
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Obrian 109
Time: Monday, Wednesday 5:00PM-6:20PM

This Class

1. Background
a. System call
b. Environment
c. Tools
d. ELF

SET-UID programs on our server

Background Knowledge:
System Calls

What is System Call?

When a process needs to invoke a kernel service, it invokes a procedure
call in the operating system interface using special instructions (not a
call instruction in x86). Such a procedure is called a system call.

The system call enters the kernel; the kernel performs the service and
returns. Thus a process alternates between executing in user space and
kernel space.

System calls are generally not invoked directly by a program, but rather
via wrapper functions in glibc (or perhaps some other library).

Popular System Call

On Unix, Unix-like and other POSIX-compliant operating systems,
popular system calls are open, read, write, close, wait, exec, fork, exit,
and kill.

Many modern operating systems have hundreds of system calls. For
example, Linux and OpenBSD each have over 300 different calls, FreeBSD
has over 500, Windows 7 has close to 700.

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Open_(system_call)
https://en.wikipedia.org/wiki/Read_(system_call)
https://en.wikipedia.org/wiki/Write_(system_call)
https://en.wikipedia.org/wiki/Close_(system_call)
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/Exec_(system_call)
https://en.wikipedia.org/wiki/Fork_(system_call)
https://en.wikipedia.org/wiki/Exit_(system_call)
https://en.wikipedia.org/wiki/Kill_(system_call)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/FreeBSD

Glibc interfaces

Often, but not always, the name of the wrapper function is the same as
the name of the system call that it invokes.

For example, glibc contains a function chdir() which invokes the
underlying "chdir" system call.

Tools: strace & ltrace

Making a System Call in x86 Assembly

On x86/x86-64, most system calls rely on the software interrupt (the int
0x80 instruction).

A software interrupt is caused either by an exceptional condition in the
processor itself, or a special instruction.

For example: a divide-by-zero exception will be thrown if the processor's
arithmetic logic unit is commanded to divide a number by zero as this
instruction is in error and impossible.

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

Making a System Call in x86 Assembly (INT 0x80)

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

http://shell-storm.org/shellcode/files/shellcode-827.php

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

Making a System Call in x86 Assembly

http://shell-storm.org/shellcode/files/shellcode-827.php

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

Making a System Call in x86 Assembly

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

%eax

Making a System Call in x86 Assembly

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

%eax

$0x68732f2f
$0x6e69622f

Making a System Call in x86 Assembly

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

%eax

$0x68732f2f
$0x6e69622f

Making a System Call in x86 Assembly

Making a System Call in x86 Assembly

execve(“/bin/sh”, address of string “/bin/sh”, 0)

Background Knowledge:
Environment and Shell Variables

Environment and Shell Variables

Environment and Shell variables are a set of dynamic named values,
stored within the system that are used by applications launched in shells.

KEY=value
KEY="Some other value"
KEY=value1:value2

The names of the variables are case-sensitive (UPPER CASE).
Multiple values must be separated by the colon : character.
There is no space around the equals = symbol.

Environment variables are variables that are available system-wide and
are inherited by all spawned child processes and shells.

Shell variables are variables that apply only to the current shell instance.
Each shell such as zsh and bash, has its own set of internal shell
variables.

Environment and Shell Variables

Common Environment Variables

USER - The current logged in user.
HOME - The home directory of the current user.
EDITOR - The default file editor to be used. This is the editor that will be
used when you type edit in your terminal.
SHELL - The path of the current user’s shell, such as bash or zsh.
LOGNAME - The name of the current user.
PATH - A list of directories to be searched when executing commands.
LANG - The current locales settings.
TERM - The current terminal emulation.
MAIL - Location of where the current user’s mail is stored.

Commands

env – The command allows you to run another program in a custom
environment without modifying the current one. When used without an
argument it will print a list of the current environment variables.
printenv – The command prints all or the specified environment
variables.
set – The command sets or unsets shell variables. When used without an
argument it will print a list of all variables including environment and
shell variables, and shell functions.
unset – The command deletes shell and environment variables.
export – The command sets environment variables

The environment variables
live towards the top of the
stack, together with
command line arguments.

