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Abstract

Computational capacity of modern hardware and algo-
rithmic advances have allowed SAT solving to become
a tractable technique to rely on for the decision of prop-
erties in industrial software. In this article, we present
three practical applications of SAT to software security
in static vulnerability checking, exploit generation, and
the study of copy protections. These areas are some of
the most active in terms of both theoretical research and
practical solutions. Investigating the successes and fail-
ures of approaches to these problems is instructive in pro-
viding guidance for future work on the problems them-
selves as well as other SMT-based systems.

1 Introduction

Satisfiability (SAT) is a decidable computational prob-
lem with the following structure: given a boolean
formula, is there a valuation of the variables for which
the formula is true? If such a valuation exists, the
formula is said to besatisfiable. If there is no such
valuation, the formula is said to beunsatisfiable. The
complexity of SAT isNP completewhich means that
there is no efficient algorithm to resolve all instances of
the problem. Therefore, a variety of heuristics are used
to lower the execution time of decision procedures in
practice. Yet, the SAT problem is the object of active
research as more optimized strategies are crafted and
larger scale experiments with conclusive results are
performed every year. More recently SAT solvers have
become the driving engines behind a more expressive
approach to constraint specification and solving. The
Satisfiability Modulo Theories(SMT) problem extends
the SAT problem with support for higher level theories,
such as bitvector arithmetic among others, and relational
operators, such as equality. Due to these higher level
concepts, SMT allows for a more natural modeling of
the semantics of code and as such is typically used

instead of SAT in reasoning about properties of software
applications. In this paper, we study the practical use of
SMT solvers asblack box oraclesto answer questions
that encode the essence of problems of static vulnera-
bility checking, exploit generation, and analysis of copy
protection. We show that SMT solvers are convenient
tools to decide many important security queries about
programs. Nonetheless, a key point throughout is the
separation of concerns between constraint generation
and constraint solving. A solver is not in charge of the
constraint generation step but a failure to generate con-
straints that accurately model properties of the system
under inspection limits the relevance of the answers a
solver can provide. The constraint generation step is
known as theinferenceproblem. Inference consists of
automatically generating constraints from inspection of
the analyzed program. Those constraints are passed to
the SMT solver for resolution. Constraint generation
and solving been studied in functional programming and
compilers [28] but less so in applications related to soft-
ware security [9]. While one might expect resolution to
be the bottleneck in systems based on SMT solvers, we
will later discuss how, in many instances, the problem
of constraint generation is currently the main limiting
factor.

1.1 Vulnerability checking

The last decade has seen some success in deploying pro-
gram verification tools to industrial software. The main
techniques for program verification are theorem prov-
ing [3], abstract interpretation [12] and model check-
ing [11]. In this article, we focus on security vulnera-
bility checking based on theorem proving for imperative
programs written in C language using the HAVOC [21]
tool. Theorem proving is a mature technique that has
been applied to verify call-free, loop-free programs and
large hardware systems [22]. Applications of theorem
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proving to software is more recent thanks to global anal-
ysis techniques such asPredicate abstraction[4]. Predi-
cate Abstraction is a potentially diverging but automated
technique to infer constraints at procedure and loop
boundaries. Software model-checking tools based on
predicate abstraction (such as SLAM [4]) have brought
considerable value for automated analysis of software
by uncovering hundreds of software bugs in medium-
sized drivers. To address the scalability issues aris-
ing from the state space explosion problem induced by
model checking, the Houdini algorithm [17] has been de-
vised to answer the problem of monomial predicate ab-
straction. Houdini is a simple yet powerful technique
based oncandidate contracts(or may be constraints) al-
lowing the user to provide simple constraints templates
and using the constraint solver in a fixed-point algo-
rithm to determine whether or not those constraints al-
ways hold at function or loop boundaries. Houdini is
implemented in the Boogie verification framework [24]
for which HAVOC is a front-end. While Houdini is a
terminating and deterministic algorithm, it is unable to
answer existential queries, as candidate constraints are
only persisted when they hold in every function contexts.
Thus, Houdini cannot be used to answer the following
question:is it feasible for parameter p to hold value v in
some context?. On the other hand, it can answer ques-
tions such as:is it provable that parameter p always has
value v?.

Section 2 illustrates the inference problem on C pro-
grams using a simple yet non-trivial loop program based
on a Sendmail vulnerability [33] for which the SMT
solver does an excellent job at deciding satisfiability of
a set of constraints at given program points, but does
not provide a mechanism to synthesize the required
constraints automatically. While Houdini is able to
reason about candidate loop invariants, automatically
inferring such complex invariants is out of reach. As
such, the constraints fed to the solver are often provided
by an expert analyst or generated using limited strategies.

