
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Course Evaluation

Begins: 11/25/2022
Ends: 12/11/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

42 students. So 38 evaluations!!

Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Slides from SEED project and Jake Williams

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with Kernel page-table isolation
(KAISER/KPTI)

Meltdown Attack Step 1: A user process
reads a byte of
arbitrary kernel memory.
This should cause an
exception (and
eventually will), but will
leak data to a side
channel before the
exception handler is
invoked due to out of
order instruction
execution.

User
memory

Kernel
memory

CPU
Cache

Secret data

Array Clear the elements of
the user space array
from the CPU cache.

Meltdown Attack Step 2: The value of the
secret data is used to
populate data in an array
that is readable in
user space memory. The
position of the array
access depends on the
secret value.

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Due to out of order
instruction
processing, this user
space array briefly
contains the secret
(by design), but the
operation is flushed
before it can be read.

Array offset
“secret”

Meltdown Attack Step 3: An exception is
triggered that discards
the out of order
instructions. The secret
cannot be read from the
user space array

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Secret data is never
available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction
computations.

Array offset
“secret”

Meltdown Attack Step 4: The unprivileged
process iterates through
array elements. The
cached element will be
returned much faster,
revealing the contents of
the secret byte read.
* The array is really 4KB
elements

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Secret data is never
available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction
computations.

for (x=0; x <=255; x++) {
return min(time(read array[x]))
}

Array offset
“secret”

SEED/MeltdownKernel.c
static char secret[8] = {’S’, ’E’, ’E’, ’D’, ’L’, ’a’, ’b’, ’s’};
static struct proc_dir_entry *secret_entry;
static char* secret_buffer;

static int test_proc_open(struct inode *inode, struct file *file) {
return single_open(file, NULL, PDE_DATA(inode)); }

static ssize_t read_proc(struct file *filp, char *buffer, size_t length, loff_t *offset) {
memcpy(secret_buffer, &secret, 8);
return 8; }

static const struct file_operations test_proc_fops =
{ .owner = THIS_MODULE, .open = test_proc_open, .read = read_proc, .llseek = seq_lseek, .release = single_release, };

static __init int test_proc_init(void) {
printk("secret data address:%p\n", &secret);
secret_buffer = (char*)vmalloc(8);
secret_entry = proc_create_data("secret_data", 0444, NULL, &test_proc_fops, NULL);
if (secret_entry)

return 0;
return -ENOMEM; }

static __exit void test_proc_cleanup(void) {
remove_proc_entry("secret_data", NULL); }

module_init(test_proc_init);
module_exit(test_proc_cleanup);

SEED/usertest.c

int main()
{

char *kernel_data_addr = (char*)0xfb61b000;
char kernel_data = *kernel_data_addr;
printf("I have reached here.\n");
return 0;

}

SEED/ExceptionHandling.c
static sigjmp_buf jbuf;
static void catch_segv()
{

siglongjmp(jbuf, 1);
}

int main() {
long kernel_data_addr = 0xfb61b000;
signal(SIGSEGV, catch_segv);
if (sigsetjmp(jbuf, 1) == 0)
{

char kernel_data = *(char*)kernel_data_addr;
printf("Kernel data at address %lu is: %c\n", kernel_data_addr, kernel_data);

}
else
{

printf("Memory access violation!\n");
}

printf("Program continues to execute.\n");
return 0;

}

SEED/MeltdownExperiment.c
void meltdown(unsigned long kernel_data_addr)
{

char kernel_data = 0;
kernel_data = *(char*)kernel_data_addr;
array[kernel_data * 4096 + DELTA] += 1; }

static sigjmp_buf jbuf;
static void catch_segv() { siglongjmp(jbuf, 1); }

int main() {
signal(SIGSEGV, catch_segv);
flushSideChannel();

if (sigsetjmp(jbuf, 1) == 0)
{

meltdown(0xfb61b000); }
else{

printf("Memory access violation!\n");
}

reloadSideChannel();
return 0;

}

HW

https://seedsecuritylabs.org/Labs_20.04/Files/Meltdown_Attack/Meltdow
n_Attack.pdf

More examples on Out-of-order execution

data = 0;
if (x < size)

{
data = data + 5;
}

From out-of-order execution to speculative execution

The ability to issue instructions past branches that are yet to resolve is
known as speculative execution.

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative
execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed.

