CSE 410/518 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Course Evaluation

Begins: 11/27/2022
Ends: 12/12/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

Heap-based Buffer Overflow

Heap Overflow

Buffer overflows are basically the same on the heap as they are on
the stack

Heap cookies/canaries aren't a thing

o No ‘return’ addresses to protect

In the real world, lots of cool and complex things like objects/structs
end up on the heap

o Anything that handles the data you just corrupted is now viable

attack surface in the application

It's common to put function pointers in structs which generally are
malloc’d on the heap

code/heapoverflow1

int main()
{
printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);
void fly()
{ struct airplane *p1 = malloc(sizeof(airplane));
printf("Flying ...\n"); printf("Airplane 1 is at %p\n", p1);
}
struct airplane *p2 = malloc(sizeof(airplane));
typedef struct airplane printf("Airplane 2 is at %p\n", p2);
{
void (*pfun)(); p1->pfun = fly;
char name[20]; p2->pfun = fly;
} airplane;
fgets(p2->name, 10, stdin);
fgets(p1->name, 50, stdin);
p1->pfun();
p2->pfun();

free(p1);
free(p2);
return O;

code/heapoverflow1

void fly()
{

printf("Flying ..\n");
}

typedef struct airplane
{
void (*pfun)();
char name[20];
} airplane;

int main()

{

printf("fly() at %p; print_flag() at %p\n", fly,

print_flag);

struct airplane *p1 = malloc(sizeof(airplane));
printf("Airplane 1 is at %p\n", p1);

struct airplane *p2 = malloc(sizeof(airplane));
printf("Airplane 2 is at %p\n", p2);

p1->pfun = fly;
p2->pfun = fly;

fgets(p2->name, 10, stdin);
fgets(p1->name, 50, stdin);

p1->pfun();
p2->pfun();

free(p1);
free(p2);
return 0;

Airplane 2

Airplane 1

I

—

code/heapoverflow1

void secret()

{
printf("The secret is bla bla...\n");
}
void fly()
{
printf("Flying ..\n");
}
typedef struct airplane
{
void (*pfun)();
char name[20];
} airplane;

int main()

{

printf("fly() at %p; secret() at %p\n", fly, secret);

struct airplane *p1 = malloc(sizeof(airplane));
printf("Airplane 1 is at %p\n", p1);

struct airplane *p2 = malloc(sizeof(airplane));
printf("Airplane 2 is at %p\n", p2);

p1->pfun = fly;
p2->pfun = fly;

fgets(p2->name, 10, stdin);
fgets(p1->name, 50, stdin);

p1->pfun();
p2->pfun();

free(p1);
free(p2);
return 0;

Airplane 2

Airplane 1

I

—

Exploit looks like

python2 -c "print 'a\n' + 'a'*28 + "\x4d\x62\x55\x56"" | ./heapoverflow32

Use after free (UAF)

A class of vulnerability where data on the heap is freed, but

a leftover reference or ‘dangling pointer’ is used by the code
as if the data were still valid.

Most popular in Web Browsers, complex programs

The CWE Top 25

Below is a list of the weaknesses in the 2022 CWE Top 25, including the overall score of each. The KEV Count (CVEs) shows the number of CVE-2020/CVE-2021 Records from the CISA KEYV list that were mapped to the given weakness.

