CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

This Class

1. ROP

2. Approaches to defeat ROP
a. Return-less code
b. Control-flow integrity (CFI)
C.

Rop2 (32 bit)

FILE* fp = O;
inta=0;

int vulfoo(int i)

{

}

char buf[200];
fp = fopen("/tmp/exploit", "r");
if (Ifp) {perror("fopen");exit(0);}

fread(buf, 1, 190, fp);

// Move the first 4 bytes to RET
*((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
a = *((unsigned int *)buf + 1);

// Move the second 4 bytes to eax
asm ("movl %0, %%eax"
:llrll(a)

)

int main(int argc, char *argv[])
{vulfoo(1); return 0;}

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret
pop rsp; ...; ret

Rop2 (32 bit)

FILE* fp = O;
inta=0;

int vulfoo(int i)

{

}

char buf[200];
fp = fopen("exploit", "r");
if (Ifp) {perror("fopen");exit(0);}

fread(buf, 1, 190, fp);

// Move the first 4 bytes to RET
*((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
a = *((unsigned int *)buf + 1);

// Move the second 4 bytes to eax
asm ("movl %0, %%eax"
:Ilrll(a)

)

int main(int argc, char *argv[])
{vulfoo(1); return 0;}

p += pack('<I', 0xf7e1a373) # 0xf7e1a373 : xchg eax, esp ; ret
p += pack('<I', Oxffffcf8c) # Move to EAX, so it will be exchanged with ESP; this is
buf+8

Generalize ROP to COP/JOP

Similarly, other indirect branch instructions, such as Call and Jump indirect can
be used to launch variant attacks - called COP (call oriented programming) or JOP
(jump oriented programming).

Defeating ROP/COP/JOP

kN =

How to pull off a ROP attack?

Subvert the control flow to the first gadget.

Control the content on the stack. Do not need to inject code there.
Enough gadgets in the address space.

Know the addresses of the gadgets.

Start execution anywhere (middle of instruction).

Ideas to defeat ROP/COP/JOP:
1. Shadow stack / control-flow integrity

Control-Flow Integrity
Principles, Implementations, and Applications

Martin Abadi
Computer Science Dept.
University of California
Santa Cruz

Mihai Budiu

ABSTRACT

Current software attacks often build on exploits that subvert ma-
chine-code execution. The enforcement of a basic safety property,
Control-Flow Integrity (CFI), can prevent such attacks from arbi-
trarily controlling program behavior. CFI enforcement is simple,
and its guarantees can be established formally, even with respect
to powerful adversaries. Moreover, CFI enforcement is practical:
it is compatible with existing software and can be done efficiently
using software rewriting in commodity systems. Finally, CFI pro-
vides a useful foundation for enforcing further security policies, as
we demonstrate with efficient software implementations of a pro-
tected shadow call stack and of access control for memory regions.

CCS 2005, Test of Time award 2015

Ulfar Erlingsson

Microsoft Research
Silicon Valley

Jay Ligatti
Dept. of Computer Science
Princeton University

bined effects of these attacks make them one of the most pressing
challenges in computer security.

In recent years, many ingenious vulnerability mitigations have
been proposed for defending against these attacks; these include
stack canaries [14], runtime elimination of buffer overflows [46],
randomization and artificial heterogeneity [41, 62], and tainting of
suspect data [55]. Some of these mitigations are widely used, while
others may be impractical, for example because they rely on hard-
ware modifications or impose a high performance penalty. In any
case, their security benefits are open to debate: mitigations are usu-
ally of limited scope, and attackers have found ways to circumvent
each deployed mitigation mechanism [42, 49, 61].

The limitations of these mechanisms stem, in part, from the lack

+—Subvertthe

eontret-How-to
the-firstgadget:
Control the
content on the
stack. Do not
need to inject
code there.
Enough gadgets
in the address
space.

Know the
addresses of the
gadgets.

Start execution
anywhere
(middle of
instruction).

Control Flow Integrity (CFI)

1. Control-Flow Integrity (CFI) restricts the control-flow of an program to valid execution
traces.

2. CFI enforces this property by monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid state is detected, an alert is
raised, usually terminating the application.

Any CFI mechanism consists of two abstract components: the (often static) analysis
component that recovers the Control-Flow Graph (CFG) of the application (at different

levels of precision) and the dynamic/run-time enforcement mechanism that restricts
control flows according to the generated CFG.