1.2 Exploit generation

Exploit generation is a more recent field of study than
vulnerability checking. Work so far has primarily fallen
into two categories — attempts at automated generation
of inputs aimed at hijacking the control flow of a sys-
tem [6, 20, 1] and attempts at automating the generation
of malicious payloads [29, 34, 16, 32]. Work in the for-
mer category has relied on symbolic/concolic execution
systems [35, 7, 10, 5] to perform constraint generation.
Such systems track the semantic relationship and con-
straints between symbolic input data and all other bytes
in program memory and CPU registers. Using this in-

formation it is then possible to generate SMT formu-
lae that ask questions about the potential values of such
bytes. Exploit generation systems have utilized this abil-
ity to check if data that correspond to potentially sen-
sitive pointers can be controlled by an attacker. So far
the problems tackled in this area have been simplified
scenarios where commonplace operating system security
measures and binary hardening techniques are disabled.
The reasons these limitations have been necessary will
be discussed in section 3.1.

The research performed on generation of malicious
payloads has had more success at solving real world
problem instances. For the purposes of this article we de-
fine thepayloadof an exploit to be code executed once
the control flow of an application has been hijacked. The
payloads generated as part of exploitation research have
so far been sequences ofreturn-oriented programming
(ROP) gadgets. A gadget is a sequence of instructions,
within a shared library or executable in the target pro-
gram, that performs some useful computation and ends
by transferring control flow to the next gadget in the se-
quence. A collection of such gadgets is usually chained
together to accomplish a specific task, such as changing
permissions of a memory segment, copying in a second
stage payload and then executing that second stage. This
approach to executing malicious code is necessary to
deal with protection mechanisms that prevent one from
executing code that has been placed on the stack or heap.
By instead executing sequences of instructions within
the program’s code this mechanism can be avoided and
sometimes disabled entirely.

SMT solvers have been used as the reasoning com-
ponent of systems that prove functional equivalence
between a desired computation and a sequence of
instructions [34]. They have also formed part of
end-to-end ROP compilers [16, 32] that attempt to
automatically chain together sequences of such gadgets
so that the sequence is semantically equivalent to a
model payload. These systems usually incorporate a
SMT solver as a small part of an larger set of algo-
rithms. Section 3.2 discusses both approaches and
their integration of SMT solvers. As with many other
successful applications of SMT solvers, there is a focus
on reducing the number of queries that most be made
and pre-processing the input to a solver through other al-
gorithms in order to reduce the complexity of each query.

1.3 Copy protection analysis

In the domain of copy protections, we consider the two
problems of equivalence checking of obfuscated pro-
grams and automated cryptanalysis. We find, similarly
to the aforementioned domains of vulnerability check-
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ing and exploit generation, that the main issue that is
faced is not so much feeding a constraint system into an
SMT solver, but rather, how to generate the constraint
system from the program (and which constraint system
to generate) in the first place. For our application of
equivalence checking to verify the proper working of a
deobfuscator for a virtualization obfuscator, the use of
an SMT solver is easily feasible. If we wish to apply
the same methodology to simply verifying that a virtu-
alized program is equivalent to its original version, we
run into issues surrounding input-dependent branches in
the obfuscated version. For our application of automated
cryptanalysis, problems exist surrounding how properly
to model code with input-dependent branches, particu-
larly input-dependent loops over unbounded quantities.
Other program-analytic techniques such as invariant in-
ference can furnish solutions to these problems, but they
fall under the inference phase and are orthogonal to the
actual solving of the system.

2 SMT in vulnerability checking

In this section, we use a verification tool HAVOC [21]
(a heap-aware verifier for C and C++ programs) to trans-
late to an intermediate form Boogie [24] which then calls
SMT solver Z3 [26] to decide a vulnerable program from
a non-vulnerable one. For conciseness, we do not make
explicit the step of transforming the source code into an
intermediate representation (IR) and go straight to the
construction of the formula. The Boogie IR is based
on the Static Single Assignment form (SSA [13]) which
makes it easier to construct the final formula passed to
the solver. We use the code snippet [15] in Figure 1, a
simplified version of the Sendmail crackaddr vulnerabil-
ity [33] published by Mark Dowd in 2003. This example
contains a non-trivial loop program parsing an untrusted
string parameter.