Rank
Rank ID Name Score C'ga:t Chva:ge
(CVEs) 202'1

1 CWE-787 ||Out-of-bounds Write 64.20 62 0

2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’) 4597 2 0

3 CWE-89 |Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’) 22.11 7 +3 A

4 CWE-20 ||Improper Input Validation 20.63 20 0

5 CWE-125 ||Out-of-bounds Read 17.67 il 2 v

6 CWE-78 |Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’)| 17.53 32 1 v

F CWE-416 |[Use After Free 15.50 28 0

8 CWE-22 |[Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.08 19 0

9 CWE-352 |[Cross-Site Request Forgery (CSRF) 11:53 1 0

10 CWE-434 ||Unrestricted Upload of File with Dangerous Type 9.56 6 0

1 CWE-476 ||NULL Pointer Dereference 7.15 0 +4 A

12 CWE-502 ||Deserialization of Untrusted Data 6.68 7 +1 A

13 CWE-190 ||Integer Overflow or Wraparound 6.53 2 -l v

14 CWE-287 ||Improper Authentication 6.35 4 0

15 CWE-798 |[Use of Hard-coded Credentials 5.66 0 +1 A

16 CWE-862 |(|Missing Authorization 5.53 1 +2 A

17 CWE-77 |Improper Neutralization of Special Elements used in a Command ('Command Injection’) 5.42 5 +8 A

18 CWE-306 |[Missing Authentication for Critical Function 5.15 6 71 v

19 CWE-119 |[Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 2v

20 CWE-276 |Incorrect Default Permissions 4.84 0 1v

21 CWE-918 ||Server-Side Request Forgery (SSRF) 4.27 8 +3 A

22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition’) 3.57 6 +11 A

23 CWE-400 |{Uncontrolled Resource Consumption 3.56 2 +4 A

24 CWE-611 |[Improper Restriction of XML External Entity Reference 3.38 0 1 v

25 CWE-94 |Improper Control of Generation of Code (‘Code Injection’) 3.32 4 +3 A

Grows towards higher memory

Ay
AV
o
®
®
®
®
Ay
X
A

OXFFFFFFF

Grows towards hizher memory

®
®
o
®
®
®
o
®
X
4]

OXFFFFFFF

Dangling Pointer

Dangling Pointer

- A left over pointer in your code that references free’d data
and is prone to be re-used

- As the memory it's pointing at was freed, there's no
guarantees on what data is there now

- Also known as stale pointer, wild pointer

Grows towards hizher memory

AV
®
AV
®
®
®
AV
&Y
X
A

OXFFFFFFF

Exploit UAF

To exploit a UAF, you usually have to allocate a different type of object
over the one you just freed

code/heapoverflow2

void fly()
{

}

printf("Flying ...\n");

typedef struct airplane
{
void (*pfun)();
char name[20];
} airplane;

typedef struct car
{
int volume;
char name[20];
} car;

int main()
{ printf("fly() at %p; print_flag() at %u\n", fly, (unsigned int)print_flag);

struct airplane *p = malloc(sizeof(airplane));
printf("Airplane is at %p\n", p);

p->pfun = fly;

p->pfun();

free(p);

struct car *p1 = malloc(sizeof(car));
printf("Car is at %p\n", p1);

int volume;
printf("What is the volume of the car?\n");
scanf("%u", &volume);

p1->volume = volume;

p->pfun();
free(p);

return 0;

Dimalloc (using glibc 2.3 as an example)

struct malloc_chunk

{
INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;

I

typedef struct malloc_chunk* mchunkptr;

Mem is the pointer returned by malloc() call, while chunk pointer is what malloc considers
the start of the chunk.

The whole heap is bounded from top by a wilderness chunk. In the beginning, this is the
only chunk existing and malloc first makes allocated chunks by splitting the wilderness

chunk.

glibc 2.3 allows for many heaps arranged into several arenas—one arena for each thread

- From the book “Buffer Overflow Attacks: Detect, Exploit, Prevent” Syngree

Consolidating chunks when free()-d

When a previously allocated chunk is free()-d, it can be either consolidated

with previous (backward consolidation) and/or follow (forward consolidation) chunks,
if they are free.

This ensures that there are no two adjacent free chunks in memory. The resulting

chunk is then placed in a bin, which is a doubly linked list of free chunks of a
certain size.

There is a set of bins for chunks of different sizes:

m 64 bins of size 8 m 32 bins of size 64 m 16 bins of size 512

m 8 bins of size 4096 m 4 bins of size 32768 m 2 bins of size 262144
m 1 bin of size what's left

prev_size

chunk A,
being freed size
A,
user data
prev_size
chunk B, size
free PREV_INUSE=1
fd bk
unused
chunk C prev_size
allocated size
C PREV_INU SE=0

data

chunk Awillbe

forward consolidated

with B

Example Bin with Three Free Chunks

bin itself
chunk1->fd bin-=fd
bin-=bk chunk3->b Kk
chunk1 chunk3
chunk1->bk chunk2-=bk
chunk2->fd chunk3->fd

chunk?2

FD and BK are pointers to “next”
and “previous” chunks inside a
linked list of a bin, not adjacent
physical chunks.

