
CSE 410/565: Computer Security

Instructor: Dr. Ziming Zhao

Today

1. Heap and heap exploitation

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

The Heap

The heap is pool of memory used for dynamic allocations at runtime.
Heap memory is different from stack memory in that it is persistent
between functions.

– malloc() grabs memory on the heap; keyword new in C++
– free() releases memory on the heap; keyword delete in C++

Both are standard C library interfaces. Neither of them directly mapps to
a system call.

malloc() and free()

void* malloc(size_t size);

Allocates size bytes of uninitialized storage. If allocation
succeeds, returns a pointer that is suitably aligned for any
object type with fundamental alignment.

void free(void* ptr);

Deallocates the space previously allocated by malloc(), etc.

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

calloc() and realloc()

void *calloc(size_t nitems, size_t size)

The difference in malloc and calloc is that malloc does not
set the memory to zero whereas calloc sets allocated memory
to zero.

void *realloc(void *ptr, size_t size)

Resize the memory block pointed to by ptr that was
previously allocated with a call to malloc or calloc.

How to use malloc() and free()

int main()
{

char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s!\n”, buffer);

/* destroy our dynamically allocated buffer */
free(buffer);
return 0;

}

Heap vs. Stack

Heap
● Dynamic memory

allocations at runtime

● Objects, big buffers,
structs, persistence,
larger things

Slower, Manual
– Done by the programmer
– malloc/calloc/recalloc/free
– new/delete

Stack
● Fixed memory allocations

known at compile time

● Local variables, return
addresses, function args

Fast, Automatic; Done by the
compiler
– Abstracts away any concept
of allocating/de-allocating

Heap Implementations

Doug Lea malloc or dlmalloc. Default native version of malloc in some old
distributions of Linux (http://gee.cs.oswego.edu/dl/html/malloc.html)

ptmalloc. ptmalloc is based on dlmalloc and was extended for use with multiple
threads. On Linux systems, ptmalloc has been put to work for years as part of the
GNU C library.

tcmalloc. Google's customized implementation of C's malloc() and C++'s
operator new (https://github.com/google/tcmalloc)

jemalloc. jemalloc is a general purpose malloc(3) implementation that
emphasizes fragmentation avoidance and scalable concurrency support.

The Hoard memory allocator. UMass Amherst CS Professor Emery Berger

http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc

Which implementation on my laptop?

ldd --version

GLIBC 2.31

Ptmalloc2

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Overview of dlmalloc

The Linux version of the dynamic memory allocator. Even though it has been updated,
from the point of view of software infused bugs and exploits, new versions are still more or
less similar to the original one.

Design goals:

Maximizing Portability To rely on as few system-dependent features as possible, system
calls in particular.

Minimizing Space The allocator should not waste memory. It should obtain the least
amount of memory from the system it requires, and should maintain memory in ways that
minimize fragmentation—that is, it should try to avoid creating a large number of
contiguous chunks of memory that are not used by the program.

Minimizing Time The malloc(), free(), and realloc calls should be fast on average.

Overview of dlmalloc

The Linux version of the dynamic memory allocator. Even though it has been updated,
from the point of view of software infused bugs and exploits, new versions are still more or
less similar to the original one.

Design goals:

Maximizing Locality Allocate chunks of memory that are typically requested or used
together near each other.This will help minimize CPU page and cache misses.

Maximizing Error Detection Should provide some means for detecting corruption due to
overwriting memory, multiple frees, and so on. It is not supposed to work as a general
memory leak detection tool at the cost of slowing down.

Minimizing Anomalies It should have reasonably similar performance characteristics
across a wide range of possible applications whether they are GUI or server programs,
string processing applications, or network tools.

Malloc_chunk (ptmalloc2 in glibc2.31)

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

struct malloc_chunk {

 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */
 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */
 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
 struct malloc_chunk* bk_nextsize;
};

INTERNAL_SIZE_T is the same as size_t. 8 bytes in 64 bit;
4 bytes in 32 bits machine.
Pointer is 8/4 bytes on a 64/32 bit machine, respectively.

