CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Last Class

- Internet Control Message Protocol (ICMP)
 - Applications
 - How to exploit

Internet Protocol

- IP protocol was designed in the late 70s to early 80s
 - Part of DARPA Internet Project
 - Very small network
 - All hosts are known!
 - So are the users!
 - Therefore, security was not an issue

Security Flaws in IP

- No data integrity or confidentiality
 - No encryption to protect payload (TCP, UDP, User data)
- Source spoofing
 - No host authentication
- IP fragmentation can be exploited

Source Spoofing

- The IP addresses are filled in by the originating host
 - Address spoofing

• Can A claim it is B to the server S?

• Can C claim it is B to the server S?

rlogin

 rlogin is a software utility for Unix-like computer operating systems that allows users to login on another host via a network, communicating via TCP port 513. (like Telnet, ssh)

HostB rlogin Alice@HostA Password: ******

rlogin

- Alice can specify trusted hosts in ~/.rhosts.
- If a connection is from a trusted host, permission is granted to log in remotely without having to supply a password.

rlogin

• Attacker from HostC can execute commands on HostA

r-utilities

- rlogin: remote login
- rsh: remote shell
- rcp: remote copy
- Use them in a network environment where all hosts are trusted (No such environment exists!)
- Do not use them. Use *ssh*, *scp* instead

• Use it without password

Challenge/response

- HostA sends a random number
- HostB encrypts with PrivateKey
- HostA verfies by decrypting

Defend Against Spoofing - Packet filtering

• The gateway blocks packets from outside the network with a source address inside the network. This prevents an outside attacker spoofing the address of an internal machine.

Defend Against Spoofing - Packet filtering

 The gateway would also blocks packets from inside the network with a source address that is not inside. This prevents an attacker within the network performing filtering from launching IP spoofing attacks against external machines.

Gateway

Defend Against Spoofing - Packet filtering

• It does not work, if an inside host is compromised and it tries to spoof another inside host.

Outside world

Defend Against Spoofing – Upper Layer

• Transmission Control Protocol (TCP) uses sequence numbers negotiated with the remote machine to ensure that arriving packets are part of an established connection.

Defend Against Spoofing - IPSec

- Internet Protocol Security (IPSec) Protocol Suite
 - Authentication Header (AH) to verify sources of IP packets

Exploit IP Fragmentation

✓ 4 bytes

Maximum Transmission Unit (MTU)

Largest IP packet a *physical network* will accept

Media	Maximum Transmission Unit (bytes)			
Internet IPv4 Path MTU	At least 68, ^[4] max of 64KB ^[5]			
Internet IPv6 Path MTU	At least 1280, ^[7] max of 64KB, but up to 4GB with			
	optional jumbogram ^(e)			
Ethernet v2	1500 ^[10]			
Ethomot with U. O[11] and				
SNAP, ^[11] PPPoE ^[12]	1492 ^[13]			
Ethernet Jumbo Frames	1501 - 9198 ^[14]			
PPPoE over Ethernet v2	1492 ^[16]			
PPPoE over Ethernet Jumbo Frames	1493 - 9190 ^[17]			
WLAN (802.11)	7981 ^[18]			
Token Ring (802.5)	4464			
FDDI	4352 ^[6]			

- If IP packet is longer than the MTU, the NIC or router breaks packet into smaller packets
 - Called IP fragments
 - Fragments are still IP packets

4 bytes-

IP Fragmentation – Diagram 1

IP Fragment Overlap

IP Fragment Buffer Full

The IP fragmentation buffer full exploit occurs when there is an excessive amount of incomplete fragmented (MF=1).

IP Fragment Incomplete Datagram

This exploit occurs when a datagram can not be fully reassembled due to missing data. This can indicate a denial of service attack or an attempt to defeat packet filter security policies.

IP is not Secure

- IP protocol was designed in the late 70s to early 80s
 - Part of DARPA Internet Project
 - Very small network
 - All hosts are known!
 - So are the users!
 - Therefore, security was not an issue

Security Flaws in IP

- No data integrity or confidentiality
 - No encryption to protect payload (TCP, UDP, User data)
- Source spoofing
 - No host authentication

What is IPSec

- IPSec is an Internet standard for network layer security
 - Is below transport layer, hence transparent to applications
 - Can be transparent to end users
 - Can provide security for individual users
- To protect integrity and/or confidentiality of packets
 - Data Integrity/Data Encryption
- To verify sources of IP packets
 - Authentication
- Mandatory in IPv6, optional in IPv4

What is IPSec

- Protection of the IP and/or upper layer protocols (tcp, udp)
- Applicable to use over LANs, across public & private WANs, & for the Internet
- Host-to-host, host-to-gateway and gateway-to-gateway (router or firewall)

What is IPSec

- Specification is quite complex
- Main components:
 - An authentication protocol: Authentication Header (AH) RFC 2402
 - A combined encryption and authentication protocol: Encapsulating Security Payload (ESP) RFC 2406
 - Key Management and Exchange Protocols (the default is ISAKMP/Oakley)