Pointers to chunks, physically next
to and previous to this one in
memory, can be obtained from
current chunks by using size and
prev_size offsets.

Pointers to physically next to and previous chunk

/* Ptr to next physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))

/* Ptr to previous physical malloc_chunk */
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

Unlink() a Free Chunk P from the Bin

N .

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

Unlink() a Free Chunk P from the Bin

N .

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

Unlink() a Free Chunk P from the Bin

H

 Chumk3-bk
~ Chunk3-fd
~ Chunk 3- Chunk Size
i - Chunk3-PrevioSize
#define unlink(P, BK, FD) {
B = pob S
FD = P->1a; ~ ChumkP-bk
ot p: ~ ChunkP-fd
BK->fd = FD;
} ~ ChunkP-Chunk Size
- ChunkP-Previo Size
<
. Chunk1-fd
~ Chunk 1- Chunk Size
> ~ Chunk1-PrevioSize

L

Unlink() a Free Chunk P from the Bin

 Chumk3-bk
~ Chunk3-fd
~ Chunk 3- Chunk Size
i - Chunk3-PrevioSize
#define unlink(P, BK, FD) {
B = pob S
FD = P->1a; ~ ChumkP-bk
FD->bk = BK;
BK>fd = FD; ~ ChukP-fd
} ~ ChunkP-Chunk Size
- ChunkP-Previo Size
 Chumkt-bk
. Chunk1-fd
~ Chunk 1- Chunk Size
> ~ Chunk1-PrevioSize

> I

—

Unlink() from an Attacker’s Point of View

*(P->fd+12) = P->bk;
/1 4 bytes for size, 4 bytes for prev_size and 4 bytes for fd

*(P->bk+8) = P->fd;
/1 4 bytes for size, 4 bytes for prev_size

Arbitrary write attack?

If an attacker is able to overwrite these two
pointers and force the call to unlink(), he can
overwrite any memory location.

Chunk 3 - fd

Chunk 3 - Chunk Size

FD Chunk 3 - Previo Size

Chunk P - Chunk Size
Chunk P - Previo Size

Chunk 1 - bk

Chunk 1 - Chunk Size

BK Chunk 1 - Previo Size

The free() Algorithm

free(0) has no effect.

If the chunk was allocated via mmap, it is released via munmap(). Only large chunks
are MMAP-ped, and we are not interested in thes.

If a returned chunk borders the current high end of memory (wilderness chunk), it is
consolidated into the wilderness chunk, and if the total unused topmost memory
exceeds the trim threshold, malloc_trim() is called.

Other chunks are consolidated as they arrive, and placed in corresponding bins.

The free() Algorithm - last case

If no adjacent chunks are free, then the freed chunk is simply linked into
corresponding with bin via frontlink().

If the chunk next in memory to the freed one is free and if this next chunk borders on
wilderness, then both are consolidated with the wilderness chunk.

If not, and the previous or next chunk in memory is free and they are not part of a
most recently split chunk (this splitting is part of malloc() behavior and is not
significant to us here), they are taken off their bins via unlink(). Then they are merged
(through forward or backward consolidation) with the chunk being freed and placed
into a new bin according to the resulting size using frontlink(). If any of them are part
of the most recently split chunk, they are merged with this chunk and kept out of bins.
This last bit is used to make certain operations faster.

prev_size

chunk A,
being freed size
A,
user data
prev_size
chunk B, size
free PREV_INUSE=1
fd bk
unused
chunk C prev_size
allocated size
C PREV_INU SE=0

data

chunk Awillbe

forward consolidated

with B

lower addresses

prev_size

size of A

chunk A
orev Size
size of A
A
user data
chunk B
prev sgecof A
sizeof B
FREV IMNJSE=1
B =
user data

user data

‘brev_size” - garbage

size”of F 1

before overflow

fake free
chunk

Nfd“

BK"

"oy_size"of F1

“S','-_-'E”- ga",b&gg ’,’I?n
PREYV_INUSE=0

N‘fdﬂ

".t'.K ~

after overflow

fake
chunk F1

fake
chunk F2

—
.

