CSE 703 Seminar:
Advanced Software Security - Techniques and
Tools

Instructor: Dr. Ziming Zhao

Location: Online
Time: Monday, 12:50 PM-2:55 PM

First off, Logistics!

Turn on camera if possible

Classes are recorded and can be accessed with an UB account

Webpage: https://zzm7000.github.io/teaching/2021springcse703/index.html
Feel free to interrupt me and ask questions

Eat or drink if you need

Instructor

Dr. Ziming Zhao
Assistant Professor, CSE
Director, CyberspAce seCuriTy and forenslcs Lab (CactiLab)

Email: zimingzh@buffalo.edu
http://zzm7000.github.io
http://cactilab.github.io

Office: 338B Davis Hall / Online
Office hours: By appointment

5= YN =

Agenda

Course overview

How to do cybersecurity research?

How to do software and system security research?
Topic 1: Reverse engineering

Course Overview

Course Goals

Introduce you to cybersecurity research.
Introduce you to software security research.
Teach you how to read papers.

Teach you how to give good paper presentations.

Teach you how to write good paper reviews.

Course Format

Lecture by the instructor
e Background knowledge
e Demonstrate tools

Paper presentations
e One student will be presenting and leading the discussion.

Course Topics and Class Schedule

On the website

Also take a look at
https://zzm7000.github.io/teaching/2020fallcse610/index.html

Paper Presentations

Each student will present 2 papers from the reading list. To
better prepare for the presentation, you are required to do the

following:

1. Email me your answers to the talk preparation questions 3

days before the presentation.
2. Email me your slides 3 days before the presentation.

30 mins presentations
15 mins discussions

Paper Reviews

You will write reviews for 2/3 papers in the “Paper Presentations” column
(you will choose which ones). The format of a review can be found here.

You cannot review the paper which you will present.

You have to submit a review before that paper is presented; Please only txt
files; 600 hundred words at least; A template will be provided.

Reading/discussing papers in groups is highly encouraged but reviews have
to be written individually. You are not allowed to use any online material for
a review. A review may receive a zero grade due to plagiarism.

Class Discussions

Discussions are an important part of the course. You are expected to attend
every class and ask questions/make comments.

Grading

1 credit
e Paper presentation: 30%
e Paper reviews (2): 30%
e Homework: 25%
e C(lass participation: 15%

3 credits

Paper presentation: 30%

Paper reviews (3): 25%

Class participation: 15%

Homework: 15%

Course project and presentation: 15%

Note that the final grade is S/U. To receive an S grade, you need to score 70% or
more.

Course Project

1. MITRE eCTF - up to 6 people
a. Join the weekly meeting at 3pm today if you want to participate

2. Analyze a smart meter - up to 4 people
a. I will give you two smart meters
b. Come up with a plan and milestones - in the first 3 weeks

3. Name your own project - the rest
a. Come up with a plan and milestones - in the first 3 weeks

Let me know which option you choose by end of this week.

What is a capture-the-flag competition?

Two major software CTF formats
Jeopardy CTFs: They revolve around a set of challenges which are provided by competition
organizers to competitors. Each challenge is designed so that when the competitor solves it, a
small piece of text or "flag" is revealed. The flag is then submitted to a website or scoring engine
in exchange for points. Competitors usually receive about 72 hours (typically the course of a
weekend) to solve as many challenges as possible.

Attack & Defense CTFs: Teams are each given the same set of vulnerable server software. Teams
are to setup & audit this software before the competition. At the start of the competition, teams
will connect their servers to an isolated network to join the CTF. Within this network, teams will
launch attacks against each others servers hoping to exploit the vulnerabilities they've found.
Likewise, teams will need to properly patch their software so that it is protected against these
exploits and functions normally.

CSE 466

babymem

level12_teachingl level12_testingl level12_testing2

1 1 1

How is eCTF different from other CTFs?

Offline, semester-long hardware/software CTF

How does it work?

This event puts competitors through the exercise of trying to create a secure system and then learning from
their mistakes. The main target is a real physical embedded device, opening the challenge to include physical/
proximal access attacks.

gee‘::;i Teams design a secure system that meets all the challenge requirements.
Handoff MITRE verifies that each submitted system has met all functional requirements.
Auee MITRE posts designs for all teams to evaluate during the attack phase.
Attack Teams perform security evaluations of opposing teams' systems and request provisioned

chips for vulnerable systems. Points are awarded for flags retrieved from successful attacks.