Direct call/jmp vs. Indirect call/jmp

The direct call/jmp uses an instruction call/jmp with a fixed address as argument. After
the compiler/linker has done its job, this address will be included in the opcode. The code

text is supposed to be read/executable only and not writable. So, direct call/jmp cannot be
subverted.

The indirect call/jmp uses an instruction call/jmp with a register as argument (call rax,

jmp rax). Function return (ret) is also considered as indirect because the target is not
hardcoded in the instruction.

Call or jmp is named forward-edge (at source code level map to e.g., switch statements,
indirect calls, or virtual calls.). The backward-edge is used to return to a location that was
used in a forward-edge earlier (return instruction).

Interrupts and interrupt returns.

void bar();
void baz();
void buz();
void bez(int, int);

void foo(int usr) {
void (*func)();

/I func either points to bar or baz
if (usr == MAGIC)

func = bar;
else

func = baz;

/l forward edge CFI check

// depending on the precision of CFI:

/[a) all functions {bar, baz, buz, bez, foo} are allowed

// b) all functions with prototype "void (*)()" are allowed, i.e., {bar, baz, buz}
// c) only address taken functions are allowed, i.e., {bar, baz}
CHECK_CFI_FORWARD(func);

func();

/I backward edge CFI check
CHECK_CFI_BACKWARD();

CFI Enforcement
Locations

https://nebelwelt.net/blog/20160913
-ControlFlowIntegrity.html

Ideas to defeat ROP: 2. ASLR

Subvert the control flow to the first gadget.
Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.

4—know-theaddressesofthe-gadgets:

5. Start execution anywhere (middle o
instruction).

N —

Ideas to defeat ROP: 3. Remove gadgets

G-Free: Defeating Return-Oriented Programming
through Gadget-less Binaries

Kaan Onarlioglu
Bilkent University, Ankara

onarliog@cs.bilkent.edu.tr

Davide Balzarotti
Eurecom, Sophia Antipolis
balzarotti@eurecom.fr

ABSTRACT

Despite the numerous prevention and protection mechanisms that
have been introduced into modern operating systems, the exploita-
tion of memory corruption vulnerabilities still represents a serious
threat to the security of software systems and networks. A re-
cent exploitation technique, called Return-Oriented Programming
(ROP), has lately attracted a considerable attention from academia.
Past research on the topic has mostly focused on refining the orig-
inal attack technique, or on proposing partial solutions that target
only particular variants of the attack.

In this paper, we present G-Free, a compiler-based approach that
renrecents the firet nractical ealntion acaingt anv nnccihle faorm of

Leyla Bilge
Eurecom, Sophia Antipolis
bilge@eurecom.fr

Andrea Lanzi
Eurecom, Sophia Antipolis
lanzi@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis
kirda@eurecom.fr

to find a technique to overwrite a pointer in memory. Overflowing
a buffer on the stack [5] or exploiting a format string vulnerabil-
ity [26] are well-known examples of such techniques. Once the
attacker is able to hijack the control flow of the application, the
next step is to take control of the program execution to perform
some malicious activity. This is typically done by injecting in the
process memory a small payload that contains the machine code to
perform the desired task.

A wide range of solutions have been proposed to defend against
memory corruption attacks, and to increase the complexity of per-
forming these two attack steps [10, 11, 12, 18, 35]. In particular,
all modern operating systems support some form of memory pro-

ACSAC 2010

RET?

x86 Instruction Set Reference

RET

Return from Procedure

m Mnemonic Description
C3 RET Near return to calling procedure.
CB RET Far return to calling procedure.
C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from stack.
CA iw RET imml6 Far return to calling procedure and pop imm16 bytes from stack.
E—
Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the stack by a CALL instruction, and the
return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; the default is none. This operand can be
used to release parameters from the stack that were passed to the called procedure and are no longer needed. It must be used when the CALL instruction
used to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Jump and call instructions may contain free-branch opcodes when
using immediate values to specify their destinations. For instance,
jmp .+0xc8isencodedas “Oxe9 0xc3 0x00 0x00 0x00”.