3.

Overwrite A and B
Create a fake
chunk F1 and F2,
so that when
free(A), unlink(F1)
is also called.
F1->FD has the
address we want
to overwrite and
F1->BK has the
data we want to
overwrite

CSE 410/518 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Today’s Agenda

1. Cache side channel attack
2. Meltdown
3. Spectre

Speed Gap Between CPU and DRAM

1000 - CPU

100 A

10 A1

DRAM

+
O =~ N M ¢« UV © ~ O O © =~ N M <« O © ~ O O O
0 ® ®©® 0 O W ® O o © o 0o o oo 6o o o o o O O
o O O 0o o 0O o O O 0o o0 o0 o0 o0 o0 o0 o0 o0 o o O
€= A= = ¥ e o= ™= ™ 1™ ¥ L v, el N i . el - «N

Memory Hierarchy

Ideally one would desire an
indefinitely large memory
capacity such that any
particular ... word would be
immediately available. ... We

A tradeoff between Speed, are forced to recognize the
. possibility of constructing a
Cost and Ca Pa Clty hierarchy of memories, each
of which has greater capacity
than the preceding but which
is less quickly accessible.

A. W. Burks, H. H. Goldstine, and

J. von Neumann

Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument, 1946

CPU Cache

A cache is a small amount of fast, expensive memory (SRAM). The cache goes
between the CPU and the main memory (DRAM).

It keeps a copy of the most frequently used data from the main memory.

All levels of caches are integrated onto the processor chip.

Cache
Memory

Secondary

Access Time

Static RAM

Dynamic RAM

Flash

Magnetic disks

Access Time in 2012

0.5-2.5ns

50- 70 ns

5,000 - 50,000 ns

5,000,000 - 20,000,000 ns

Cache Hits and Misses

A cache hit occurs if the cache contains the data that we're looking for.

A cache miss occurs if the cache does not contain the requested data.

Cache Hierarchy

L1 Cache is closest to the CPU. Usually divided in Code and Data cache

L2 and L3 cache are usually unified.

hy

ierarc

CacheH

o
=
)
-
"
e
- ¥
)
—cf

S

@
=
T

LY TNELTIT]

Aiowapyaaq.

gn

-5
o=

Scan AIE

s !..lﬂgm-cpde

Memory Controller

Cache Hierarchy

Intel Pentium 4 Northwood

Buffer Allocation
Register Rename

Instruction Queue (

critical fields of the uOps)

Executi

Registe

General Instruction Ad:
ate
fields of the uOps for schedulin,

F Point, MM

128 entries of 128 bit

uOp Schedulers

ependency matrix)

Parallel (Matrix) Scheduler
for the two double pumped ALU's

General Floating
Slow Inte; cheduler
(8x8 dependency matrix)

Load / Store uOp S
(8x8 dependency matrix)

Load / Store Linear A
Collision History Table

Integer Execution Core

(1) uOp Dispatch unit & Repla
Dispatches up to 6 uOps / cycle
Integer Renamed

status flag

bus switch & C
from the Integer Register File.
(©) Write Back
(5) Double Pumped ALU (

-256-kByte-
L2 Cache

(6) Double Pumped ALU |
(7) Load Address (ator Unit
(8) Store Address Ger
(9) Load Buffer (48 entries) (11) ROB Reorder Buff
(12) 8 kByte Level 1 Data cache

four way ative. 1R/IW

ator Unit

(10) Store Buffer (24 entries)

2

n Pipeline Start

Instruction Trace Cache
.