AH and ESP

- Both can be used alone
- Can be combined as well
 - Apply ESP first, then apply AH again
- Why?
 - Example: ESP does not authenticate new IP header. How to authenticate?
 - Use SA to apply ESP w/out authentication to original packet
 - Use 2nd SA to apply AH

Comparison

	AH	ESP (encryption only)	ESP (encryption and authentication)
integrity	x		x
data origin authentication	x		x
replay detection	x	x	x
confidentiality		x	x
limited traffic flow confidentiality		X	x

- Transport mode
 - End-to-end
 - Is used between end-stations

- Transport mode
 - End-to-end, host-to-host
 - Between an end-station and a gateway, if the gateway is being treated as a host
 - For example, an encrypted Telnet session from a workstation to a router, in which the router is the actual destination.

- Tunnel mode
 - gateway-to-gateway or host-to-gateway
 - is most commonly used between gateways, or at an end-station to a gateway, the gateway acting as a proxy for the hosts behind it.

- Tunnel mode
 - gateway-to-gateway or host-to-gateway
 - is most commonly used between gateways, or at an end-station to a gateway, the gateway acting as a proxy for the hosts behind it.

Virtual Private Networks (VPNs)

- Virtual
 - It is not a physically distinct network
- Private
 - Tunnels are encrypted to provide confidentiality

Alice is Traveling

- Alice works for the mergers and acquisitions (M&A) department of abc.com
- She is on a business trip taking over a plant
- She wants to access the M&A server and other servers at her company (confidentially of course)
- Which IPSec mode is most convenient for her?

Transport and Tunnel Packets

- Transport: Original IP payload can be encrypted. IP header can only be authenticated
- Tunnel: Entire original entire IP Packet can be encrypted and authenticated

- IPSec module is used to manage security for individual connections to other modules
 - Security Policy Database (SPD) provides specifications of the security services to be applied to each packet
 - Security Association Database (SAD) contains the security parameters (encryption algorithms, mode used, initialization data, session keys) used to enforce a specific policy
 - A connection from one module to another is created through a security association (SA) that corresponds to an entry in the SAD
 - An SA is a unidirectional connection that defines the type of security services and mechanisms used between two modules

- Security Association is an association between a sender and a receiver
 - Consists of a set of security related parameters E.g., sequence number, encryption key
- One way relationship
- SAs are not fixed! Generated and customized per traffic flows

- An SA is uniquely identified by three parameters
 - Security Parameters Index (SPI)
 - a bit string assigned to the SA
 - carried in AH and ESP headers to allow the receiving party to select the SA which must be used to process the packet
 - IP destination address
 - address of an end-system or a network element (e.g., router)
 - security protocol identifier
 - indicates whether the SA is an AH or an ESP SA

- SA bundle
- More than 1 SA can apply to a packet
- Example: ESP does not authenticate new IP header. How to authenticate?
 - Use SA to apply ESP w/out authentication to original packet
 - Use 2nd SA to apply AH

- Security Association Database (SAD)
- Every host or gateway participating in IPsec has their own SA database
 - A database of SAs.
- Holds parameters for each SA
 - Sequence number counter
 - Lifetime of this SA
 - AH and ESP information
 - Tunnel or transport mode

- Security Policy Database (SPD)
- Decide 1)What traffic to protect? 2) has incoming traffic been properly secured?
- Policy entries define which SA or SA Bundles to use on IP traffic
- Each host or gateway has their own SPD
- Index into SPD by Selector fields
 - Selectors: IP and upper-layer protocol field values.
 - Examples: Dest IP, Source IP, Transport Protocol, IPSec Protocol, Source & Dest Ports, ...

SPD Entry Actions

- Discard
 - Do not let in or out
- Bypass
 - Outbound: do not apply IPSec
 - Inbound: do not expect IPSec
- Protect will point to an SA or SA bundle
 - Outbound: apply security
 - Inbound: security must have been applied

IPSec Policy Example

- In English:
 - All traffic to 128.104.120.0/24 must be:
 - Use pre-hashed key authentication
 - DH group is MODP with 1024-bit modulus
 - Hash algorithm is HMAC-SHA (128 bit key)
 - Encryption using 3DES
- In IPSec:
 - [Auth=Pre-Hash; DH=MODP(1024-bit); HASH=HMAC-SHA; ENC=3DES]

SPD and SAD Example

From	То	Protocol	Port	Policy		Tunnel Dest	
A _{sub}	B _{sub}	Any	Any	y ESP[3DES]		D	C's SPD
From	То	Protocol		SPI	S	A Record	
A _{sub}	B _{sub}	ESP		14		3DES key	CS SAL

SPD Protect Action

- If the SA does not exist...
 - Outbound processing
 - Trigger key management protocols to generate SA dynamically, or
 - Request manual specification, or
 - Other methods
 - Inbound processing
 - Drop packet

Outbound Processing

Inbound Processing