Academic Integrity

Discussion is encourage. But, you cannot share your code, exploits to your
classmates or post them online.

The university, college, and department policies against academic
dishonesty will be strictly enforced. To understand your responsibilities as a
student read: UB Student Code of Conduct.

Plagiarism or any form of cheating in homework, assignments, labs, or
exams is subject to serious academic penalty.

Any violation of the academic integrity policy will result in a 0 on the
homework, lab or assignment, and even an F or >F< on the final grade. And,
the violation will be reported to the Dean’s office.

How to do cybersecurity research?

Properties of Good CS Research

Relevance

World Class
Research

Novelty Improvement
that can be demonstrated!

Relevance

e Find a good problem to work on!
e Whatis a good problem?
o We are NOT mathematicians; we do NOT even work on hard science
o Many people care about the problem
o Many people are affected by the problem
o Program is broad or general

m Big difference from industry security “researchers”: bug in specific
application is typically not a good research problem

o Problem has not been solved yet
m Previously unknown problem
m Existing solution have (severe) limitations

o Solution should not be trivial. Well, if you can prove a trivial solution is
perfect, that is also good.

Novelty

Your solution/approach must be novel
Optimally, you invent a completely novel technique
o This does not happen often

Apply a variant of existing technique (e.g., machine learning, static
analysis)

o First to apply technique to particular problem at hand

o Interesting twist or extension (actually applying a theoretical solution
in practice requires tweaks)

o Try to generalize the techniques if possible
Critical requirement to determine novelty
o You must know related work very well!

How to Find Good Security Problems

e Pay attention to your daily life!! All kinds of security problems.

e Diginto the details - Get your hand dirty

o Read code, analyze recently published exploits, write code, experiment
(System/software/network security)

o Analyze traffic (Network security)
o Analyze posts (Cybercrime analysis)

e Be excited when you find something new and difficult. Talk with me when
you cannot solve the problem.

How to Find Good Security Problems

e My 1st USENIX Security Paper

Set up your gestures

YOU! DICTUte DRSS

How to Find Good Security Problems

e My 1st USENIX Security Paper

Q PRIVACY AND SECURITY FANATIC gty

Researchers develop attack framework for '
cracking Windows 8 picture passwords nake d SeC Urlty

malware mac facebook android vulnerability
l ‘Ia‘l‘do' Topics Tech Jobs Submit a Story
News for Nerds

data loss privacy more

\\;VVindkOW_SI_E'S PLiJCturel\a_aSﬁENﬁrdS : m 4 Monday review - the hot 17 stories of ¢ Yahoo hops on transparency reportba... p
:moefy i st | o i 2 o Windows Picture Passwords - are they
really as "easily crackable" as everyone's
saying?
COMMUNICATIONS D=C24PT=D
AC M Mz | T T‘:;\anng "Tech" Into Plain English

HOME CURRENT ISSUE NEWS BLOGS OPINION RESEARCH PF

Home / News / Windows 8 Picture Passwords Easily Cracked / Full Text Friday, 13 September 2013 20:11

Microsoft's Picture Password Easier to Crack
Than a 4-Digit PIN

ACM TECHNEWS

Windows 8 Picture Passwords Easily Cracked

How to Find Good Security Problems

e My 1st S&P Paper

How to Find Good Security Problems

e My 1st S&P Paper

Top Conferences in CS

e http://csrankings.org/#/index?all&us

Most Prestigious Security Venues

IS&P (Oakland) |IEEE Symposium on Security and Privacy |

|CCS "ACM Conference on Computer and Communications Security ‘

|ngto “Inwmational Cryptology Conference |
Rank 1 |Eurocggt “Europcan Cryptology Conference]

Security Usenix Security Symposium

NDSS ISOC Network and Distributed System Security Symposium

|ESORICS ||Eur0pcan Symposium on Research in Computer Security]

IRAID |International Symposium on Recent Advances in Intrusion Detection |

|ACSAC “Annual Computer Security Applications Conference 1

IDSN [The International Conference on Dependable Systems and Networks |
Rank 2 CSF (CSFW) IEEE Computer Security Foundations Symposium.

