
CSE 410/518 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Course Evaluation

Begins: 11/27/2022
Ends: 12/12/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

Heap-based Buffer Overflow

Heap Overflow

● Buffer overflows are basically the same on the heap as they are on
the stack

● Heap cookies/canaries aren’t a thing
○ No ‘return’ addresses to protect

● In the real world, lots of cool and complex things like objects/structs
end up on the heap
○ Anything that handles the data you just corrupted is now viable

attack surface in the application
● It’s common to put function pointers in structs which generally are

malloc’d on the heap

code/heapoverflow1

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

code/heapoverflow1

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Airplane 1

Airplane 2

code/heapoverflow1

void secret()
{

printf("The secret is bla bla...\n");
}

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; secret() at %p\n", fly, secret);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Airplane 1

Airplane 2

Exploit looks like

python2 -c "print 'a\n' + 'a'*28 + '\x4d\x62\x55\x56'" | ./heapoverflow32

Use after free (UAF)

A class of vulnerability where data on the heap is freed, but
a leftover reference or ‘dangling pointer’ is used by the code
as if the data were still valid.

Most popular in Web Browsers, complex programs

Dangling Pointer

Dangling Pointer
– A left over pointer in your code that references free’d data
and is prone to be re-used
– As the memory it’s pointing at was freed, there’s no
guarantees on what data is there now
– Also known as stale pointer, wild pointer

Exploit UAF

To exploit a UAF, you usually have to allocate a different type of object
over the one you just freed

code/heapoverflow2

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

typedef struct car
{
 int volume;
 char name[20];
} car;

int main()

{ printf("fly() at %p; print_flag() at %u\n", fly, (unsigned int)print_flag);

 struct airplane *p = malloc(sizeof(airplane));

 printf("Airplane is at %p\n", p);

 p->pfun = fly;

 p->pfun();

 free(p);

 struct car *p1 = malloc(sizeof(car));

 printf("Car is at %p\n", p1);

 int volume;

 printf("What is the volume of the car?\n");

 scanf("%u", &volume);

 p1->volume = volume;

 p->pfun();

 free(p);

 return 0;

}

Dlmalloc (using glibc 2.3 as an example)
struct malloc_chunk
{

INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;

};

typedef struct malloc_chunk* mchunkptr;

Mem is the pointer returned by malloc() call, while chunk pointer is what malloc considers
the start of the chunk.

The whole heap is bounded from top by a wilderness chunk. In the beginning, this is the
only chunk existing and malloc first makes allocated chunks by splitting the wilderness
chunk.

glibc 2.3 allows for many heaps arranged into several arenas—one arena for each thread

– From the book “Buffer Overflow Attacks: Detect, Exploit, Prevent” Syngree

Consolidating chunks when free()-d

When a previously allocated chunk is free()-d, it can be either consolidated
with previous (backward consolidation) and/or follow (forward consolidation) chunks,
if they are free.

This ensures that there are no two adjacent free chunks in memory. The resulting
chunk is then placed in a bin, which is a doubly linked list of free chunks of a
certain size.

There is a set of bins for chunks of different sizes:
■ 64 bins of size 8 ■ 32 bins of size 64 ■ 16 bins of size 512
■ 8 bins of size 4096 ■ 4 bins of size 32768 ■ 2 bins of size 262144
■ 1 bin of size what’s left

Example Bin with Three Free Chunks

FD and BK are pointers to “next”
and “previous” chunks inside a
linked list of a bin, not adjacent
physical chunks.

Pointers to chunks, physically next
to and previous to this one in
memory, can be obtained from
current chunks by using size and
prev_size offsets.

Pointers to physically next to and previous chunk

/* Ptr to next physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))

/* Ptr to previous physical malloc_chunk */
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Unlink() from an Attacker’s Point of View

*(P->fd+12) = P->bk;
// 4 bytes for size, 4 bytes for prev_size and 4 bytes for fd

*(P->bk+8) = P->fd;
// 4 bytes for size, 4 bytes for prev_size

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Arbitrary write attack?

If an attacker is able to overwrite these two
pointers and force the call to unlink(), he can
overwrite any memory location.

The free() Algorithm

● free(0) has no effect.

● If the chunk was allocated via mmap, it is released via munmap(). Only large chunks
are MMAP-ped, and we are not interested in thes.

● If a returned chunk borders the current high end of memory (wilderness chunk), it is
consolidated into the wilderness chunk, and if the total unused topmost memory
exceeds the trim threshold, malloc_trim() is called.

● Other chunks are consolidated as they arrive, and placed in corresponding bins.

The free() Algorithm - last case

● If no adjacent chunks are free, then the freed chunk is simply linked into
corresponding with bin via frontlink().

● If the chunk next in memory to the freed one is free and if this next chunk borders on
wilderness, then both are consolidated with the wilderness chunk.

● If not, and the previous or next chunk in memory is free and they are not part of a
most recently split chunk (this splitting is part of malloc() behavior and is not
significant to us here), they are taken off their bins via unlink(). Then they are merged
(through forward or backward consolidation) with the chunk being freed and placed
into a new bin according to the resulting size using frontlink(). If any of them are part
of the most recently split chunk, they are merged with this chunk and kept out of bins.
This last bit is used to make certain operations faster.

1. Overwrite A and B
2. Create a fake

chunk F1 and F2,
so that when
free(A), unlink(F1)
is also called.