A free-branch opcode can appear at any of the four bytes con-
stituting the jump/call target. If the opcode is the least significant
byte, it 1s sufficient to append the forward jump/call with a single
nop instruction (or prepend it if it 1s a backwards jump/call) in or-
der to adjust the relative distance between the instruction and its
destination:

jmp .+0xc9

jmp .+0xc8 = nop

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

addl $0xc2,

xorb S50xca,

addl $0xcl, $%eax
inc %eax

movb $0xc9, %bl
incb %bl
xorb %$bl, %al

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Instructions that perform memory accesses can also contain free-
branch instruction opcodes in the displacement values they specify
(e.g.,movb %al, -0x36 (%ebp) representedas “0x88 0x45
Oxca”). In such cases, we need to substitute the instruction with a
semantically equivalent instruction sequence that uses an adjusted
displacement value to avoid the undesired bytes. We achieve this by
setting the displacement to a safe value and then compensating for
our changes by temporarily adjusting the value in the base register.
For example, we can perform a reconstruction such as:

incl %ebp
movb $0xal, -0x36(%ebp) = movb %al, -0x37 (%ebp)
decl %ebp

Ideas to defeat ROP: 3. Remove gadgets

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.

3—FEreugheadgetsintheaddressspace:

4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of
instruction).

Ideas to defeat ROP: 4. Monitor CFI

Transparent ROP Exploit Mitigation using Indirect Branch Tracing

Vasilis Pappas, Michalis Polychronakis, Angelos D. Keromytis
Columbia University

Abstract

Return-oriented programming (ROP) has become the
primary exploitation technique for system compromise
in the presence of non-executable page protections. ROP
exploits are facilitated mainly by the lack of complete
address space randomization coverage or the presence
of memory disclosure vulnerabilities, necessitating ad-
ditional ROP-specific mitigations.

In this paper we present a practical runtime ROP ex-

bypassing the data execution prevention (DEP) and ad-
dress space layout randomization (ASLR) protections of
Windows [49], even on the most recent and fully updated
(at the time of public notice) systems.

Data execution prevention and similar non-executable
page protections [55], which prevent the execution of in-
jected binary code (shellcode), can be circumvented by
reusing code that already exists in the vulnerable pro-
cess to achieve the same purpose. Return-oriented pro-
erammine (ROP) [621. the latest advancement in the

USENIX Security 2013

kBouncer: Efficient and Transparent ROP Mitigation

Vasilis Pappas
Columbia University
vpappas@cs.columbia.edu

April 1, 2012

Abstract

The wide adoption of non-executable page protections in recent versions of popular operating systems
has given rise to attacks that employ return-oriented programming (ROP) to achieve arbitrary code
execution without the injection of any code. Existing defenses against ROP exploits either require
source code or symbolic debugging information, impose a significant runtime overhead, which limits their
applicability for the protection of third-party applications, or may require to make some assumptions
about the executable code of the protected applications. We propose kBouncer, an efficient and fully
transparent ROP mitigation technique that does not requires source code or debug symbols. kBouncer is
based on runtime detection of abnormal control transfers using hardware features found on commodity
processors.

1 Problem Description

The introduction of non-executable memory page protections led to the development of the return-to-libc
exploitation technique [11]. Using this method, a memory corruption vulnerability can be exploited by
transferring control to code that already exists in the address space of the vulnerable process. By jumping

Ideas to defeat ROP: 5. Indirect Branch Tracking

All indirect branch targets must start with
ENDBR64/ENDBR32.

* ENDBR64/ENDBR32 is NOP on non-CET processors.

080493b8 < fini>:

80493b8:
80493bc:
80493bd:
80493c0:
80493c5:
80493ch:
80493ce:
80493cf;

f3 of 1e fb

53

83 ec 08

e8 8b fd ff ff

81 c3 3b 2c 00 00
83 c4 08

5b

=

endbr32

push %ebx

sub SOx8,%esp

call 8049150 <_ x86.get_pc_thunk.bx>
add S0x2c3b,%ebx

add SOx8,%esp

pop %ebx

ret

CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Today

1. Heap and heap exploitation

Memory Map of Linux Process (32 bit system)

1GB //f
L

3GB

~

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

The Heap

The heap is pool of memory used for dynamic allocations at runtime.
Heap memory is different from stack memory in that it is persistent
between functions.

- malloc() grabs memory on the heap; keyword new in C++
- free() releases memory on the heap; keyword delete in C++

Both are standard C library interfaces. Neither of them directly mapps to
a system call.

malloc() and free()

void* malloc(size t size);

Allocates size bytes of uninitialized storage. If allocation
succeeds, returns a poilnter that is suitably aligned for any
object type with fundamental alignment.

void free(void* ptr);

Deallocates the space previously allocated by malloc(), etc.

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

calloc() and realloc()

void *calloc(size t nitems, size t size)

The difference in malloc and calloc 1s that malloc does not
set the memory to zero whereas calloc sets allocated memory
to zero.

volid *realloc(void *ptr, size t size)

Resize the memory block pointed to by ptr that was
previously allocated with a call to malloc or calloc.