Micro code Sequencer

-256-kByte -

immed Address I

che Line Read / Write Transferbuffers and
256 bit wide bus to and from L2 cache

L2 Cache

Trace Cache Acce
next Address Predict
= 4

ache Distributed Tag comparator
Fill Buffer 24 bit virtual Ta

(from m

are handled by Micro §
Trace Cache LRU bit
Raw Instruction Bytes in
Data TLB, 64 entr
as: 2 e, between
dual ported (for

N

Instruction Fet
from L2 cache and
Branch Prediction

Front End Branch F
les (BTB), shared, 4096
entries in total

Instruction TLB'

2 page level bits

M

Front Side Bus Inte
face, 400..800 MHz

il 19,2003 www.chip-architect.com

b ‘ i
| O i

SR

mh«?‘....';e
§ ﬁa

{ Eﬂuuuwlhmmu

Thenares

Cache Line/Block

The minimum unit of information that can be either present or not present
in a cache.

64 bytes in modern Intel and ARM CPUs

n-Way Set-Associative Cache

Any given block/line in the main memory may be cached in any
of the n cache lines in one cache set.

n-Way Set-Associative Cache

31 13 12 6 5

Tag Set, Index Offset

32KB 4-way set-associative data cache, 64 bytes per line
Number of sets
= Cache Size / (Number of ways * Line size)
=32*1024 /(4 * 64)

=128

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index Offset

32KB 4-way set-associative data cache, 64 bytes per line

O 0 0 O

127 127 127 127

Way O Way 1 Way 2 Way 3

127

31

n-Way Set-Associative Cache

13 12

6

5

Tag

Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

Way O

o

127

o

127

Way 1

Way 2

o

127

Way 3

127

31

n-Way Set-Associative Cache

13 12

6

5

Tag

Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

Way O

o

127

Way 1

o

127

Way 2

o

127

Way 3

127

31

n-Way Set-Associative Cache

13 12

6

5

Tag

Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

Way O

o

127

Way 1

o

127

Way 2

o

127

Way 3

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

O 0 0 O

127 127 127 127
Way O Way 1 Way 2 Way 3

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

O 0 0 O

127 127 127 127
Way O Way 1 Way 2 Way 3

127

Vv

31

32KB 4-way set-associative data cache, 64 bytes per line

Tag Data

Cache Line/Block Content

13 12

6

5

Tag

Set, Index

Offset

D

Way O

o

127

o

127

Way 1

Way 2

o

127

Way 3

Congruent Addresses

Each memory address maps to one of these cache sets.

Memory addresses that map to the same cache set are called
congruent.

Congruent addresses compete for cache lines within the same
set, where replacement policy needs to decide which line will
be replaced.

Replacement Algorithm

Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)

Random

Cache Side-Channel Attacks

Cache side-channel attacks utilize time differences between a cache hit and a
cache miss to infer whether specific code/data has been accessed.

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

?

Registers

Ox2FFC

"B 03000

0x3004

0x00000000

0x00000001

0x00000002

Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

0x0001

Registers

OX2FFC 0x00000000
"B 0x3000 0x00000001
]
0x3004 0x00000002
Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

?

Registers

Way 0

Way 1

Cache

Ox2FFC

"B 03000

0x3004

0x00000000

0x00000001

0x00000002

Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

0x0001

Registers T
7

Way 0

Way 1

Cache

Ox2FFC

"B 03000

0x3004

0x00000000

0x00000001

0x00000002

Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

0x00000000

0x00000001

0x00000002

Memory

Cache

r0 0x3000 . Ox2FFC
ol
1 0x0001 0x3000
004
Registers /
Way 0 Way 1

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

0x00000000

0x00000001

0x00000002

Memory

Cache

r0 0x3000 . Ox2FFC
ol
1 0X0001 Ox3099
004
Registers T /
7
Way 0 Way 1

: Assume rO = 0x3000

: Load a word:;

;Get current time t1

LDR r1, [rO]

‘Get current time t2; t2 - t1

Cache Side-Channel Attack

ro

ri

0x3000

0x0001

-
*
L2
L N

Registers T
7

Ox2FFC

0x3000
W

0x00000000

0x00000001

0x00000002

Memory

g

Way 0

Way 1

Cache

Attack Primitives

Evict+Time
Prime+Probe
Flush+Flush
Flush+Reload

Evict+Reload

2.4.1 Evict+Time

In 2005 Percival [66] and Osvik et al. [63] proposed more fine-grained ex-
ploitations of memory accesses to the CPU cache. In particular, Osvik et al.
formalized two concepts, namely Evict+Time and Prime+Probe that we will
discuss in this and the following section. The basic idea is to determine

which specific cache sets have been accessed by a victim program.