3. F1->FD has the
address we want
to overwrite and
F1->BK has the
data we want to
overwrite

CSE 410/518 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Today’s Agenda

1. Cache side channel attack
2. Meltdown
3. Spectre

Speed Gap Between CPU and DRAM

A tradeoff between Speed,
Cost and Capacity

Memory Hierarchy

A cache is a small amount of fast, expensive memory (SRAM). The cache goes
between the CPU and the main memory (DRAM).

It keeps a copy of the most frequently used data from the main memory.

All levels of caches are integrated onto the processor chip.

CPU Cache

Access Time in 2012

Cache Static RAM 0.5 - 2.5 ns

Memory Dynamic RAM 50- 70 ns

Secondary Flash 5,000 - 50,000 ns

Magnetic disks 5,000,000 - 20,000,000 ns

Access Time

A cache hit occurs if the cache contains the data that we’re looking for.

A cache miss occurs if the cache does not contain the requested data.

Cache Hits and Misses

Cache Hierarchy

L1 Cache is closest to the CPU. Usually divided in Code and Data cache

L2 and L3 cache are usually unified.

Cache Hierarchy

Cache Hierarchy

Cache Line/Block

The minimum unit of information that can be either present or not present
in a cache.

64 bytes in modern Intel and ARM CPUs

n-Way Set-Associative Cache

Any given block/line in the main memory may be cached in any
of the n cache lines in one cache set.

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Number of sets

= Cache Size / (Number of ways * Line size)

= 32 * 1024 / (4 * 64)

= 128

Offset
031

n-Way Set-Associative Cache

5613 12

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset
031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset
031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Cache Line/Block Content

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

Tag Data DV

Congruent Addresses

Each memory address maps to one of these cache sets.

Memory addresses that map to the same cache set are called
congruent.

Congruent addresses compete for cache lines within the same
set, where replacement policy needs to decide which line will
be replaced.

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Cache Side-Channel Attacks

Cache side-channel attacks utilize time differences between a cache hit and a
cache miss to infer whether specific code/data has been accessed.

Memory

Registers

Cache Side-Channel Attack

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

?
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

?
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

;Get current time t1

LDR r1, [r0]

;Get current time t2; t2 - t1

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Attack Primitives

Evict+Time

Prime+Probe

Flush+Flush

Flush+Reload

Evict+Reload

Moritz Lipp, Cache Attacks on ARM, Graz University Of Technology

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 1 Prime: Attacker occupies a
set

Attacker Address Space Victim Address Space

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Attacker Address Space Victim Address Space

Step 1 Prime: Attacker occupies a
set

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 2: Victim runs

Attacker Address Space Victim Address Space

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 3 Probe: Attacker accesses
memory again and measures the

time
Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

A memory block is cached

Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 1 Flush: Attacker flushes this
memory block out of cache

Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 2 Reload: Victim may / may not
access that block again

Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 3 Probe: Attacker accesses that
block again and measure

Attacker Address Space Victim Address Space

uint8_t array[10*4096];

int main(int argc, const char **argv) {
 int junk=0;
 register uint64_t time1, time2;
 volatile uint8_t *addr;
 int i;

 // Initialize the array
 for(i=0; i<10; i++) array[i*4096]=1;

 // FLUSH the array from the CPU cache
 for(i=0; i<10; i++) _mm_clflush(&array[i*4096]);

 // Access some of the array items
 array[2*4096] = 200;
 array[8*4096] = 200;

 for(i=0; i<10; i++) {
 addr = &array[i*4096];
 time1 = __rdtscp(&junk);
 junk = *addr;
 time2 = __rdtscp(&junk) - time1;
 printf("Access time for array[%d*4096]: %d CPU cycles\n",i, (int)time2);
 }
 return 0;
}

Cachetime.c from SEED labs

Flush_reload.c from SEED labs

gcc -march=native CacheTime.c

Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with KAISER/KPTI

An In-order Pipeline

Problem: A true data dependency stalls dispatch of younger instructions
into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

Can We Do Better?

What do the following two pieces of code have in common (with respect to
execution in the previous design)?

Answer: First ADD stalls the whole pipeline!
ADD cannot dispatch because its source registers unavailable
Later independent instructions cannot get executed

Out-of-Order Execution
(Dynamic Instruction Scheduling)

Idea: Move the dependent instructions out of the way of independent ones; Rest
areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the resting area. When all
source “values” of an instruction are available, “fire” (i.e. dispatch) the
instruction. Instructions dispatched in dataflow (not control-flow) order

Benefit: Latency tolerance: Allows independent instructions to execute and
complete in the presence of a long latency operation

In-order vs. Out-of-order Dispatch

Speculative Execution

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative
execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed. Work is done
before it is known whether it is actually needed, so as to prevent a delay
that would have to be incurred by doing the work after it is known that it
is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

Spectre vs. Meltdown

Meltdown does not use branch prediction. Instead, it relies on the
observation that when an instruction causes a trap, following
instructions are executed out-of-order before being terminated.

Second, Meltdown exploits a vulnerability specific to many Intel and
some ARM processors which allows certain speculatively executed
instructions to bypass memory protection.

Meltdown accesses kernel memory from user space. This access causes a
trap, but before the trap is issued, the instructions that follow the access
leak the contents of the accessed memory through a cache covert
channel.

