Server

process layer A: ACK flag F: FIN flag layer process

B C 1 E

Passive !
close

i Connection |
closed

=

Data Transfer after Handshake
y

)

‘f%\%

Cllent Client transport Server transport Server

P: PSH flag A: ACK flag

process ayer

B O

ayer process

1B

Expected Sequence
Number 8001

Send
request|
_—

Send
request]

Receive

Expected Sequence
,(Sq_dt_ Number from 8001
byt 158531[] 17000 to 18001

—T e Window Size 10000

— T v -

Time Time Time Time

Incoming TCP Packet Validation Logic

. Error
Fail
counter++
1
Pass
h 4
Sequence number)
check +—Out-of-window=)(tcp_send_dupack()

]
In-window

h 4
Ack number ’
check ‘ Invalid
1
Valid
h 4
O-payload
T
Payload>=1
h 4
Retransmission - redicts
check ——Retransmission ACK

T
Not retransmission

Collaborative TCP Sequence Number Inference Attack — How to Crack Sequence Number Under A Second, CCS
2012

Error check

0-payload check |

—————> Client transition
------- > Server transition
———————> Client or server transition

State Machine

Y

 CLOSED R .

I
A | |

| .
Passive:open /- : T Active open / SYN :
I
i RST /- Close / — :

SYN/SYN +ACK
L A P LISTEN !
] RST/— L | Send/SYN :
T SYN/SYN +ACK - ' :
+
& SYN-RCVD . (SYN-SENT |
| Simultaneous open SYN+; t,Close otr:
ime-ou
I ACK /- ACK /ACK
Close / FIN - ALK/— (ESTABLISHED) or RST/ —:
T I
Close / FIN Data transfer FIN / ACK !
1 I
I
FIN /ACK I
CLOSE-
CLOSING I
Simultaneous [) WAIT I
close Close / | l
FIN ! I
ACK /- FIN + ACK/ACK ACK /- I
Three-wa I
Handshak% LAACslér !
I
A
FIN-) FIN/ACK |__ACK/- |
WAIT-2

Time-out (2MSL)

Server
State

/Cliem Clien{ transport

—1"
ayer

A: ACK flag
S: SYN flag

ayer

1

=

Server transport Server

process

=

Client
State

process

Time

Time Time

——» Client transition
> Server transition
———3 Client or server transition

Passive op

Time

Active open / SYN

Send / SYN

Close / —

SYN /SYN + ACK

1
Time-out/ v
< BST (syN-RCVD)

Simultaneous open

Close / FIN L ESTABLISHED

| time-out

I Data transfer

l CLOSING '

Close / FIN

(1IN - DY FIN / ACK
WATL-1 J Simultaneous

close
ACK / — FIN + ACK/ACK ACK / —
Three-way
Handshake
FIN-) FIN / ACK r TIME-
WATIT-2 WAIT

Time-out (2ZMSL))

) Close ori

-

or RST/ —1

L 8

N7 . .
Client Client transport
process layer

B]

Server
State

A: ACK flag
S: SYN flag

ayer

1

Server transport Server

process

=

Client
State

Time Time Time

——» Client transition
——————— > Server transition
———3 Client or server transition

CLOSED

Time

Active open / SYN

Passive

open

-

Time-out (2ZMSL))

1
1
1
1
1
Close / — :
SYN /SYN + ACK :
- - - - - - "= 1
I RST /— Send / SYN i
Time-out/ ¥ < s ACK Y Y :
< BST (syN-RCVD) Y N YIN + (SYN-SENT)1
: Simultaneous open _\'_ tVClose otr:
1imecec-ou
Close / FIN .= Syl —C ESTABLISHED P! acK /ack | or RS/
1 1
Close / FIN | AsEte, fremsten i FIN / ACK !
1 1
1
FIN- FIN / ACK CL.OSE- 1
| - 2 CLOSING L
WATLL-1 J Simultaneous AT :
Slems Elize 7§ !
FIN ! i
lack /— FIN +~ ACK/ACK ACK /| i
Three-wa 1
Handshak}é LA&ACSI;r 1
1
FIN- _)J FIN/ACK ((TIME- 1L __ACK/— |
WATI-2 WAILT