Work is done before it is known whether it is actually needed, so as to
prevent a delay that would have to be incurred by doing the work after it
is known that it is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

A design flaw leads to Spectre

Even though registers and memory will be reverted back to the
original state if the speculative execution is discarded, the cache
will not be reverted.

CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

If you want to be a system/software security guy …

This course

CSE 220 Systems
Programming

Operating Sys Compiler

Advanced Software
Security

Learn binary bugs/vulnerabilities and
manually exploit them

Automatically discover and exploit
vulnerabilities; advanced defense

Ready to read/understand
state-of-the-art papers/systems

From 410/510 to security research

● Other background knowledge
○ Static analysis
○ Fuzzing
○ Dynamic taint analysis
○ Symbolic execution

Static Analysis

LLVM

What is LLVM?

An open source framework for building tools
• Tools are created by linking together various libraries provided by the
LLVM project and your own

An extensible, strongly typed intermediate representation, i.e. LLVM IR
• https://llvm.org/docs/LangRef.html

An industrial strength C/C++ optimizing compiler
• Which you might know as clang/clang++ but these are really just drivers
that invoke different parts (libraries) of LLVM

https://llvm.org/docs/LangRef.html

2004 International Symposium on Code Generation and Optimization

LLVM

LLVM is written in C++; uses STL; vector, set and map

LLVM sources are hosted on GitHub
https://github.com/llvm/llvm-project

LLVM is split into multiple Git repositories
• For this class you will need the clang and llvm git repos

https://llvm.org/

https://github.com/llvm/llvm-project

Typical Compiler Flow

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

LLVM Flow

LLVM Flow

Clang/Clang++

Clang is a frontend for several C-family languages
● C and C++ being the most widely known

○ Supports C++11/14/17/20
● (Objective C/C++, OpenCL, CUDA< and RenderScript are the other

C-style languages actively developed)

LLVM IR / LLVM Instruction Set

The LLVM Intermediate Representation

Some characteristics of LLVM IR
● RISC-like instruction set (3 addresses; human readable, assembly

like)
● Strongly typed
● Explicit control flow
● Uses a virtual register set with infinite temporaries (%)
● In Static Single Assignment form
● Abstracts machine details such as calling conventions and stack

references

LLVM IR reference is online
• https://llvm.org/docs/LangRef.html

The LLVM Intermediate Representation

LLVM IR is actually defined in three isomorphic forms
● the textual format above
● an in-memory data structure inspected and modified by optimizations

themselves
● an efficient and dense on-disk binary "bitcode" format (.bc)

The LLVM Project also provides tools to convert the on-disk format from text to
binary
● llvm-as assembles the textual .ll file into a .bc file containing the bitcode

goop
● llvm-dis turns a .bc file into a .ll file.

Static Single Assignment (SSA) form

In compiler design, static single assignment form (often abbreviated as
SSA form or simply SSA) is a property of an intermediate representation
(IR), which requires that each variable be assigned exactly once, and
every variable be defined before it is used.

SSA was proposed by Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck in POPL 1988

https://en.wikipedia.org/w/index.php?title=Barry_Rosen_(computer_scientist)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mark_N._Wegman
https://en.wikipedia.org/w/index.php?title=F._Kenneth_Zadeck&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=F._Kenneth_Zadeck&action=edit&redlink=1

Static Single Assignment (SSA) form

y := 1
y := 2
x := y

y1 := 1
y2 := 2
x1 := y2

Not SSA SSA

Different Types of Passes in LLVM

● Levels of Granularity
○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important

for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for

debugging
○ Transform Pass - Mutates the program. ■ i.e. A side effect occurs, which

could invalidate other passes!

LLVM Program Structure

● Module contains Functions/GlobalVariables
○ Module is unit of compilation/analysis/optimization

● Function contains BasicBlocks/Arguments
○ Functions roughly correspond to functions in C

● BasicBlock contains list of instructions
○ Each block ends in a control flow instruction

● Instruction is opcode + vector of operands
○ All operands have types
○ Instruction result is typed

How to (automatically) Find Bugs?

● Manual code inspection - not automatically
○ peer-reviewing code before releasing it
○ pen testing

● Static program analyzers
○ automatically inspect code and flag unexpected code patterns

● Fuzzing
○ Fuzzing repeatedly executes an application with all kinds of input

variants (dynamic analysis)
○ most effective when applied to standalone applications
○ fuzzing does not generate false alarms

Static Dynamic

Unknown Vulnerability

known Vulnerability

Static
Analysis

Software
Composition

Dynamic
Analysis, e.g.
fuzzing

Scanners

What can be fuzzed? Everything!