e Supersedes CSFW (Computer Security Foundations Workshop)

|TCC ||Thcory of Cryptography Conference |

: International Conference on the Theory and Application of Cryptology and

Asiacrypt Information Security

|IMC “Inwmct Measurement Conference ‘

IPETS |[Privacy Enhancing Technologies Symposium |

1T

1=

http://faculty.cs.tamu.edu/gquofei/sec_conf_stat.htm

http://faculty.cs.tamu.edu/guofei/sec_conf_stat.htm

Rank 3

Internation Conference on Security and Privacy in Communication

SceureCorm Networks

|CNS IEEE Conference on Communications and Network Security

DIMVA GI SIG SPAR Conference on Detection of Intrusions and Malware and

O 'Vulnerability Assessment

AsiaCCS ACM Symposium on Information, Computer and Communications Security

ACNS International Conference on Applied Cryptography and Network Security

EFC International Conference on Financial Cryptography and Data Security

SAC ACM Symposium on Applied Computing

ACISP Australasia Conference on Information Security and Privacy

ICICS International Conference on Information and Communications Security

ISC Information Security Conference

ICISC International Conference on Information Security and Cryptology

SACMAT] ACM Symposium on Access Control Models and Technologies

CT-RSA RSA Conference, Cryptographers' Track

IFIP SEC IFIP International Information Security Conference

WiSec ACM Confcrcgcc on Wireless Network Sgcurity]

(WiSe, SASN) Supersedes WiSe (ACM Workshop on Wireless Security) and SASN (ACM
‘Workshop on Security of Ad-Hoc and Sensor Networks)

SOUPS Symposium On Usable Privacy and Security

IFIP WG 11.9] IFIP WG 11.9 International Conference on Digital Forensics

DFRWS Digital Forensic Research Conference

CODASPY ACM Conference on Data and Application Security and Privacy

MALWARE] International Conference on Malicious and Unwanted Software

-- Workshops below --

EFSE Fast Software Encryption workshop

PKC International Workshop on Public-Key Cryptography

NSPW New Security Paradigms Workshop

H ‘Workshop on Information Hiding

WSPEC 'Workshop on Security and Privacy in E-commerce

DRM ACM Workshop on Digital Rights Management

Tracking People

Remember recurring names and group for related papers

o Take a moment after reading a paper to understand the paper’s
context

m Who is the lead author of the paper?
m Who is the professor/advisor on the paper (typically last author)?

e Read names of program committees
e Visit people’s web pages (this is why having a web page is critical)
e Follow people who work on related projects

Security Circus (http://s3.eurecom.fr/~balzarot/notes/top4 2019/,
http://csrankings.org/)

http://s3.eurecom.fr/~balzarot/notes/top4_2019/

Paper Reading

For those of you who are not used to reading research papers, I recommend
reading "How to Read a Paper" by S. Keshav.

Critical Thinking - Reading

e Read a paper and consider:
o Do Ilike it? Hate it? (opinion)
o What problem is it trying to solve?
o How does their approach differ from previous ones?
o (how much previous work do I know about - read it! (reference
chaining))
Does it work?
o What could be improved?

©)

Critical Thinking - Reading

e Consider a paper (or your thesis) as an argument; a paper is not a
textbook
o What is the problem?
o If not well known, why is it a problem?
o Why are all previous approaches insufficient (broken / wrong /
stupid)?
o What is your approach?
m how does it work?
m how well does it work?
m how does it improve on previous attempts?

Critical Thinking - Advanced Reading

e Read the abstract/intro a paper and consider:
o What problem is it trying to solve?
o How do I solve this problem without reading their solutions?
o Compare your approach with their approach.
o Is my approach significantly better? Yes: Congratulations, you have a
research idea right away!

Critical Thinking - Advanced Reading

Learn their thinking process
Learn their approach to build up your own skill set
Learn their paper writing

Do not directly follow their topic

o If they already published a top conference paper in this topic, it means
they may already solve the problem

Critical Thinking - Advanced Reading

Reading papers should be your new hobby. Make sure you read
everyday!

Level of Paper Understanding

Level 1. Understand what the problem is; understand what the authors
tried to do

Level 2. Understand the high-level idea of the proposed approach to
solve the problem

Level 3. Can run and use the code/tool from this project
Level 4. Understand the source code of this project

Level 5. Can replicate this project by yourself [You may not want to do
that if code is available]

How to do world-class system and
software security research?

