
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

This Class

1. ROP
2. Approaches to defeat ROP

a. Return-less code
b. Control-flow integrity (CFI)
c. ...

Rop2 (32 bit)
FILE* fp = 0;
int a = 0;

int vulfoo(int i)
{
 char buf[200];
 fp = fopen("/tmp/exploit", "r");
 if (!fp) {perror("fopen");exit(0);}

 fread(buf, 1, 190, fp);

 // Move the first 4 bytes to RET
 *((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
 a = *((unsigned int *)buf + 1);

 // Move the second 4 bytes to eax
 asm ("movl %0, %%eax"
 :
 :"r"(a)
);
}

int main(int argc, char *argv[])
{ vulfoo(1); return 0;}

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret

pop rsp; ...; ret

Rop2 (32 bit)
FILE* fp = 0;
int a = 0;

int vulfoo(int i)
{
 char buf[200];
 fp = fopen("exploit", "r");
 if (!fp) {perror("fopen");exit(0);}

 fread(buf, 1, 190, fp);

 // Move the first 4 bytes to RET
 *((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
 a = *((unsigned int *)buf + 1);

 // Move the second 4 bytes to eax
 asm ("movl %0, %%eax"
 :
 :"r"(a)
);
}

int main(int argc, char *argv[])
{ vulfoo(1); return 0;}

p += pack('<I', 0xf7e1a373) # 0xf7e1a373 : xchg eax, esp ; ret
p += pack('<I', 0xffffcf8c) # Move to EAX, so it will be exchanged with ESP; this is
buf+8
…

Generalize ROP to COP/JOP

Similarly, other indirect branch instructions, such as Call and Jump indirect can
be used to launch variant attacks - called COP (call oriented programming) or JOP
(jump oriented programming).

Defeating ROP/COP/JOP

How to pull off a ROP attack?

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of instruction).

Ideas to defeat ROP/COP/JOP:
1. Shadow stack / control-flow integrity

CCS 2005, Test of Time award 2015

1. Subvert the
control flow to
the first gadget.

2. Control the
content on the
stack. Do not
need to inject
code there.

3. Enough gadgets
in the address
space.

4. Know the
addresses of the
gadgets.

5. Start execution
anywhere
(middle of
instruction).

Control Flow Integrity (CFI)

1. Control-Flow Integrity (CFI) restricts the control-flow of an program to valid execution
traces.

2. CFI enforces this property by monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid state is detected, an alert is
raised, usually terminating the application.

Any CFI mechanism consists of two abstract components: the (often static) analysis
component that recovers the Control-Flow Graph (CFG) of the application (at different
levels of precision) and the dynamic/run-time enforcement mechanism that restricts
control flows according to the generated CFG.

Direct call/jmp vs. Indirect call/jmp

The direct call/jmp uses an instruction call/jmp with a fixed address as argument. After
the compiler/linker has done its job, this address will be included in the opcode. The code
text is supposed to be read/executable only and not writable. So, direct call/jmp cannot be
subverted.

The indirect call/jmp uses an instruction call/jmp with a register as argument (call rax,
jmp rax). Function return (ret) is also considered as indirect because the target is not
hardcoded in the instruction.

Call or jmp is named forward-edge (at source code level map to e.g., switch statements,
indirect calls, or virtual calls.). The backward-edge is used to return to a location that was
used in a forward-edge earlier (return instruction).

Interrupts and interrupt returns.

void bar();
void baz();
void buz();
void bez(int, int);

void foo(int usr) {
 void (*func)();

 // func either points to bar or baz
 if (usr == MAGIC)
 func = bar;
 else
 func = baz;

 // forward edge CFI check
 // depending on the precision of CFI:
 // a) all functions {bar, baz, buz, bez, foo} are allowed
 // b) all functions with prototype "void (*)()" are allowed, i.e., {bar, baz, buz}
 // c) only address taken functions are allowed, i.e., {bar, baz}
 CHECK_CFI_FORWARD(func);
 func();

 // backward edge CFI check
 CHECK_CFI_BACKWARD();
} https://nebelwelt.net/blog/20160913

-ControlFlowIntegrity.html

CFI Enforcement
Locations

Ideas to defeat ROP: 2. ASLR

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of

instruction).