How to use malloc() and free()

int main()

{
char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s\n", buffer);

/* destroy our dynamically allocated buffer */
free(buffer);

return O;

Heap vs. Stack

Heap
e Dynamic memory
allocations at runtime

e Objects, big buffers,
structs, persistence,
larger things

Slower, Manual

- Done by the programmer
- malloc/calloc/recalloc/free
- new/delete

Stack
e Fixed memory allocations
known at compile time

e Local variables, return
addresses, function args

Fast, Automatic; Done by the
compiler

- Abstracts away any concept
of allocating/de-allocating

Heap Implementations

Doug Lea malloc or dimalloc. Default native version of malloc in some old
distributions of Linux (http://gee.cs.oswego.edu/dl/html/malloc.html)

ptmalloc. ptmalloc is based on dimalloc and was extended for use with multiple
threads. On Linux systems, ptmalloc has been put to work for years as part of the
GNU C library.

tcmalloc. Google's customized implementation of C's malloc() and C++'s
operator new (https://github.com/google/tcmalloc)

jemalloc. jemalloc is a general purpose malloc(3) implementation that
emphasizes fragmentation avoidance and scalable concurrency support.

The Hoard memory allocator. UMass Amherst CS Professor Emery Berger

http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc

Which implementation on my laptop?

ldd --version
GLIBC 2.31
Ptmalloc2

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

ldd --version
1dd (Ubuntu GLIBC 2.31-0Oubuntu9.2) 2.31
Copyright (C) 2020 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Written by Roland McGrath and Ulrich Drepper.

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Overview of dimalloc

The Linux version of the dynamic memory allocator. Even though it has been updated,
from the point of view of software infused bugs and exploits, new versions are still more or
less similar to the original one.

Design goals:

Maximizing Portability To rely on as few system-dependent features as possible, system
calls in particular.

Minimizing Space The allocator should not waste memory. It should obtain the least
amount of memory from the system it requires, and should maintain memory in ways that
minimize fragmentation—that is, it should try to avoid creating a large number of
contiguous chunks of memory that are not used by the program.

Minimizing Time The malloc(), free(), and realloc calls should be fast on average.

Overview of dimalloc

The Linux version of the dynamic memory allocator. Even though it has been updated,
from the point of view of software infused bugs and exploits, new versions are still more or
less similar to the original one.

Design goals:

Maximizing Locality Allocate chunks of memory that are typically requested or used
together near each other.This will help minimize CPU page and cache misses.

Maximizing Error Detection Should provide some means for detecting corruption due to
overwriting memory, multiple frees, and so on. It is not supposed to work as a general
memory leak detection tool at the cost of slowing down.

Minimizing Anomalies It should have reasonably similar performance characteristics
across a wide range of possible applications whether they are GUI or server programs,
string processing applications, or network tools.

Malloc_chunk (ptmalloc2 in glibc2.31)

struct malloc_chunk { Both in-use and freed
INTERNAL SIZE T mchunk prev_size; * Size of previous chunk (if free). x/
INTERNAL SIZE T mchunk_size; * Size in bytes, including overhead. */
struct malloc_chunk* £d; /* double links -- used only if free. */
struct malloc_chunk* bk;
Only for freed
/* Only used for large blocks: pointer to next larger size. */
struct malloc_chunk* fd nextsize; /* double links -- used only if free. */

struct malloc_chunk* bk_nextsize;
b

INTERNAL_SIZE T is the same as size_t. 8 bytes in 64 bit;
4 bytes in 32 bits machine.
Pointer is 8/4 bytes on a 64/32 bit machine, respectively.

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T

Heap Chunks (figures in 32 bit)

buffer = malloc(0x100);
//0ut comes a heap chunk

Previous Chunk Size: Size of previous chunk (if prev chunk is free)
: Size of entire chunk including overhead
Data: Your newly allocated memory / ptr returned by malloc
Flags: Because of byte alignment, the lower 3 bits of the chunk size field would always be
zero. Instead they are used for flag bits.
0x01 PREV_INUSE - set when previous chunk is in use
0x02 IS_MMAPPED - set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA - set if chunk belongs to a thread arena

Heap Chunk

Previous Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1) *buffer

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

malloc(32);
malloc(4);
malloc(20);
malloc(0);

code/heapsizes

int main()

