
CSE 703 Seminar:
Advanced Software Security - Techniques and

Tools

Instructor: Dr. Ziming Zhao

Location: Online
Time: Monday, 12:50 PM-2:55 PM

Writing LLVM Passes

Passes

● LLVM applies a chain of analyses and transformations to the target program
● Each of these analyses or transformations is called a pass

● Machine-independent passes are invoked by opt
● Machine-dependant passes are invoked by llc

● A pass may require information provided by other passes. Dependencies
must be explicitly stated. A transformation pass may require an analysis
pass.

Types of Passes

A pass is an instance of the LLVM class Pass.

LLVM Coding Basics

● Written in modern C++, uses the STL:
○ Particularly the vector, set, and map classes

● LLVM IR is almost all doubly-linked lists:
○ Module contains lists of Functions & GlobalVariables
○ Function contains lists of BasicBlocks & Arguments
○ BasicBlock contains list of Instructions

● Linked lists are traversed with iterators:
Function *M = …
for (Function::iterator I = M->begin(); I != M->end(); ++I) {
 BasicBlock &BB = *I;
 ... See also: docs/ProgrammersManual.html

LLVM Pass Manager

● Compiler is organized as a series of ‘passes’:
○ Each pass is one analysis or transformation

● Four types of Pass:
○ ModulePass: general interprocedural pass
○ CallGraphSCCPass: bottom-up on the call graph
○ FunctionPass: process a function at a time
○ BasicBlockPass: process a basic block at a time

● Constraints imposed (e.g. FunctionPass):
○ FunctionPass can only look at “current function”
○ Cannot maintain state across functions

See also: docs/WritingAnLLVMPass.html

Services provided by PassManager

● Optimization of pass execution:
○ Process a function at a time instead of a pass at a time
○ Example: If F, G, H are three functions in input pgm: “FFFFGGGGHHHH”

not “FGHFGHFGHFGH”
○ Process functions in parallel on an SMP (future work)

● Declarative dependency management:
○ Automatically fulfill and manage analysis pass lifetimes
○ Share analyses between passes when safe:

■ e.g. “DominatorSet live unless pass modifies CFG”

● Avoid boilerplate for traversal of program

See also:
docs/WritingAnLLVMPass.html

HelloWorld Pass
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"

using namespace llvm;

namespace {
struct Hello : public FunctionPass {
 static char ID;
 Hello() : FunctionPass(ID) {}

 bool runOnFunction(Function &F) override {
 errs() << "Hello: ";
 errs().write_escaped(F.getName()) << '\n';
 return false;
 }
}; // end of struct Hello
} // end of anonymous namespace

char Hello::ID = 0;
static RegisterPass<Hello> X("hello", "Hello World Pass",
 false /* Only looks at CFG */,
 false /* Analysis Pass */);

static RegisterStandardPasses Y(
 PassManagerBuilder::EP_EarlyAsPossible,
 [](const PassManagerBuilder &Builder,

 legacy::PassManagerBase &PM) { PM.add(new Hello()); });

LLVM Dataflow Analysis

● LLVM IR is in SSA form:
○ use-def and def-use chains are always available
○ All objects have user/use info, even functions

● Control Flow Graph is always available:
○ Exposed as BasicBlock predecessor/successor lists
○ Many generic graph algorithms usable with the CFG

● Higher-level info implemented as passes:
○ Dominators, CallGraph, induction vars, aliasing, GVN, …

See also:
docs/ProgrammersManual.html

Homework

● Read “llvm: a compilation framework for lifelong program analysis &
transformation” 2014

● Read “SoK: Sanitizing for Security”. Oakland 2019