Ideas to defeat ROP: 3. Remove gadgets

ACSAC 2010

RET?

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of

instruction).

Ideas to defeat ROP: 3. Remove gadgets

USENIX Security 2013

Ideas to defeat ROP: 4. Monitor CFI

Ideas to defeat ROP: 5. Indirect Branch Tracking

All indirect branch targets must start with
ENDBR64/ENDBR32.

• ENDBR64/ENDBR32 is NOP on non-CET processors.

CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Today

1. Heap and heap exploitation

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

The Heap

The heap is pool of memory used for dynamic allocations at runtime.
Heap memory is different from stack memory in that it is persistent
between functions.

– malloc() grabs memory on the heap; keyword new in C++
– free() releases memory on the heap; keyword delete in C++

Both are standard C library interfaces. Neither of them directly mapps to
a system call.

malloc() and free()

void* malloc(size_t size);

Allocates size bytes of uninitialized storage. If allocation
succeeds, returns a pointer that is suitably aligned for any
object type with fundamental alignment.

void free(void* ptr);

Deallocates the space previously allocated by malloc(), etc.

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

calloc() and realloc()

void *calloc(size_t nitems, size_t size)

The difference in malloc and calloc is that malloc does not
set the memory to zero whereas calloc sets allocated memory
to zero.

void *realloc(void *ptr, size_t size)

Resize the memory block pointed to by ptr that was
previously allocated with a call to malloc or calloc.

How to use malloc() and free()

int main()
{

char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s!\n”, buffer);

/* destroy our dynamically allocated buffer */
free(buffer);
return 0;

}

Heap vs. Stack

Heap
● Dynamic memory

allocations at runtime

● Objects, big buffers,
structs, persistence,
larger things

Slower, Manual
– Done by the programmer
– malloc/calloc/recalloc/free
– new/delete

Stack
● Fixed memory allocations

known at compile time

● Local variables, return
addresses, function args

Fast, Automatic; Done by the
compiler
– Abstracts away any concept
of allocating/de-allocating

Heap Implementations

Doug Lea malloc or dlmalloc. Default native version of malloc in some old
distributions of Linux (http://gee.cs.oswego.edu/dl/html/malloc.html)

ptmalloc. ptmalloc is based on dlmalloc and was extended for use with multiple
threads. On Linux systems, ptmalloc has been put to work for years as part of the
GNU C library.

tcmalloc. Google's customized implementation of C's malloc() and C++'s
operator new (https://github.com/google/tcmalloc)

jemalloc. jemalloc is a general purpose malloc(3) implementation that
emphasizes fragmentation avoidance and scalable concurrency support.

The Hoard memory allocator. UMass Amherst CS Professor Emery Berger

http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc

Which implementation on my laptop?

ldd --version

GLIBC 2.31

Ptmalloc2

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Overview of dlmalloc

The Linux version of the dynamic memory allocator. Even though it has been updated,
from the point of view of software infused bugs and exploits, new versions are still more or
less similar to the original one.

Design goals:

Maximizing Portability To rely on as few system-dependent features as possible, system
calls in particular.

Minimizing Space The allocator should not waste memory. It should obtain the least
amount of memory from the system it requires, and should maintain memory in ways that
minimize fragmentation—that is, it should try to avoid creating a large number of
contiguous chunks of memory that are not used by the program.

Minimizing Time The malloc(), free(), and realloc calls should be fast on average.

Overview of dlmalloc

The Linux version of the dynamic memory allocator. Even though it has been updated,
from the point of view of software infused bugs and exploits, new versions are still more or
less similar to the original one.

Design goals:

Maximizing Locality Allocate chunks of memory that are typically requested or used
together near each other.This will help minimize CPU page and cache misses.

Maximizing Error Detection Should provide some means for detecting corruption due to
overwriting memory, multiple frees, and so on. It is not supposed to work as a general
memory leak detection tool at the cost of slowing down.

Minimizing Anomalies It should have reasonably similar performance characteristics
across a wide range of possible applications whether they are GUI or server programs,
string processing applications, or network tools.