Algorithm 1 Evict+Time

1: Measure execution time of victim program.
2: Evict a specific cache set.
3: Measure execution time of victim program again.

The basic approach, outlined in Algorithm 1, is to determine which cache
set is used during the victim’s computations. At first, the execution time
of the victim program is measured. In the second step, a specific cache
set is evicted before the program is measured a second time in the third
step. By means of the timing difference between the two measurements,
one can deduce how much the specific cache set is used while the victim’s

program is running.

Osvik et al. and Tromer et al. demonstrated with Evict+Time a
powerful type of attack against on OpenSSL implementations that
requires neither knowledge of the plaintext nor the ciphertext.

Moritz Lipp, Cache Attacks on ARM, Graz University Of Technology

' b
Prime+Pr
R e+rrobe
I Step 1 Prime: Attacker occupies a
I set
Attacker Address Space Victim Address Space
0] 0] 0] 0]
127 127 127 127

Way O Way 1 Way 2 Way 3

127

Attacker Address Space

Way O

127

Prime+Probe

Step 1 Prime: Attacker occupies a
set

127

Way 1 Way 2

Victim Address Space

o

127

Way 3

127

Attacker Address Space

Way O

127

Prime+Probe

Step 2: Victim runs

127

Way 1 Way 2

Victim Address Space

o

127

Way 3

127

Attacker Address Space

Way O

127

Prime+Probe

Step 3 Probe: Attacker accesses
memory again and measures the
time

127

Way 1 Way 2

Victim Address Space

o

127

Way 3

Flush+Reload

A memory block is cached .
Attacker Address Space Victim Address Space
0o 0o 0o 0o
127 127 127 127

Way O Way 1 Way 2 Way 3

Flush+Reload

Step 1 Flush: Attacker flushes this I
memory block out of cache
Attacker Address Space Victim Address Space
0 0 0 0
127 127 127 127

Way O Way 1 Way 2 Way 3

127

Attacker Address Space

Way O

127

Flush+Reload

Step 2 Reload: Victim may / may not
access that block again

127

Way 1 Way 2

Victim Address Space

o

127

Way 3

127

Attacker Address Space

Way O

127

Flush+Reload

Step 3 Probe: Attacker accesses that
block again and measure

127

Way 1 Way 2

Victim Address Space

o

127

Way 3

Cachetime.c from SEED labs

uint8_t array[10*4096];

int main(int argc, const char **argv) {
int junk=0;
register uint64_t time1, time2;
volatile uint8_t *addr;
inti;

/I Initialize the array
for(i=0; i<10; i++) array[i*4096]=1;

/l FLUSH the array from the CPU cache
for(i=0; i<10; i++) _mm_clflush(&array[i*4096]);

/I Access some of the array items
array[2*4096] = 200;
array[8*4096] = 200;

for(i=0; i<10; i++) {

addr = &array[i*4096];

time1 = __rdtscp(&junk);

junk = *addr;

time2 = __ rdtscp(&junk) - time1;

printf("Access time for array[%d*4096]: %d CPU cycles\n",i, (int)time2);
}

return O;

}

Flush reload.c from SEED labs

gcc -march=native CacheTime.c

O S Terminal

[11/23/20]seed@VM:~$ lscpu
Architecture: 1686

CPU op-mode(s): 32-bit

Byte Order: Little Endian
CPU(s): P
On-line CPU(s) list: 0,1

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 1

Vendor 1ID: Genuinelntel

CPU family: 6

Model: 126

Model name: Intel(R) Core(TM) 17-1065G7 CPU @ 1.30GHz

Stepping:)

CPU MHz: 1497 .600

BogoMIPS: 2995.20

Hypervisor vendor: KVM

Virtualization type: full

L1d cache: 48K

L1i cache: 32K

L2 cache: 512K

L3 cache: 8192K

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 ht nx rdtscp constant tsc xtopology non

Meltdown and Spectre

https://meltdownattack.com/

£V

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with KAISER/KPTI

An In-order Pipeline

Integer add

Integer mul
—>1'E |E |E |E >_> =1)\ &
F ID ! FP mul |
—1E |E |E |E |E |E |E |E | >
—>E |E |E |E |E |E (E |E |2 o >

Cache miss

Problem: A true data dependency stalls dispatch of younger instructions
into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

Can We Do Better?