e

Server) e —
Client Client transport Server transport Server
process layer A: ACK ﬂag ayer process
State B YO O6
Active Passive
1 open open
Client -
Time Time Time Time
——» Client transition
——————— > Server transition
———3 Client or server transition
CLOSED i e e e v e
' |
1 s
Passive-open £— : T Active open / SYN
‘;r RST / — Close / —
SYN /SYN + ACK
mm oo == —(LISTEN)
RST / — A I Send / SYN

SYN /SYN + ACK
Simultaneous open

Close / FIN Ol — —C ESTABLISHED
1
Close / FIN I Data transfer -
FI~- FIN / ACK
S CILOSING
WATIT-1 J Simultaneous
close
ACK / — FIN + ACK/ACK ACK / —
Three-way
Handshake
FIN-) FIN / ACK r TIME-
WATIT-2 WAIT

Time-out (2ZMSL))

Server
State

Client
State

e

<~ .
Client Client transport

process ayer

Connection
opene

Time Time

——» Client transition
——————— > Server transition

———3 Client or server transition

A: ACK flag
S: SYN flag

Server transport Server

ayer

process

Fj_1 2

v
Time

Time

Active open / SYN

Passive

open

Connection
opened

Close / —

Close / FIN

Close / FIN

) Close ori

time-out 1

FIN / ACK

ETN-
WATL-1 J Simultaneous

l CLOSING '

Time-out (2ZMSL))

close
ACK / — FIN + ACK/ACK ACK / —
Three-way
Handshake
FIN-) FIN / ACK r TIME-
WATIT-2 WAIT

or RST/ —:

1

1

=2 1

1 1

1

CLOSE- !
WATIT :
Close / 1 :
FIN ! 1
1

LAST 1
ACK !

1 ACE /— !

e

S e rve r N ,Cliem Client transport Server transport Server
process layer A: ACK ﬂag ayer process
S: SYN flag
State B | | B
I Active : Passive
1 open open
Client -
State
Connection
opened
ack: 15007
. A Connection
ACK j ol
Time Time Ti;ne Time

——» Client transition
——————— > Server transition
———3 Client or server transition

Active open / SYN

Close / —

Time-out/ v) 4 Y
RST

SYN-SENT J——— >
Close ori

ot time-out 1

Close / FIN L égls L—_ _ CK /ACK | or RST/ —1

1

1

Close / FIN FIN / ACK H

1 1

1

Fﬁ{ﬂ FIN / ACK CLOSE- !

4= CLOSING

WATT-1 J Simultaneous WATT :

close Close / 1 .

Ihck /— FIN +~ ACK/ACK ACK /| : i

Three-wa I.LAST 1

FaRERNR -

1

FIN- Y FIN/ACK _(TIME- =< .
WATT-2 WAIT

Time-out (2ZMSL))

SYN Flooding

SYN
SYN

SYN

SYN
SYN

Attacker sends many connection
requests

* May use spoofed source IP
addresses

Victim allocates resources for
each request
« Connection requests exist until
timeout

Resources exhausted = requests
rejected

Donot need to guess sequence
number

TCP Reset Attack

X

RST :Set

Valid Seq Num
Valid Ack Num
Src IP: HostB

rlogin

* rlogin is a software utility for Unix-like computer operating
systems that allows users to log in on another host via a
network, communicating via TCP port 513. (like Telnet, ssh)

User:Alice User Alice

HostB
rlogin Alice@HostA

Password; *ererk

rlogin

* Alice can specify trusted hosts in ~/.rhosts.

 If a connection is from a trusted host, permission is

granted to log in remotely without having to supply a
password.