Malloc_chunk (ptmalloc2 in glibc2.31)

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

struct malloc_chunk {

 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */
 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */
 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
 struct malloc_chunk* bk_nextsize;
};

INTERNAL_SIZE_T is the same as size_t. 8 bytes in 64 bit;
4 bytes in 32 bits machine.
Pointer is 8/4 bytes on a 64/32 bit machine, respectively.

Both in-use and freed

Only for freed

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T

Heap Chunks (figures in 32 bit)
buffer = malloc(0x100);

//Out comes a heap chunk

Previous Chunk Size: Size of previous chunk (if prev chunk is free)
Chunk Size: Size of entire chunk including overhead
Data: Your newly allocated memory / ptr returned by malloc
Flags: Because of byte alignment, the lower 3 bits of the chunk size field would always be
zero. Instead they are used for flag bits.
0x01 PREV_INUSE – set when previous chunk is in use
0x02 IS_MMAPPED – set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32);
● malloc(4);
● malloc(20);
● malloc(0);

code/heapsizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;} https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/sizes.c

Heap goes from low address to high address

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

code/heapsizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;}

Chunk 10

...

H

L

Chunk 3

Chunk 2

Chunk 1

code/heapsizes 32bit

H

L

Chunk 1 - Buf (40)

Chunk 1 - Chunk Size (4)

Chunk 1 - Previo Size (4)

Chunk 2 - Buf (8)

Chunk 2 - Chunk Size (4)

Chunk 2 - Previo Size (4)

Chunk 3 - Buf (24)

Chunk 3 - Chunk Size (4)

Chunk 3 - Previo Size (4)

Chunk 4 - Buf

Chunk 4 - Chunk Size (4)

Chunk 4 - Previo Size (4)

48

16

32

code/heapsizes 64bit

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32); 48 bytes (32bit/64bit)
● malloc(4); 16 bytes (32bit) / 32 bytes (64bit)
● malloc(20); 32 bytes (32bit/64bit)
● malloc(0); 16 bytes (32bit) / 32 bytes (64bit)

code/heapchunks

void print_chunk(size_t * ptr, unsigned int len)

{

 printf("[prev - 0x%08x][size - 0x%08x][data buffer (0x%08x) -------> ...] - from

malloc(%d)\n", *(ptr-2), *(ptr-1), (unsigned int)ptr, len);}

int main()

{

 void * ptr[LEN];

 unsigned int lengths[] = {0, 4, 8, 16, 24, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};

 int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_chunk(ptr[i], lengths[i]);

 return 0;}

Extended from
https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/heap_c
hunks.c

Heap Chunks – Two states (figures in 32 bit)

Heap chunks exist in two states
– in use (malloc’d)

– free’d.
Forward Pointer: A pointer
to the next freed chunk
Backwards Pointer: A
pointer to the previous
freed chunk
Implementation-defined.

code/heapfrees
void print_inuse_chunk(unsigned int * ptr)

{

 printf("[prev - 0x%08x][size - 0x%08x][data buffer

(0x%08x) ----> ...] - Chunk 0x%08x - In use\n", \

 *(ptr-2),

 *(ptr-1),

 (unsigned int)ptr,

 (unsigned int)(ptr-2));

}

void print_freed_chunk(unsigned int * ptr)

{

 printf("[prev - 0x%08x][size - 0x%08x][fd - 0x%08x][bk -

0x%08x] - Chunk 0x%08x - Freed\n", \

 *(ptr-2),

 *(ptr-1),

 *ptr,

 *(ptr+1),

 (unsigned int)(ptr-2));

}

int main()

{

 unsigned int * ptr[LEN];

 unsigned int lengths[] = {32, 32, 32, 32, 32}; int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_inuse_chunk(ptr[i]);

 printf("\nfreeing all chunks...\n");

 for(i = 0; i < LEN; i++)

 free(ptr[i]);

 for(i = 0; i < LEN; i++)

 print_freed_chunk(ptr[i]);

 return 0;}

Take away

The strength and popularity of heap overflow exploits comes from the way
specific memory allocation functions are implemented within the individual
programming languages and underlying operating platforms.

Many common implementations store control data in-line together with the
actual allocated memory.