Both in-use and freed

Only for freed

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T

Heap Chunks (figures in 32 bit)
buffer = malloc(0x100);

//Out comes a heap chunk

Previous Chunk Size: Size of previous chunk (if prev chunk is free)
Chunk Size: Size of entire chunk including overhead
Data: Your newly allocated memory / ptr returned by malloc
Flags: Because of byte alignment, the lower 3 bits of the chunk size field would always be
zero. Instead they are used for flag bits.
0x01 PREV_INUSE – set when previous chunk is in use
0x02 IS_MMAPPED – set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32);
● malloc(4);
● malloc(20);
● malloc(0);

code/heapsizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;} https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/sizes.c

Heap goes from low address to high address

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

code/heapsizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;}

Chunk 10

...

H

L

Chunk 3

Chunk 2

Chunk 1

code/heapsizes 32bit

H

L

Chunk 1 - Buf (40)

Chunk 1 - Chunk Size (4)

Chunk 1 - Previo Size (4)

Chunk 2 - Buf (8)

Chunk 2 - Chunk Size (4)

Chunk 2 - Previo Size (4)

Chunk 3 - Buf (24)

Chunk 3 - Chunk Size (4)

Chunk 3 - Previo Size (4)

Chunk 4 - Buf

Chunk 4 - Chunk Size (4)

Chunk 4 - Previo Size (4)

48

16

32

code/heapsizes 64bit

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32); 48 bytes (32bit/64bit)
● malloc(4); 16 bytes (32bit) / 32 bytes (64bit)
● malloc(20); 32 bytes (32bit/64bit)
● malloc(0); 16 bytes (32bit) / 32 bytes (64bit)

code/heapchunks

void print_chunk(size_t * ptr, unsigned int len)

{

 printf("[prev - 0x%08x][size - 0x%08x][data buffer (0x%08x) -------> ...] - from

malloc(%d)\n", *(ptr-2), *(ptr-1), (unsigned int)ptr, len);}

int main()

{

 void * ptr[LEN];

 unsigned int lengths[] = {0, 4, 8, 16, 24, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};

 int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_chunk(ptr[i], lengths[i]);

 return 0;}

Extended from
https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/heap_c
hunks.c

Heap Chunks – Two states (figures in 32 bit)

Heap chunks exist in two states
– in use (malloc’d)

– free’d.
Forward Pointer: A pointer
to the next freed chunk
Backwards Pointer: A
pointer to the previous
freed chunk
Implementation-defined.

code/heapfrees
void print_inuse_chunk(unsigned int * ptr)

{

 printf("[prev - 0x%08x][size - 0x%08x][data buffer

(0x%08x) ----> ...] - Chunk 0x%08x - In use\n", \

 *(ptr-2),

 *(ptr-1),

 (unsigned int)ptr,

 (unsigned int)(ptr-2));

}

void print_freed_chunk(unsigned int * ptr)

{

 printf("[prev - 0x%08x][size - 0x%08x][fd - 0x%08x][bk -

0x%08x] - Chunk 0x%08x - Freed\n", \

 *(ptr-2),

 *(ptr-1),

 *ptr,

 *(ptr+1),

 (unsigned int)(ptr-2));

}

int main()

{

 unsigned int * ptr[LEN];

 unsigned int lengths[] = {32, 32, 32, 32, 32}; int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_inuse_chunk(ptr[i]);

 printf("\nfreeing all chunks...\n");

 for(i = 0; i < LEN; i++)

 free(ptr[i]);

 for(i = 0; i < LEN; i++)

 print_freed_chunk(ptr[i]);

 return 0;}

Heap Overflow

● Buffer overflows are basically the same on the heap as they are on
the stack

● Heap cookies/canaries aren’t a thing
○ No ‘return’ addresses to protect

● In the real world, lots of cool and complex things like objects/structs
end up on the heap
○ Anything that handles the data you just corrupted is now viable

attack surface in the application
● It’s common to put function pointers in structs which generally are

malloc’d on the heap

code/heapoverflow1

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

code/heapoverflow1

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Airplane 1

Airplane 2

code/heapoverflow1

void secret()
{

printf("The secret is bla bla...\n");
}

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; secret() at %p\n", fly, secret);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Airplane 1

Airplane 2

Exploit looks like

python -c "print 'a\n' + 'a'*28 + '\x4d\x62\x55\x56'" | ./heapoverflow32

Use after free (UAF)

A class of vulnerability where data on the heap is freed, but
a leftover reference or ‘dangling pointer’ is used by the code
as if the data were still valid.