A buffer overflow vulnerability exists at line 36 due to
a missing decrement of theulimit variable. The correct
fix for this loop is to enable such decrement at line 28.
At first sight, this loop seems rather complex to verify. A
few key remarks about the structure of the loop are fun-
damental in understanding the behavior of this function.
First, the function contains two state variablesquotation
and rquote corresponding to the value of the currently
processed character as pointed by variablec . The two
state variables hold valueFalseat the initial state of the
loop. Only a small number of combinations of state val-
ues are possible due to the fact that the inner condition-
als in the loop are mutually exclusive, since the value of
variablec does not change within the same iteration of
the loop. The second fundamental remark on this loop is
about theulimit variable. The initial value of this vari-
able as assigned on line 7 is pointing on offset 15 of the

1: #define BUFFERSIZE 25
2:
3: int copy_it(char *input)
4: {
5: char lbuf[BUFFERSIZE];
6: char c, *p = input, *d = &lbuf[0];
7: char *ulimit = &lbuf[BUFFERSIZE-10];
8: int quotation = FALSE;
9: int rquote = FALSE;

10:
11: memset(lbuf, 0, BUFFERSIZE);
12:
13: while((c = *p++) != ’\0’)
14: {
15: if ((c == ’<’) && (!quotation))
16: {
17: quotation = TRUE;
18: ulimit--;
19: }
20: if ((c == ’>’) && (quotation))
21: {
22: quotation = FALSE;
23: ulimit++;
24: }
25: if (c == ’(’ && !quotation && !rquote)
26: {
27: rquote = TRUE;
28: // FIX: insert ulimit--; here
29: }
30: if (c == ’)’ && !quotation && rquote)
31: {
32: rquote = FALSE;
33: ulimit++;
34: }
35: if (d < ulimit)
36: *d++ = c;
37: }
38: if (rquote)
39: *d++ = ’)’;
40: if (quotation)
41: *d++ = ’>’;
42: }

Figure 1: Essence of the Sendmail crackaddr vuln.

local buffer (since BUFFERSIZE equals 25). Depend-
ing on the processed input string, this value can either
be incremented or decremented. It is possible to model
the expected behavior of the loop using a finite state au-
tomata corresponding to the expected and valid results of
its computations (with line 28 enabled). Here, we model
the state of the loop as a triple of type(bool,bool,int)
corresponding to the value of variablesquotation, rquote
and the value ofupperlimit - lbuf as shown in Figure 1.

Note that upperlimit is a pointer variable and not
an integer offset, thus the numerical value in the third
component of the triple should in fact be readlbuf +
numwherenumis the relative offset from the beginning
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(F, F, 15) (T, F, 14)

(F, T, 14) (T, T, 13)

′ <′

′ >′
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Figure 2: Automaton corresponding to loop in Fig. 1

of the buffer. We represent this value by only displaying
num in the automaton for conciseness. The absence
of line 28 in the studied loop introduces a problematic
transition in this automata, since theulimit variable is not
bounded anymore. It is then possible to assign a value to
ulimit that is big enough to trigger an out of bound write
access to the local buffer on line 35. We can formalize a
logical representation corresponding to this automata by
ignoring transitions and only retaining state values. The
automaton then corresponds to the following formulaP :

(ulim = lbuf +15∧ quotation = F ∧ rquote = F )
∨ (ulim = lbuf + 14∧ quotation = T ∧ rquote = F )
∨ (ulim = lbuf + 14∧ quotation = F ∧ rquote = T )
∨ (ulim = lbuf + 13 ∧ quotation = T ∧ rquote = T )

The technique used by SMT solvers to verify such in-
variant is known asproof by induction. In a nutshell, a
proof by induction involves two steps:

1. Prove that the formula holds for the base case (at the
entry point of the loop) :P (0)

2. Prove that if the formula holds at iterationn of the
loop, then it also holds at the next iteration :∀n :
P (n) ⇒ P (n+ 1)

P (0) means invariant P holds at the entry state while
P(n) means thatP holds at thenth iteration. Such for-
mula is indeed inductive and easily solved by a SMT
solver. We now give the full version of this proof.

Proof. The proof involves analysis of all possible loop
states and valid transitions between states. It is trivial to
notice that the formula indeed holds at the entry point
of the loop since the entry state (ulimit = lbuf + 15∧
quotation = F∧ rquote = F) exactly corresponds to the
value of the variables at the loop entry. ThusP (0) holds.

The next step consists of the following:assumingthat
the loop is in one of the states described by the invariant
at the beginning of the iteration, does the loop remain in
a state described by the invariant? There are four cases
to consider (assuming the loop start in one of the four
states) and four sub-cases for each case (assuming we
take one of the four available transition, corresponding to
one of the four conditionals of the loop). In practice, not
all transitions are available from all states. As such, the
proof will be smaller than unrolling 16 different cases.