What do the following two pieces of code have in common (with respect to
execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3,R1 ADD R3 € R3,R1
ADD R1 €« R6, R7 ADD R1 <« R6, R7
IMUL RS € R6, R8 IMUL RS € R6, R8
ADD R7 € R3,R5 ADD R7 € R3,R5

Answer: First ADD stalls the whole pipeline!
ADD cannot dispatch because its source registers unavailable
Later independent instructions cannot get executed

Out-of-Order Execution
(Dynamic Instruction Scheduling)

Idea: Move the dependent instructions out of the way of independent ones; Rest
areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the resting area. When all
source “values” of an instruction are available, “fire” (i.e. dispatch) the
instruction. Instructions dispatched in dataflow (not control-flow) order

Benefit: Latency tolerance: Allows independent instructions to execute and
complete in the presence of a long latency operation

In-order vs. Out-of-order Dispatch

F |E |lE |R | W
STALL |E |R |W
STALL |D |[E |R |W
F |B |E |E |E |E 0
F |D STALL R
E | E |E | R | W
WAIT E | R|[W
D |E | R W
F |D|E |E |E |E |R |W
B WAIT E|R|W

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R5 €< R6, R8
ADD R7 € R3, R5

|#inc1ude <linux/kernel.h>
#include <linux/init.h>

#include <linux/vmalloc.h>
#include <linux/version.h>
#include <linux/proc_fs.h>
#include <linux/seq file.h>
#include <linux/uaccess.h>

static char secret{8) = {'S','E',"E',;'D','L* ta","'b",'s'};
static struct proc_dir entry *secret entry;
static char* secret buffer;

static int test proc open(struct inode *inode, struct file *file)

#1f LINUX VERSION CODE <= KERNEL VERSION(4,0,0)
return single open(file, NULL, PDE(inode)->data);
#else
return single_open(file, NULL, PDE DATA(inode));
#endif
}

static ssize t read proc(struct file #filp, char *buffer,
size t length, loff t *offset)
{

memcpy (secret_buffer, &secret, 8);
return 8;

}
static const struct file operations test proc fops =

.owner = THIS_MODULE,

.open = test proc open,

.read = read proc,

.llseek = seq_lseek,

.release = single_release,
};

static _ init int test_proc_init(void)

// write message in kernel message buffer
printk(“"secret data address:%p\n", &secret);

secret_buffer = (char*)vmalloc(8);

// create data entry in /proc

secret_entry = proc create data("secret data",
0444, NULL, &test _proc_fops, NULL);

if (secret_entry) return 0;

return -ENOMEM;
}

static _ exit void test proc cleanup(void)

remove proc_entry("secret data", NULL);

module init(test proc init);
module exit(test proc cleanup);[12/62/20]seed@M:~/Meltdown Attack$ fl

Speculative Execution

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative

execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed. Work is done
before it is known whether it is actually needed, so as to prevent a delay
that would have to be incurred by doing the work after it is known that it
is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

N A

if (x < arrayl_size)
y = array2[arrayl[x] x 4096];

if €in boundss

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

Spectre vs. Meltdown

Meltdown does not use branch prediction. Instead, it relies on the
observation that when an instruction causes a trap, following
instructions are executed out-of-order before being terminated.

Second, Meltdown exploits a vulnerability specific to many Intel and
some ARM processors which allows certain speculatively executed
instructions to bypass memory protection.

Meltdown accesses kernel memory from user space. This access causes a
trap, but before the trap is issued, the instructions that follow the access
leak the contents of the accessed memory through a cache covert
channel.