What is System and Software Security Research?

e Work in hardware, OS, file systems, databases, networking, compiler,

language run-times, ...
e Not a‘hard’ science; a lot of engineering
o No ground truth to be discovered
m Get to create the universe!
o Things can be “sort of” right

m (Engineering) Building interesting systems
m Absolutes are rare

e Key skill: critical thinking, hands-on ability (debug)

Solid Background Needed in ...

Hardware Architecture: CPU, Controllers (Cortex-M, Cortex-A, RISC-V, etc.)

Operating System Design and Implementation (Linux, xv6, Mbed, ARM-TF,
sel4, etc.)

Compiler Design and Implementation (LLVM, etc.)

Program Analysis on C/C++ and Binary (Symbolic Execution, Compiler
back-end, LLVM, Angr, fuzzing, etc.)

Hacking, Reverse Engineering (Ghidra, Angr, IDA Pro, etc.)

Topic 1: x86/x64 Binary Disassembly

SoK: All You Ever Wanted to Know About x86/x64
Binary Disassembly But Were Afraid to Ask

Chengbin Pang*!¥ Ruotong Yu* Yaohui Chen Eric Koskinen* Georgios Portokalidis* Bing Mao! Jun Xu*

*Stevens Institute of Technology

Abstract—Disassembly of binary code is hard, but necessary
for improving the security of binary software. Over the past
few decades, research in binary disassembly has produced many
tools and frameworks, which have been made available to
researchers and security professionals. These tools employ a
variety of strategies that grant them different characteristics.
The lack of systematization, however, impedes new research in
the area and makes selecting the right tool hard, as we do
not understand the strengths and weaknesses of existing tools.
In this paper, we systematize binary disassembly through the
study of nine popular, open-source tools. We couple the manual
examination of their code bases with the most comprehensive
experimental evaluation (thus far) using 3,788 binaries. Our
study yields a comprehensive description and organization of
strategies for disassembly, classifying them as either algorithm
or else heuristic. Meanwhile, we measure and report the impact

TFacebook Inc.

jr'Nanjing University

TABLE I: The group of open-source tools that our study covers
and representative works that use those tools.

Tool (Version) Source (Release Date) Public Use

PSI (1.0) Website [63] (Sep 2014) [50, 88, 111]
UROBOROS (0.11) | Github [93] (Nov. 2016) [103]

DYNINST (9.3.2) Github [79] (April 2017) | [7, 18, 69, 73, 96]
OBJDUMP (2.30) GNU [47] (Jan. 2018) 21, 103..111)
GHIDRA (9.04) Github [75] (May 2019) [24, 45, 91]
MCSEMA (2.0.0) Github [13] (Jun. 2019) [22, 41, 44]

ANGR (8.19.7.25) Github [8] (Oct. 2019) [20, 71, 81, 98, 112]
BAP (2.1.0) Github [26] (Mar. 2020) [10, 16, 64]
RADARE2 (4.4.0) Github [89] (April 2020) | [4, 31, 52, 58]

o Algorithms typically produce results with some correct-
ness guarantees. They mostly leverage knowledge from the
binary (e.g., symbols), the machine (e.g., instruction set),

Oakland 2021

What is Binary Disassembly?

Disassembly is the process of recovering the assembly instructions of a binary.

Symbolization determines cross-references (xrefs for short) or precisely, numeric values in
the binary that are references of other code or data objects. Depending on the location of
the reference and the location of the target, there are four types of xrefs: code-to-code
(c2c), code-to-data (c2d), data-to-code (d2c), and data-to-data (d2d).

Function Entry Identification locates the entry points of functions. A special but
important case is the main function.

CFG Reconstruction re-builds the control flow graph (CFG) of a binary program. We
consider direct control transfers, indirect jumps/calls, tail calls, and non-returning
functions.

Why is Binary Disassembly Difficult?

Disassembly is the process of recovering the assembly instructions of a
binary.

Correctly disassembling a binary is challenging, mainly owing to the
loss of information (e.g., symbols and types) occurring when compiling a
program to machine code and the complexity of constructs (e.g., jump
tables, data embedded in code, etc.) used to efficiently implement
language features.