1. Assume that the loop iteration starts in state
(ulimit = lbuf + 15∧ quotation = F∧ rquote = F).

(a) The loop enters state (ulimit = lbuf + 14∧
quotation = T∧ rquote = F) if it executes the
first conditional (lines 15-19)

(b) The loop enters state (ulimit = lbuf + 14∧
quotation = F∧ rquote = T) if it executes the
third conditional (lines 25-29)

(c) No other conditional can be entered from such
entry state.

2. Assume that the loop iteration starts in state
(ulimit = lbuf + 14∧ quotation = T∧ rquote = F).

(a) The loop enters state (ulimit = lbuf + 15∧
quotation = F∧ rquote = F) if it executes the
second conditional (lines 20-24)

(b) No other conditional can be entered from such
entry state.

3. Assume that the loop iteration starts in state
(ulimit = lbuf + 14∧ quotation = F∧ rquote = T).

(a) The loop enters state (ulimit = lbuf + 15∧
quotation = F∧ rquote = F) if it executes the
fourth conditional (lines 30-34)

(b) The loop enters state (ulimit = lbuf + 13∧
quotation = T∧ rquote = T) if it executes the
first conditional (lines 15-19)

(c) No other conditional can be entered from such
entry state.

4. Assume that the loop iteration starts in state
(ulimit = lbuf + 13∧ quotation = T∧ rquote = T).

(a) The loop enters state (ulimit = lbuf + 14∧
quotation = F∧ rquote = F) if it executes the
second conditional (lines 25-29)

(b) No other conditional can be entered from such
entry state.

Thus, all possible states of the loop are correctly cap-
tured by the invariant. In other words,∀n : P (n) ⇒

P (n+ 1)
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On the other hand, the formula is violated when line
28 is absent from the loop. This shows that, when
correctly queried, the solver is able to differentiate
between a correct program and an invalid program
even when subtle conditions are modelled. However,
the loop invariant has to be provided manually. To
our knowledge, there is no tool available to the public
that would be able to infer such conditions automat-
ically. Abstract interpretation techniques [12] based
on control-flow partitioning [25] have shown to be
useful for synthesizing loop invariants but synthesis of
such complex invariants seems out of reach due to the
over-approximation employed by abstract interpretation
to keep full automation. Another strategy to infer simple
loop invariants is to generate the candidates using invari-
ant synthesis strategies based on simple grammars. Such
approach has been used to perform runtime invariant
synthesis and discover likely invariants [27] in software
programs based on witnessed executions. We believe
that this latter approach would not bring the desired
result on this example since the invariant is not respected
in the presence of a security vulnerability and thus
would not be discovered by executing the program trace
on which the vulnerability is to be found.

In order to illustrate the inference problem better,
let us try to verify a more abstract formula that is a
relaxation of the real invariant. Such simpler formula
is an interesting candidate invariant for the loop as it
contains less sub-formulae and thus is more likely to be
generated automatically.

(ulim = lbuf +15∧ quotation = F ∧ rquote = F )
∨(ulim = lbuf+14∧(quotation = T ∨rquote = T ))
∨ (ulim = lbuf + 13 ∧ quotation = T ∧ rquote = T )

This second formula corresponds to the automaton
in Figure 3. We do not indicate the input vocabulary
of this second automaton as it does not correspond to
a concrete representation of the loop, but a candidate
abstraction of it. Unfortunately, this second invariant
is not provable due to the introduced spurious state
(T,T,14) which is not a real behavior of the loop. When
starting the loop in such spurious state and executing
the second conditional code of the loop (from line 20
to 24 on Figure 1), another spurious state (F,T,15) can
be reached. Such state is violating invariant 2. Thus,
invariant 2 does not hold at every iteration of the loop.
This failed example shows the difficulty of abstracting
information from an invariant without losing soundness.

(F, F, 15)

(T, F, 14) ∨ (F, T, 14) ∨ (T, T, 14)

(T, T, 13) (F, T, 15)

Figure 3: Simpler automaton that fails to model loop

The case study of this section illustrate well the limits
of SMT solvers in absence of a proper constraint gener-
ation engine to feed them. It is possible to verify code
invariants as long as those invariants are provided by the
developer. Yet, automated analysis of such loop con-
structs is extremely challenging when no input from the
developer is available, since generating the expected con-
tract from a piece of code is not the role of the solver, and
existing inference techniques are usually unable to cope
with such complex loop invariants. Fortunately, there
also exists many other properties [2] [23] [38] for which
the contracts can be more easily guessed. We will see in
the next section that such limitations are not specific to
the scenario of vulnerability discovery.