Executable and Linkable Format (ELF)

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core
dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

● Executable (a.out), object files
(.o), shared libraries (.a), even
core dumps.

● Four types of components: an
executable header, a series of
(optional) program headers, a
number of sections, and a
series of (optional) section
headers, one per section.

Executable Header

0x7F ELF ..
Executable, obj, dynamic lib

x86-64, Arm

readelf -h a.out

Sections

The code and data in an ELF binary are logically divided into contiguous
non-overlapping chunks called sections. The structure of each section
varies depending on the contents.

The division into sections is intended to provide a convenient
organization for use by the linker.

Section Header Format

Each section is described by its section header.

readelf -S a.out

sh_flags

SHF_WRITE: the section is writable at
runtime.

SHF_ALLOC: the contents of the section are
to be loaded into virtual memory when
executing the binary.

SHF_EXECINSTR: the section contains
executable instructions.

readelf -S a.out

Sections

.init: executable code that performs initialization tasks and needs to run
before any other code in the binary is executed.

.fini: code that runs after the main program completes.

.text: where the main code of the program resides.

Sections

.rodata section, which stands for “read-only data,” is dedicated to
storing constant values. Because it stores constant values, .rodata is not
writable.

The default values of initialized variables are stored in the .data section,
which is marked as writable since the values of variables may change at
runtime.

the .bss section reserves space for uninitialized variables. The name
historically stands for “block started by symbol,” referring to the
reserving of blocks of memory for (symbolic) variables.

Lazy Binding (.plt, .got, .got.plt Sections)

Binding at Load Time: When a binary is loaded into a process for
execution, the dynamic linker resolves references to functions located in
shared libraries. The addresses of shared functions were not known at
compile time.

In reality - Lazy Binding: many of the relocations are typically not done
right away when the binary is loaded but are deferred until the first
reference to the unresolved location is actually made.

Lazy Binding (.plt, .got, .got.plt Sections)

Lazy binding in Linux ELF binaries is implemented with the help of two
special sections, called the Procedure Linkage Table (.plt) and the Global
Offset Table (.got).

.plt is a code section that contains executable code. The PLT consists
entirely of stubs of a well-defined format, dedicated to directing calls
from the .text section to the appropriate library location.

.got.plt is a data section.

Dynamically Resolving a Library Function Using the PLT

Example: Debug code\lazyb

GDB Cheatsheet:

https://darkdust.net/files/GDB%20
Cheat%20Sheet.pdf

Section View (Section Header)
vs.

Segment View (Program Header)

The program header table provides a segment view of the binary, as
opposed to the section view provided by the section header table.

The section view of an ELF binary is meant for static linking purposes.

The segment view is used by the operating system and dynamic linker
when loading an ELF into a process for execution to locate the relevant
code and data and decide what to load into virtual memory.

Segments are simply a bunch of sections bundled together.

Program Header Format

Each section is described by its section header.

readelf -l a.out

Background Knowledge:
Manual Binary Analysis Tools

Tools for this class

file
readelf
strings
nm
Objdump
GDB
[optional] IDA Pro
[optional] ghidra
[optional] Binary Ninja

GDB Cheat Sheet

Start gdb using:
gdb <binary>
Pass initial commands for gdb through a file
gdb <binary> –x <initfile>

To start running the program
r <argv>
Use python output as stdin in GDB:
r <<< $(python -c "print '\x12\x34'*5")

Set breakpoint at address:
b *0x80000000
b main
Disassemble 10 instructions from an address:
x/10i 0x80000000

GDB Cheat Sheet

To put breakpoints (stop execution on a certain line)
b <function name>
b *<instruction address>
b <filename:line number>
b <line number>

To show breakpoints
info b

To remove breakpoints
clear <function name>
clear *<instruction address>
clear <filename:line number>
clear <line number>

GDB Cheat Sheet

Use “examine” or “x” command
x/32xw <memory location> to see memory contents at memory location, showing 32 hexadecimal words
x/5s <memory location> to show 5 strings (null terminated) at a particular memory location
x/10i <memory location> to show 10 instructions at particular memory location

See registers
info reg

Step an instruction
si

Shell Cheat Sheet

Run a program and use another program’s output as a parameter
program $(python -c "print '\x12\x34'*5")

Dues

1. Homework-1

