
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Obrian 109
Time: Monday, Wednesday 5:00PM-6:20PM

This Class

1. ROP
2. Approaches to defeat ROP

a. Return-less code
b. Control-flow integrity (CFI)
c. ...

Rop2 (32 bit)
FILE* fp = 0;
int a = 0;

int vulfoo(int i)
{
 char buf[200];
 fp = fopen("/tmp/exploit", "r");
 if (!fp) {perror("fopen");exit(0);}

 fread(buf, 1, 190, fp);

 // Move the first 4 bytes to RET
 *((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
 a = *((unsigned int *)buf + 1);

 // Move the second 4 bytes to eax
 asm ("movl %0, %%eax"
 :
 :"r"(a)
);
}

int main(int argc, char *argv[])
{ vulfoo(1); return 0;}

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret

pop rsp; ...; ret

Rop2 (32 bit)
FILE* fp = 0;
int a = 0;

int vulfoo(int i)
{
 char buf[200];
 fp = fopen("exploit", "r");
 if (!fp) {perror("fopen");exit(0);}

 fread(buf, 1, 190, fp);

 // Move the first 4 bytes to RET
 *((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
 a = *((unsigned int *)buf + 1);

 // Move the second 4 bytes to eax
 asm ("movl %0, %%eax"
 :
 :"r"(a)
);
}

int main(int argc, char *argv[])
{ vulfoo(1); return 0;}

p += pack('<I', 0xf7e1a373) # 0xf7e1a373 : xchg eax, esp ; ret
p += pack('<I', 0xffffcf8c) # Move to EAX, so it will be exchanged with ESP; this is
buf+8
…

Generalize ROP to COP/JOP

Similarly, other indirect branch instructions, such as Call and Jump indirect can
be used to launch variant attacks - called COP (call oriented programming) or JOP
(jump oriented programming).

Defeating ROP/COP/JOP

How to pull off a ROP attack?

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of instruction).

Ideas to defeat ROP/COP/JOP:
1. Shadow stack / control-flow integrity

CCS 2005, Test of Time award 2015

1. Subvert the
control flow to
the first gadget.

2. Control the
content on the
stack. Do not
need to inject
code there.

3. Enough gadgets
in the address
space.

4. Know the
addresses of the
gadgets.

5. Start execution
anywhere
(middle of
instruction).

Control Flow Integrity (CFI)

1. Control-Flow Integrity (CFI) restricts the control-flow of an program to valid execution
traces.

2. CFI enforces this property by monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid state is detected, an alert is
raised, usually terminating the application.

Any CFI mechanism consists of two abstract components: the (often static) analysis
component that recovers the Control-Flow Graph (CFG) of the application (at different
levels of precision) and the dynamic/run-time enforcement mechanism that restricts
control flows according to the generated CFG.

Direct call/jmp vs. Indirect call/jmp

The direct call/jmp uses an instruction call/jmp with a fixed address as argument. After
the compiler/linker has done its job, this address will be included in the opcode. The code
text is supposed to be read/executable only and not writable. So, direct call/jmp cannot be
subverted.

The indirect call/jmp uses an instruction call/jmp with a register as argument (call rax,
jmp rax). Function return (ret) is also considered as indirect because the target is not
hardcoded in the instruction.

Call or jmp is named forward-edge (at source code level map to e.g., switch statements,
indirect calls, or virtual calls.). The backward-edge is used to return to a location that was
used in a forward-edge earlier (return instruction).

Interrupts and interrupt returns.

void bar();
void baz();
void buz();
void bez(int, int);

void foo(int usr) {
 void (*func)();

 // func either points to bar or baz
 if (usr == MAGIC)
 func = bar;
 else
 func = baz;

 // forward edge CFI check
 // depending on the precision of CFI:
 // a) all functions {bar, baz, buz, bez, foo} are allowed
 // b) all functions with prototype "void (*)()" are allowed, i.e., {bar, baz, buz}
 // c) only address taken functions are allowed, i.e., {bar, baz}
 CHECK_CFI_FORWARD(func);
 func();

 // backward edge CFI check
 CHECK_CFI_BACKWARD();
} https://nebelwelt.net/blog/20160913

-ControlFlowIntegrity.html

CFI Enforcement
Locations

Ideas to defeat ROP: 2. ASLR

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of

instruction).

Ideas to defeat ROP: 3. Remove gadgets

ACSAC 2010

RET?

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of

instruction).

Ideas to defeat ROP: 3. Remove gadgets

USENIX Security 2013

Ideas to defeat ROP: 4. Monitor CFI

Ideas to defeat ROP: 5. Indirect Branch Tracking

All indirect branch targets must start with
ENDBR64/ENDBR32.

• ENDBR64/ENDBR32 is NOP on non-CET processors.