{
unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};
unsigned int * ptr[10];

inti;

for(i=0;i<10; i++)
ptr[i] = malloc(lengths]i]);

for(i=0;i<9;i++)
printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",
lengthsli],
(unsigned int)ptr]i],
(ptr[i+1]-ptrli])*sizeof(unsigned int));

return 0;} https://github.com/RPISEC/MBE/bl

ob/master/src/lecture/heap/sizes.c

Heap goes from low address to high address

1GB //f
L

3GB

~

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

code/heapsizes

int main()

{
unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32}; H

unsigned int * ptr[10]; N
int i;

for(i=0;i<10; i++)
ptr[i] = malloc(lengthsii]);

for(i=0;i<9;i++)
printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

lengthsli],

(unsigned int)ptr{i],
(ptr[i+1]-ptr[i])*sizeof(unsigned int));

return 0;}

code/heapsizes 32bit

H
Chunk 4 - Buf
[Chunk 4 - Chunk Size (4)
32 Chunk 4 - Previo Size (4)
. /heapsizes32
malloc(32) is at 0x5695b1a0, pointer | Chunk 3 - Buf (24)
malloc(4) is at 0x5695b1do, pointer
is at ©x5695bie@, pointer " Chunk 3 - Chunk Size (4)
at 0x5695b200, pointer o
at ©x5695b210, pointer 16 Chunk 3 - Previo Size (4)
malloc(32) is at 0x5695b260, pointer
malloc(32) is at ©x5695b290, pointer l Chunk 2 - Buf (8)
malloc(32) is at 0x5695b2coO, pointer
malloc(32) is at @x5695b2f0, pointer ' Chunk 2 - Chunk Size (4)
Chunk 2 - Previo Size (4
48 @
| Chunk 1 - Buf (40)
Chunk 1 - Chunk Size (4)

L Chunk 1 - Previo Size (4)

code/heapsizes 64bit

. /heapsizes

at 0xc91e02a0, pointer
at 0xc91e02d0O, pointer
at Oxc91e02f0, pointer
at Oxc91e0310, pointer

at 0xc91e0330, pointer
at 0xc91e0380, pointer
at 0xc91e03bo, pointer
at Oxc91e03e0, pointer
at 0xc91e0410, pointer

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

malloc(32); 48 bytes (32bit/64bit)
malloc(4); 16 bytes (32bit) / 32 bytes (64bit)
malloc(20); 32 bytes (32bit/64bit)
malloc(0); 16 bytes (32bit) / 32 bytes (64bit)

prev_size

chunk A,
being freed size
A,
user data
prev_size
chunk B, size
free PREV_INUSE=1
fd bk
unused
chunk C prev_size
allocated size
C PREV_INU SE=0

data

chunk Awillbe

forward consolidated

with B

code/heapchunks

void print_chunk(size_t * ptr, unsigned int len)
{

printf("[prev - 0x%08x][size - 0x%08x][data buffer (0x%08x) ------- >..]-from
malloc(%d)\n", *(ptr-2), *(ptr-1), (unsigned int)ptr, len);}

int main()

{
void * ptr[LEN];
unsigned int lengths[] = {0, 4, 8, 16, 24, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};
inti;

printf("mallocing...\n");

for(i = 0; i < LEN; i++)
ptr[il = malloc(lengthsi]);

for(i = 0; i < LEN: i++) Extended from
print_chunk(ptr{il, lengths[il) https://github.com/RPISEC/MBE/bl
return 0} ob/master/src/lecture/heap/heap_c

hunks.c

. /heapchunks32

mallocing...

[prev - 0x00000000][size - Ox00000011][data buffer (0x57b665bO) ------- > ...] - from malloc(0)

[prev - 0x00000000][size - Ox00000011][data buffer (©6x57b665cO) ------- > ...] - from malloc(4)

[prev - 0x00000000][size - Ox00000011][data buffer (0x57b665d0) ------- > ...] - from malloc(8)

[prev - 0x00000000][size - 0x00000021][data buffer (0x57b665e0) ------- > ...] - from malloc(16)

[prev - 0x00000000][size - Ox00000021][data buffer (06x57b666600) ------- > ...] - from malloc(24)

[prev - 0x00000000][size - Ox00000031][data buffer (0x57b66620) ------- > ...] - from malloc(32)

[prev - 0x00000000][size - Ox00000051][data buffer (0x57b66650) ------- > ...] - from malloc(64)

[prev - 0x00000000][size - Ox00000091][data buffer (0x57b666a0@) ------- > ...] - from malloc(128)

[prev - 0x00000000][size - Ox00000111][data buffer (06x57b66730) ------- > ...] - from malloc(256)