User- .rhosts
Alice

HostB

HostB HostA
rlogin Alice@HostA
|s -l

rlogin

e Attacker from HostC can execute commands on
HostA

.rhosts

HostA

rlogin Alice@HostA
With IP Spoofing

rlogin

e Attacker from HostC can execute commands on
HostA

.rhosts
HostB
HostB HostA
SYN : Set
Seq Num: ISNc

Src IP: HostB

e Attacker from HostC can execute

HostA

rlogin

SYN : Set | ACK :Set
Seq Num: ISNs

Ack Num: ISNc + |
Dst1P:HostB

commands on

.rhosts

HostB

rlogin

e Attacker from HostC can execute commands on
HostA

.rhosts
HostB
HostB HostA
ACK : Set
Seq Num: ISNc

Ack Num: ISNs+ |
Src IP: HostB

TCP Seq Num Prediction

* Robert Morris, 1985

« 4.2BSD maintains a global initial sequence number1(all
processes share th|s§, which is incremented by 64 after a

connection is started (NOT random);

.rhosts

HostB
HostB HostA
SYN : Set

Seq Num: ISNc
Src IP: HostC

TCP Seq Num Prediction

* Robert Morris, 1985
* 4,2BSD maintains ailobal initial sequence number1(all

processes share this), which is incremented by 64 after a
connection is started (NOT random);
.rhosts
HostB
HostB HostA
SYN : Set | ACK : Set

Seq Num: ISNs
Ack Num: ISNc + |
Dst IP : HostC

TCP Seq Num Prediction

* Robert Morris, 1985
* 4,2BSD maintains ailobal initial sequence number1(all

processes share this), which is incremented by 64 after a
connection is started (NOT random);
SYN : Set | ACK :Set rhosts
Seq Num: ISNs+64
Ack Num: ISNc’ + |
Dst1PHostB HostB

HostA

TCP Seq Num Prediction

* Robert Morris, 1985
* 4,2BSD maintains ailobal initial sequence number1(all

processes share this), which is incremented by 64 after a
connection is started (NOT random);
SYN : Set | ACK :Set rhosts
Seq Num: ISNs+64
Ack Num: ISNc’ + | Usr
Dst{P-HostB ‘
HostA
ACK :Set
Seq Num: ISNCc’
Ack Num: ISNs+64

Src IP: HostB

Defense

* Random sequence number

TCP Session Hijacking Attack

Hijack or inject data to an alive TCP connection
« TCP Session Hijacking
* TCP Injection

« Spoof IP address (relatively easy)
« Get the valid Seq & Ack numbers (relatively difficult)

HostA

Valid Seq Num
Valid Ack Num
Src IP: HostB

TCP Session Hijacking Attack

Hijack or inject data to an alive TCP connection
« TCP Session Hijacking
* TCP Injection

« Spoof IP address (relatively easy)
« Get the valid Seq & Ack numbers (relatively difficult)

| Established TCP session

HostA

Valid Seq Num
Valid Ack Num
Src IP: HostB

TCP Session Hijacking Attack

* Attacker sits on the data path between the
communicating two parties

Established TCP session

Valid Seq Num
Valid Ack Num
Src IP: HostB

TCP Session Hijacking Attack

* ISP injects rogue advertisements

C A) wwswsncen

e e Com e R R e © somrm s tane e @ v b a b - Annbe b 0 g

Off-path TCP Session Hijacking Attack

Established TCP session

L Browser——Server—

Install unprivileged app on HostA

This app infers HostA-HostB seq and ack
number and other info using system bugs
Send those infg gto HostC

Valid Seq Num
Valid Ack Num

Off-path TCP Session Hijacking Attack

Established TCP session
L Browser——Server—

|. Establish many legit connections to HostA

2. Because of the bugs in HostA kernel

3. HostC can infer the seq/ack num of the Valid Seq Num
connection between HostB and Hos "ll((i) Valid Ack Num

