
CSE 410/510 Special Topics: 
Software Security

Instructor: Dr. Ziming Zhao

Location: Obrian 109
Time: Monday, Wednesday 5:00PM-6:20PM



Course Evaluation

Begins: 4/29/2022
Ends: 5/15/2022

If 90% of student submit the 
evaluation, all of the class will get 
10 bonus points.

39 students. So 35 evaluations!!



Final CTFs

5/16/2022. Must be in-person.
7:15PM - 10:15PM and 30 mins extra
3+0.5 hours in total.
200 points in total.
There will be no written final exam.

1 ROP challenge
1 Heap exploitation challenge
2 Format string challenges
1 Stack buffer overflow + ?



Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Slides from SEED project and Jake Williams

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754


More examples on Out-of-order execution

data = 0; 
if (x < size) 

{ 
data = data + 5;
}



From out-of-order execution to speculative execution

The ability to issue instructions past branches that are yet to resolve is 
known as speculative execution.

The processor can preserve its current register state, make a prediction 
as to the path that the program will follow, and speculatively execute 
instructions along the path. 

If the prediction turns out to be correct, the results of the speculative 
execution are committed (i.e., saved), yielding a performance advantage 
over idling during the wait. 

Otherwise, when the processor determines that it followed the wrong 
path, it abandons the work it performed speculatively by reverting its 
register state and resuming along the correct path.



Speculative Execution

Speculative execution on modern CPUs can run several hundred 
instructions ahead.

Speculative execution is an optimization technique where a computer 
system performs some task that may not be needed. 

Work is done before it is known whether it is actually needed, so as to 
prevent a delay that would have to be incurred by doing the work after it 
is known that it is needed.



Branch Prediction

During speculative execution, the processor makes guesses as to the 
likely outcome of branch instructions. 

The branch predictors of modern Intel processors, e.g., Haswell Xeon 
processors, have multiple prediction mechanisms for direct and indirect 
branches.



Spectre V1

Conditional branch misprediction



Spectre V2

Indirect branches can be poisoned by an attacker and the resulting 
misprediction of indirect branches can be exploited to read arbitrary 
memory from another context.



Spectre vs. Meltdown

Meltdown does not use branch prediction. Instead, it relies on the 
observation that when an instruction causes a trap, following 
instructions are executed out-of-order before being terminated. 

Second, Meltdown exploits a vulnerability specific to many Intel and 
some ARM processors which allows certain speculatively executed 
instructions to bypass memory protection.

Meltdown accesses kernel memory from user space. This access causes a 
trap, but before the trap is issued, the instructions that follow the access 
leak the contents of the accessed memory through a cache covert 
channel.



A design flaw leads to Spectre

Even though registers and memory will be reverted back to the 
original state if the speculative execution is discarded, the cache 
will not be reverted.