[prev - 0x00000000][size - Ox00000211][data buffer (06x57b66840) ------- > .] - from malloc(512)

[prev - 0x00000000][size - Ox00000411][data buffer (0x57b66a50) ------- > ...] - from malloc(1024)

[prev - 0x00000000][size - 0x00000811][data buffer (0x57b66e60) ------- > ...] - from malloc(2048)

[prev - 0x00000000][size - Ox00001011][data buffer (0x57b67670) ------- > ...] - from malloc(4096)

[prev - 0x00000000][size - Ox00002011][data buffer (0x57b68680) ------- > ...] - from malloc(8192)

[prev - 0x00000000][size - Ox00004011][data buffer (0x57b6a690) ------- > ...] - from malloc(16384)
. /heapchunks

mallocing...

[prev - 0x00000000][size - Ox00000021][data buffer (06x665046b0) ------- > ...] - from malloc(0)

[prev - 0x00000000][size - Ox00000021][data buffer (0x665046d0) ------- > ...] - from malloc(4)

[prev - 0x00000000][size - Ox00000021][data buffer (0x665046f0) ------- > ...] - from malloc(8)

[prev - 0x00000000][size - Ox00000021][data buffer (0x66504710) ------- > ...] - from malloc(16)

[prev - 0x00000000][size - 0x00000021][data buffer (0x66504730) ------- > ...] - from malloc(24)

[prev - 0x00000000][size - Ox00000031][data buffer (0x66504750) ------- > ...] - from malloc(32)

[prev - 0x00000000][size - Ox00000051][data buffer (0x66504780) ------- > ...] - from malloc(64)

[prev - 0x00000000][size - Ox00000091][data buffer (0x665047dO) ------- > ...] - from malloc(128)

[prev - 0x00000000][size - Ox00000111][data buffer (0x66504860) ------- > ...] - from malloc(256)

[prev - 0x00000000][size - Ox00000211][data buffer (0x66504970) ------- > ...] - from malloc(512)

[prev - 0x00000000][size - Ox00000411][data buffer (0x66504b80) ------- > ...] - from malloc(1024)

[prev - 0x00000000][size - Ox00000811][data buffer (0x66504f90) ------- > ...] - from malloc(2048)

[prev - 0x00000000][size - 0x00001011][data buffer (0x665057a0) ------- > ...] - from malloc(4096)

[prev - 0x00000000][size - Ox00002011][data buffer (0x665067b0) ------- > ...] - from malloc(8192)

[prev - 0x00000000][size - 0x00004011][data buffer (0x665087c®) ------- > ...] - from malloc(16384)

Heap Chunks - Two states (figures in 32 bit)

Heap chunks exist in two states
- in use (malloc'd)

Heap Chunk

Previous Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1) *buffer

- free'd. Heap Chunk (freed)

Forward Pointer: A pointer

to the next freed chunk Previous Chunk Size FD BK
Backwards Pointer: A (4 bytes) (4 bytes) (4 bytes)

pointer to the previous

freed chunk
Implementation-defined. *(buffer-2) *(buffer-1) *buffer *(buffer+l)

code/heapfrees

void print_inuse_chunk(unsigned int * ptr)
{
printf("[prev - 0x%08x][size - 0x%08x][data buffer

(0x%08x) ----> ...] - Chunk 0x%08x - In use\n", \

*(ptr-2),

*(ptr-1),

(unsigned int)ptr,

(unsigned int)(ptr-2));

void print_freed_chunk(unsigned int * ptr)
{
printf("[prev - 0x%08x][size - 0x%08x][fd - 0x%08x][bk -

0x%08x] - Chunk 0x%08x - Freed\n", \

*(ptr-2),

*(ptr-1),

*ptr,

*(ptr+1),

(unsigned int)(ptr-2));

int main()

{
unsigned int * ptr[LEN];
unsigned int lengths[] = {32, 32, 32, 32, 32}; int j;

printf("mallocing...\n");
for(i = 0; i < LEN; i++)
ptr[i] = malloc(lengthsi]);

for(i = 0; i < LEN; i++)
print_inuse_chunk(ptr[i]);

printf("\nfreeing all chunks...\n");
for(i=0; i < LEN; i++)

free(ptrli]);

for(i=0; i < LEN; i++)
print_freed_chunk(ptrlil);

return 0;}

Take away

The strength and popularity of heap overflow exploits comes from the way
specific memory allocation functions are implemented within the individual
programming languages and underlying operating platforms.

Many common implementations store control data in-line together with the
actual allocated memory.