Automatic/Interactive Disassembly Tools

Objdump

GDB

IDA Pro

Ghidra

Binary Ninja - web

Algorithms and Heuristics in Disassembly

Linear Sweep [OBJDUMP, PSI, UROBORQOS]: Linear sweep continuously
scans pre-selected code ranges and identifies valid instructions,
exploiting the rationale that modern assemblers tend to layout code
successively to reduce the binary’s size.

In general, a linear sweep strategy can be described by how it selects

sweep ranges and how it handles errors during scanning. As such, we
summarize algorithms according to these two aspects.

Errors due to data-in-code

Algorithms and Heuristics in Disassembly

All tools in this class follow OBJDUMP to select code regions for sweep:

they process code ranges specified by symbols in the .symtab and
.dynsym.

OBJDUMP deems invalid opcodes as errors, skips a byte, and resumes
scanning.

Beyond invalid opcodes, PSI considers control transfers to
non-instructions as errors.

Algorithms and Heuristics in Disassembly

Recursive Descent [DYNINST, GHIDRA, ANGR, BAP, RADAREZ2]: Recursive
descent starts with a given code address and performs disassembly
following the control flow.

Strategies in this category usually consist of three components: (1) how
to select code addresses, (2) how to resolve control flow, and (3) how to
handle the code gaps left by recursive disassembly.

All the tools consider the program entry and available symbols as code
addresses for recursive disassembly.

Algorithms and Heuristics in Disassembly

When encountering direct control transfers, the tools expand the
disassembly to the targets. However, to handle indirect control transfers,
different tools adopt different approaches.

Algorithms and Heuristics in Symbolization

Symbolization identifies numerical values in the binary that are actually
references to code or data objects.

Instructions Non-instruction Regions
T I | 3
Data Type Tiference Data Unit Extract
Constant Operand Extract >l O AN Gﬁp 0 UROBOROS
U UROBOROS, ANGR,GHIDRA , MCSEMA O GHIDRA O ANGR
| O GHIDRA
M MCSEMA.
v v Y]
Code Pointer Check i Data Pointer Check Address Table Check
U UROBOROS O UROBORS U UROBOROS
O ANGR O ANGR O ANGR
U GHIDRA d GHIDRA U GHIDRA
d MCSEMA d MCSEMA d MCSEMA
v v v
Code Pointers Data Pointers Code & Data Pointers

Fig. 2: A general workflow of symbolization.

Algorithms and Heuristics in Function Entry Identification

Main Function [DYNINST, ANGR, BAP, RADARE2]: To locate it, ANGR and
BAP analyze the _start function and, following calling conventions, infer
the first argument passed by _start to __libc_start_main.

1 48 c7 c7 e2 e0 40 00 mov $0x40e0e2, %rdi ;main
2 £ 15 ce 48 05 00 x**» eallg _ libe start main

Listing 1: Call to _ 1libc_start_main in _start.

Algorithms and Heuristics in Function Entry Identification

General Functions [DYNINST, GHIDRA, ANGR, BAP, RADARE2]: To identify the
entries of non-main functions, these tools adopt a hybrid approach that consists
of three parts: (1) The tools seek symbols remaining in the .symtab and .dynsym
sections to determine known-to-be-good functions.

(2) All tools consider targets of direct calls to be function entries, while ANGR and
GHIDRA additionally resolve certain indirect calls to determine more function
entries. Finally, DYNINST, GHIDRA, ANGR and RADARE2 include targets of tail
calls as function entries.

(3) All tools use pattern-based approaches to further recover functions. GHIDRA,
ANGR and RADARE?2 find function entries based on common prologues (or
epilogues);

Algorithms and Heuristics in resolving indirect jumps/calls

Indirect Jumps [DYNINST, GHIDRA, ANGR, RADAREZ2]: Three types of indirect
jumps:

(1) jump tables (compiled from switch-case and if-else statements);

(2) indirect tail calls (indirect calls optimized as tail calls); and

(3) handwritten ones (e.g., longijmp and other cases in Glibc [48]).

ANGR, given an indirect jump, considers the operand as a source and runs

backwards slicing. In the sliced area, ANGR uses full-scale VSA to identify possible
targets.

CEESE SR

Homework

Read “How to read a paper”

Read “How to Review a Technical Paper”

Read “Review Guidelines”

Read “Presentation Guidelines”

Read “Sok: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask”