3 SMT in Exploit Generation

Since 2008 there have been a number of papers [6, 20, 1]
in which attempts have been made to develop systems
for Automatic Exploit Generation(AEG) that rely on an
SMT solver for constraint solving. This early work gen-
erally took the definition of anexploit to be an input to
a program that, through leveraging memory corruption
of some kind, results in the hijacking of the program
counter and the execution of attacker controlled code. At
their core, these systems are extensions of the input gen-
eration techniques that have successfully been applied to
vulnerability detection [19, 18, 8, 7].

While they have had limited success in synthesizing
exploits for simple vulnerabilities, with relaxed operat-
ing system security measures, there is a large theoretical
and practical gap still to be bridged before they are appli-
cable to real world problems. In this section we will ex-
plain how this gap results from primitive modeling of the
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problem domain, rather than a limitation of SMT-based
technologies. We will also discuss some of the more suc-
cessful applications of SMT-based technologies to prob-
lems found in exploit development.

3.1 Restricted-Model Exploit Generation

Assume that we have a standard symbolic/concolic
execution environment, such as S2E [10], BAP [5],
TEMU [35], KLEE [7] or those described elsewhere
[20, 19]. With any of these systems we can pause
symbolic execution and for any memory address or
register identifier retrieve thepath condition for the
data at that location. The path conditionpc is a logical
formula describing the constraints and manipulations
performed on that data between its introduction from
an attacker controlled source and the current point of
execution. Consider the following sample x86 assembly
code, with the assumption that byte in theAL register is
under attacker control:

0: add al, al
1: sub al, 0x0f
2: test al, al
3: jz 5
4: ...
5: jmp 7
6: ...

If we represent the input byte asb0, and create a new
variablebn on each write to a variable, then at address
6 the path condition for the byte inAL is the following
conjunction of clauses

b1 = b0 + b0 ∧ b2 = b1 − 15 ∧ b2 = 0

whereas at address4 the path condition is

b1 = b0 + b0 ∧ b2 = b1 − 15 ∧ b2 6= 0

One can then use a SMT solver to ask queries about the
states represented by these formulae by appending con-
straints and looking for satisfying assignments. For ex-
ample, if we wanted to check at address 4 whether the
value 11 can be in theAL register we would create the
formula:

b1 = b0 + b0 ∧ b2 = b1 − 15 ∧ b2 6= 0 ∧ b2 = 11

An SMT solver will then return a satisfying assignment,
if one exists, such asb0 = 13 in this case.

Effectively, the sum total of knowledge possessed by
the system can be expressed as a mapK from a col-
lection of register/memory identifiers(i0, i1, ..., in) to a
path condition for each(pc0, pc1, ..., pcn). K has type

K : I → F . I is the union of the set of register identi-
fiers, one for each register and subregister, with the set of
identifiers for all valid memory addresses, one for each
address.F is the set of closed quantifier free formulae
over the theory of fixed sized bitvectors.

Exploit generation systems up to now have relied en-
tirely on K in conjunction with a set of ad-hoc exploit
templates to extend the work performed for input gener-
ation to produce exploits. We will refer to this approach
asrestricted-model exploit generation. The lack of suc-
cess of such systems in tackling non-trivial exploits can
be directly attributed to the restricted model of the exe-
cution environment used. Before discussing why this is,
let us first define what we mean by anexploit template
and then look at the two typical approaches to AEG.

3.1.1 Exploit Templates

A set of exploit templatesT is a collection of algorith-
mic descriptions of basic strategies for taking advantage
of vulnerabilities, that meet a set of criteria, in order to
execute malicious code. A templatet ∈ T will take as
input K and produce a SMT formulaf . A satisfying
assignment forf will be an exploit forP if the model
encoded inf accurately models the constraints imposed
on program inputs and any other relevant program state
and environment properties. An AEG system will typi-
cally include several of these templates and select among
them based on information derived fromK and other in-
formation available about the type of vulnerability. As an
example, if the AEG system detects, based onK, that on
the execution of aret instruction the memory pointed to
by theESP register is attacker controlled it would likely
select a template that expresses the following constraint:

K(m) = v0 ∧K(m+ 1) = v1 ∧K(m+ 2) =
v2 ∧K(m+ 3) = v3

where m is the value in theESP register and
(v0, v1, v2, v3) are each values in the range 0-255 spec-
ifying the address we wish to redirect control flow to.
Overall the strategies encoded in exploit templates so far
have been rudimentary. Due to the fact that the only
information source for accurate constraints on the pro-
gram’s state isK, the templates can only generate for-
mulae that ask questions about the possible value ranges
of bytes for which we have path conditions. Complex
exploit strategies, such as those usually required to deal
with modern binary hardening and OS protection mech-
anisms, require one to reason about a far richer domain
than that described byK. For example, the state of
the heap and its relationship with user input. Similarly,
the exploitation of other vulnerability categories requires
further abstractions and models to be introduced into the
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symbolic/concolic execution phases of AEG. Use-after-
free issues, for example, require both a description of the
heap state and also higher level abstractions that entail
objects and their allocation status.