Most popular in Web Browsers, complex programs

Dangling Pointer

Dangling Pointer
– A left over pointer in your code that references free’d data
and is prone to be re-used
– As the memory it’s pointing at was freed, there’s no
guarantees on what data is there now
– Also known as stale pointer, wild pointer

Exploit UAF

To exploit a UAF, you usually have to allocate a different type of object
over the one you just freed

code/heapoverflow2

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

typedef struct car
{
 int volume;
 char name[20];
} car;

int main()

{ printf("fly() at %p; print_flag() at %u\n", fly, (unsigned int)print_flag);

 struct airplane *p = malloc(sizeof(airplane));

 printf("Airplane is at %p\n", p);

 p->pfun = fly;

 p->pfun();

 free(p);

 struct car *p1 = malloc(sizeof(car));

 printf("Car is at %p\n", p1);

 int volume;

 printf("What is the volume of the car?\n");

 scanf("%u", &volume);

 p1->volume = volume;

 p->pfun();

 free(p);

 return 0;

}

Dlmalloc (using glibc 2.3 as an example)
struct malloc_chunk
{

INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;

};

typedef struct malloc_chunk* mchunkptr;

Mem is the pointer returned by malloc() call, while chunk pointer is what malloc considers
the start of the chunk.

The whole heap is bounded from top by a wilderness chunk. In the beginning, this is the
only chunk existing and malloc first makes allocated chunks by splitting the wilderness
chunk.

glibc 2.3 allows for many heaps arranged into several arenas—one arena for each thread

– From the book “Buffer Overflow Attacks: Detect, Exploit, Prevent” Syngree

Consolidating chunks when free()-d

When a previously allocated chunk is free()-d, it can be either consolidated
with previous (backward consolidation) and/or follow (forward consolidation) chunks,
if they are free.

This ensures that there are no two adjacent free chunks in memory. The resulting
chunk is then placed in a bin, which is a doubly linked list of free chunks of a
certain size.

There is a set of bins for chunks of different sizes:
■ 64 bins of size 8 ■ 32 bins of size 64 ■ 16 bins of size 512
■ 8 bins of size 4096 ■ 4 bins of size 32768 ■ 2 bins of size 262144
■ 1 bin of size what’s left

Example Bin with Three Free Chunks

FD and BK are pointers to “next”
and “previous” chunks inside a
linked list of a bin, not adjacent
physical chunks.

Pointers to chunks, physically next
to and previous to this one in
memory, can be obtained from
current chunks by using size and
prev_size offsets.

Pointers to physically next to and previous chunk

/* Ptr to next physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))

/* Ptr to previous physical malloc_chunk */
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Unlink() from an Attacker’s Point of View

*(P->fd+12) = P->bk;
// 4 bytes for size, 4 bytes for prev_size and 4 bytes for fd

*(P->bk+8) = P->fd;
// 4 bytes for size, 4 bytes for prev_size

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Arbitrary write attack?

If an attacker is able to overwrite these two
pointers and force the call to unlink(), he can
overwrite any memory location.

The free() Algorithm

● free(0) has no effect.

● If the chunk was allocated via mmap, it is released via munmap(). Only large chunks
are MMAP-ped, and we are not interested in thes.

● If a returned chunk borders the current high end of memory (wilderness chunk), it is
consolidated into the wilderness chunk, and if the total unused topmost memory
exceeds the trim threshold, malloc_trim() is called.

● Other chunks are consolidated as they arrive, and placed in corresponding bins.

The free() Algorithm - last case

● If no adjacent chunks are free, then the freed chunk is simply linked into
corresponding with bin via frontlink().

● If the chunk next in memory to the freed one is free and if this next chunk borders on
wilderness, then both are consolidated with the wilderness chunk.

● If not, and the previous or next chunk in memory is free and they are not part of a
most recently split chunk (this splitting is part of malloc() behavior and is not
significant to us here), they are taken off their bins via unlink(). Then they are merged
(through forward or backward consolidation) with the chunk being freed and placed
into a new bin according to the resulting size using frontlink(). If any of them are part
of the most recently split chunk, they are merged with this chunk and kept out of bins.
This last bit is used to make certain operations faster.

1. Overwrite A and B
2. Create a fake

chunk F1 and F2,
so that when
free(A), unlink(F1)
is also called.

3. F1->FD has the
address we want
to overwrite and
F1->BK has the
data we want to
overwrite