Fuzzing all kinds of software applications as long as they take some kind
of input
● Documents
● Images
● Sensor reading, e.g. sound, temperature, etc.
● Videos
● Network packets
● Web pages

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

Types of Fuzzing

● Blackbox Fuzzing
○ randomly mutates well-formed application inputs, and then tests the

application with these modified inputs
● Grammar-Based Fuzzing

○ generates many new inputs satisfying the constraints encoded by a
grammar

● Whitebox Fuzzing
○ symbolically executing the program under test dynamically, gathering

constraints on inputs from conditional branches encountered along the
execution

Types of Fuzzing

● Generation 1: Random input or mutation (1950 - early 2000)
● Generation 2: Protocol/grammer/model fuzzing
● Generation 3: Coverage-based fuzzing

○ AFL, libfuzzer
● Generation 4: Symbolic execution

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

Dynamic Taint Analysis

● Dynamic analysis: monitor code as it executes
● It tracks information flow through a program at runtime between

sources and sinks
● It runs a program and observes which computations are affected by

predefined taint sources such as user input

Example Use Case

Unknown Vulnerability Detection.

Dynamic taint analysis can look for misuses of user input during an
execution. For example, dynamic taint analysis can be used to
prevent code injection attacks by monitoring whether user input is
executed

Operational Semantics

Dynamic Taint Analysis

● Any program value whose computation depends on data derived
from a taint source is considered tainted (denoted T)

● A taint policy P determines exactly how taint flows as a program
executes, what sorts of operations introduce new taint, and what
checks are performed on tainted values.

Dynamic Taint Policies

A taint policy specifies three properties:
● (Taint Introduction) how new taint is introduced to a program
● (Taint Propagation) how taint propagates as instructions execute
● (Taint Checking) how taint is checked during execution.

Dynamic Taint Analysis

● TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones

OSDI 2010
ACM Transactions on Computer Systems 2014

TaintDroid

● An extension to the Android mobile-phone platform that tracks the
flow of privacy-sensitive data through third-party applications

● TaintDroid assumes that downloaded, third-party applications are
not trusted, and monitors—in real-time—how these applications
access and manipulate users’ personal data

● detect when sensitive data leaves the system via untrusted
applications

Use Dynamic Taint Analysis

● Sensitive information is first identified at a taint source, where a taint
marking indicating the information type is assigned

● Dynamic taint analysis tracks how labeled data impacts other data in
a way that might leak the original sensitive information

● This tracking is often performed at the instruction level

● the impacted data is identified before it leaves the system at a taint
sink (usually the network interface)

Multilevel Taint Analysis

Android Background

Android is a Linux-based, open-source mobile-phone platform

Applications are written in Java and compiled to a custom bytecode
format known as Dalvik EXecutable (DEX)

Each application executes within its own Dalvik VM interpreter instance.
Each instance executes as a unique UNIX user identity to isolate
applications within the Linux platform

Applications communicate via the Binder IPC subsystem

Challenges

taint tag storage

interpreted code taint propagation

native code taint propagation

IPC taint propagation, and

secondary storage taint propagation

Interpreted Code Taint Propagation

Findings

Symbolic Execution

● Builds predicates that characterize
○ Conditions for executing paths
○ Effects of the execution on program state

● Bridges program behavior to logic
● Finds important applications in

○ program analysis
○ test data generation
○ formal verification (proofs) of program correctness

Symbolic state

Values are concrete but symbol and expressions over symbols
Executing statements computes new expressions

Challenges

● Symbolic Memory. What should we do when the analysis uses the µ
context — whose index must be a non-negative integer — with a
symbolic index?

● System Calls. How should our analysis deal with external interfaces
such as system calls?

● Path Selection. Each conditional represents a branch in the
program execution space. How should we decide which branches to
take?

Challenges

● Symbolic Memory. What should we do when the analysis uses the µ
context — whose index must be a non-negative integer — with a
symbolic index?

● System Calls. How should our analysis deal with external interfaces
such as system calls?

● Path Selection. Each conditional represents a branch in the
program execution space. How should we decide which branches to
take?

Challenges

● Symbolic Memory. What should we do when the analysis uses the µ
context — whose index must be a non-negative integer — with a
symbolic index?

● System Calls. How should our analysis deal with external interfaces
such as system calls?

● Path Selection. Each conditional represents a branch in the
program execution space. How should we decide which branches to
take?