3.1.2 AEG with Restricted Models

Two similar mechanisms have been used for AEG, both
of which can be classed asrestricted-model exploit gen-
eration. In the first [20], we start with a programP and
an inputI that we know to bebad. For example,I might
have been produced by a fuzzer and causesP to crash.
Under this approach we executeP (I) within a concolic
execution environment up until the point where a crash
would occur during normal execution. At this point,K

is available and we also have information on the cause
of the crash e.g. we know if it was due to an attempt to
execute, read or write invalid memory.

Such a system will also include a library of exploit
templatesT as described above. UsingK and the knowl-
edge of the cause of the crash, one or more templates can
be selected and a set of formulae are generated.

The second approach integrates the vulnerability
checking process with AEG [1]. Under this approach a
symbolic/concolic execution environment is used to exe-
cute the program on symbolic input data. A safety pred-
icateφ is invoked at particular program points to check
whether a potentially unsafe operation is occurring. For
example, on amemcpy call the safety predicate might
check that the size argument is sufficiently restricted to
prevent an overflow of the destination buffer. Once a
safety predicate returns false this approach again has ac-
cess toK but with the possibility of checking multiple
possible exploit scenarios that depend on the value of el-
ements ofK.

For example, on a vulnerablememcpy assume that the
destination buffer isn bytes in size but the size parame-
ter can bem bytes, withm > n. Then there arem − n

possible lengths that would violate the safety property.
Under the first approach a bad input provides a single vi-
olation of the safety property. In this case, each different
input lengthn < l ≤ m results in the corruption of a dif-
ferent amount of data. Thus, for each value ofl a set of
formulae may be generated usingK andT . Depending
on the value ofl the data corrupted could lead to differ-
ent possibilities for exploitation, e.g. corrupting 4 bytes
might lead to control of a pointer used as the destination
of a write, while corrupting 12 might lead to control of
a function pointer. The second approach can therefore
generate more exploit candidates using a wider variety
of templates. It is important to note though that each of
these candidates is generated usingK andT and is thus
limited as previously described.

Conceptually, both of these approaches are quite close

to the technology required for vulnerability detection
systems based on symbolic/concolic execution. As such
it is instructive to ask,Why does this approach succeed
for vulnerability detection in real world scenarios but fail
for exploit generation in real world scenarios?. The an-
swer can be found by considering the accuracy of the
model used in reasoning with respect to the problem
being modeled. Successful vulnerability detection sys-
tems have found a wealth of vulnerabilities as a result
of unsafe arithmetic within programs. The information
required to accurately decide whether a sequence of in-
structions is unsafe or not, in this context, is contained
within the path condition for the output bytes. In this
case the modelK is quite close to an ideal model for
deciding questions of the problem domain.

If we ignore binary hardening, such as stack canaries,
and OS security measures, such as address space layout
randomization (ASLR), no-execute (NX) permissions on
memory regions and more secure memory allocators,
then AEG is also a tractable problem using the model
K for certain vulnerability classes. In this environment
the primary factor impacting the success or failure of an
exploit is the manipulations and constraints imposed by
the executed instructions. As these factors are modeled
by K then it is possible for a template to create a SMT
formula that accurately describes the requirements for a
working exploit.

Some AEG systems account for certain protection
mechanisms, such as limited ASLR without NX [20] and
NX with limited ASLR [32], in conjunction with sup-
port for a limited set of vulnerability types, such as stack
based overflows without functional stack hardening. The
restrictions imposed by these systems on the problems
they can handle effectively reduce the state of the ex-
ploited programs environment to one that is sufficiently
accurately modeled byK.

The accuracy ofK as a model rapidly deteriorates
once one begins to consider correctly implemented pro-
tection mechanisms as found in modern Linux and Win-
dows operating systems. It also deteriorates once one
begins to consider exploitation of vulnerabilities that re-
quire the manipulation of environmental factors such as
the heap layout. In these scenarios a useful model must
account for the effects of user input on the memory lay-
out.

3.1.3 The Future of AEG

In order to become a practical solution much work re-
mains to be done in AEG. SMT-backed approaches have
shown promise but the constraint generation phase still
restricts the applicability of these systems to modern
software and operating systems. In particular the model
of the program and its environment must be improved.
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Alongside this, it is worth considering the changes that
will have to be made to the template driven approach to
AEG in order to fit in with the trend towards more appli-
cation and vulnerability-specific exploitation techniques.

Closing the gap between the model of a system and
the system can be done in two ways. The first is the ap-
proach that has been taken so far with AEG, to reduce the
complexity of the system until the model is sufficiently
accurate. The second is to increase the sophistication of
the model so that it entails more information on the sys-
tem.

The reason the former approach was taken in the early
work on AEG is straightforward; it is relatively cheap to
extend previous work on symbolic/concolic execution to
produce the modelK. It is apparent that this model is an
unrealistic abstraction of the state that must be taken into
account for modern exploit generation. This can be seen
if we consider the lack of any information on the relation-
ship between the program’s input and the layout of heap
memory. Without such information we cannot generate
constraints for which a satisfying assignment can manip-
ulate the heap accurately. As a result, we cannot per-
form reliable AEG for any vulnerabilities that may be im-
pacted by heap randomisation. This includes heap over-
flows but also use-after-free vulnerabilities which are the
most prolific form of security flaw in web browsers.

When considering future directions for AEG it is im-
portant to look at the latest developments in manual ex-
ploit creation. For quite some time, the era of generic
exploitation techniques that take advantage of obvious
flaws in allocators and protection mechanisms has been
drawing to a close. While there will always be excep-
tions, it is more common than not for exploits to leverage
application and vulnerability-specific methods to avoid
protection mechanisms than attempt to defeat them. For
example, on a heap overflow it is far more likely to be
successful if a controlled overwrite can be made to a
pointer value within the same chunk that will later be
called than attempting to corrupt heap metadata.

Modern exploits are also far more likely to leverage in-
formation leakage attacks, a topic that has so far received
no attention in terms of AEG. While many may consider
information leakage to result from different vulnerabil-
ity types it is common for certain vulnerabilities, such
as use-after-free, double-free etc, to be leverage for both
information leakage and code execution.

Both of these issues combined call into question the
potential of template driven AEG to be sufficiently gen-
eral to be useful. We consider it likely that once suffi-
ciently accurate models are available it will be more use-
ful to allow user-driven constraint generation based on
their knowledge of exploitation, the application and the
vulnerability in combination with more limited general
and application specific templates.

3.2 Automated Payload Creation

While AEG systems have attempted to automate the con-
trol flow hijacking part of exploitation there has also been
research on the application of SMT-based systems to the
generation of ROP payloads [29, 34, 16, 32]. These sys-
tems have been developed to free an exploit developer
from the tedious process of pouring over the potentially
hundreds of thousands of candidate gadgets that may be
found within a large binary.

As mentioned in the introduction, the approaches
taken have fallen into two categories. Those that at-
tempt to prove equivalence between a single gadget at
a time and a model of some computation we wish to per-
form [34], and later systems that have attempted to pro-
vide a full compiler that can assemble multiple gadgets
in sequence to achieve this computation [16, 32].

In the former approach, we first collect every valid se-
quence of instructions in the binary that ends in an in-
struction that can successfully transfer execution to the
next gadget in sequence e.g. aret instruction if the gad-
get addresses are provided at the location pointed to by
ESP. The system takes as input these candidate gadgets
and the specification of a computations we require to be
performed e.g.ESP <- EAX + 8, which specifies we
are looking for a gadget that puts the value stored in the
EAX register plus 8 in theESP register.

First, the system will create an SMT representation
ssmt of the computation specification. In other words, it
will convert the specification to an SMT formula. The
system will then perform a number of heuristic, but
sound, reductions of the candidate gadget set e.g. elim-
inating any gadgets that neither readEAX or writeESP.
At this point the system will iterate over the remaining
candidate gadgetsC and for each gadgetg ∈ C create
the conjunction of a set of formulae that express the se-
manticsg. For eachg ∈ C the formulag ⇔ ssmt is then
created and checked for validity. If the formula isvalid
it means that under all interpretations of the variables in
g andssmt their semantics are equivalent. This tells us
that the gadget can be used to express the computation
we require. If the formula is satisfiable but not valid it
means that the gadget may work under some interpre-
tations but may not under others. This would not be a
desirable property of a component in a reliable exploit.

This approach can be quite useful in quickly discover-
ing gadgets for simple computation specifications, such
as the example given. However, such a system can only
check if there is an exact correspondence between one
gadget and the specification. Ideally, we would like to
check whether the computation can be performed by
chaining togethern gadgets if necessary. This is often
a requirement once our specification requires more com-
plex data movement or arithmetic. A collection ofm
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gadgets can potentially be arranged inm! different ways.
Discovering the most useful potential combinations and
then reasoning about their semantics requires a combina-
tion of heuristics and formula solving.

Systems have been developed and successfully applied
to this problem, which have used SMT technology for
different purposes. In [16], an SMT solver was used to
reason about gadgets that contained branches. For ex-
ample, if the gadget contained a branch an instruction
sequence that might result in a crash a solver would be
employed to check if it is possible that branch is never
taken given the gadget’s semantics. In [32], an SMT
solver was used to look for arrangements of gadgets that
meet the requirements of the computation specification.

Both the single-gadget and gadget compiler ap-
proaches have been successful at alleviating a certain
amount of manual effort in the process of ROP payload
creation. In both approaches we can see the pattern that
exists throughout must successful integrations of SMT
technology — minimizing the number of queries that
must be made to a solver, reducing the problem space
through the use of less computationally expensive algo-
rithms and ensuring the constraints generated are a suf-
ficiently accurate model of the problem being reasoned
about.

4 SMT in protection analysis

Software protection analysis is critically important in
dealing with malware, since most samples employ some
sort of packing or obfuscation techniques in order to
thwart analysis. It is also an area of economic concern
in protecting digital assets from piracy and intellectual
property theft. We present several areas in which SMT
solvers have been practically applied towards these prob-
lems.

4.1 Equivalence checking for verification
of deobfuscation results

Virtualization obfuscators [31] are an especially complex
category of software protection tools that are commonly
abused by malware. These tools work by converting por-
tions of the program-to-be-protected’s x86 machine lan-
guage into a randomly-generated language that is then
executed at runtime in an interpreter, which itself is also
randomly-generated and obfuscated. The original x86
machine code in these regions is then overwritten. Code
is generated within the binary such that, at run-time,
when the program goes to execute the protected code,
the register state is saved to some location (e.g., onto
the stack), the interpreter executes, the register state is
reloaded, and then the unprotected portion of the pro-
gram executes normally. The end result is that the mal-

ware analyst must either possess a tool to invert the trans-
lation, or reverse engineer the code as it is running inside
of the interpreter (rather than in the form to which he or
she is more accustomed, viz., x86 code).

Such tools make life difficult for the reverse engineer,
and they are also quite complex for the protection author
to construct. The translation must capture precisely the
semantics of the instructions under consideration, other-
wise the virtualized program has the potential to produce
different behaviors than the original, which – by explicit
design goal – would be very difficult for the developer
to diagnose. Given this complexity, it is not a surpris-
ing notion that these tools might have bugs in the form
of improper translations. Similarly, if the analyst were
to construct an inversion tool to deobfuscate a virtual-
ization obfuscator, the complexity of such a tool could
easily lead to bugs in the form of improper deobfusca-
tion.

Equivalence checking is a well-known technique for
verifying the equivalence of two pieces of code. The sim-
plest case is when the code snippets are straight-line (i.e.
branchless). As an example, consider the C programs
x0 = y + y; andx1 = y << 1;. Both of these pro-
grams logically encode the notion of doubling the vari-
abley and storing the result in some other variable (since
shifting left by one corresponds to multiplying by two).
To determine whether these sequences produce equiva-
lent results, we encode them as SMT formulae and then
query the decision procedure for the conditionx0 6= x1.
If this formula is satisfiable, the SMT solver will return
a counterexample, namely, a value ofy for which the
sequences differ. If this formula is unsatisfiable, this is
a proof (assuming the soundness of the solver) that the
two sequences always produce the same output, given
the same input.

To apply this procedure to two branchless sequences
of x86 instructions, we convert both sequences to our
intermediate representation, then put both sequences in
Single Static Assignment (SSA [13]) form, convert the
SSA version of the IR to SMT formulae, and query the
decision procedure as to whether the output variables
(i.e., flags, registers, and memory) can ever differ (i.e.,
eaxseq1 6= eaxseq2 ∨ ebxseq1 6= ebxseq2 . . .). To com-
pare the contents of memory in this way, the solver must
support the theory of extensional arrays (which many
modern solvers fortunately do).

SMT-backed equivalence checking provides a power-
ful primitive for ensuring the correctness of a deobfus-
cation procedure on branchless sequences. One simply
generates some branchless program that falls within the
purview of the virtualization obfuscator, obfuscates it,
deobfuscates it, and uses equivalence checking to com-
pare the resulting code against the original code.

Applying this procedure helped discover potentially
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incorrect translations in TheMida CISC VM [37] after
having constructed a deobfuscation procedure for this
protection. The virtualization of certain instructions such
asror andinc did not take some of the subtleties of those
instructions into account. In the case ofror and simi-
lar instructions, the Intel manuals dictate that these in-
structions do not modify the flags if the shiftand is zero.
Therefore, improper maintenance of the flags prior to the
execution of these instructions could cause the flags to
take different values in the obfuscated and deobfuscated
versions. Similarly, ”inc” does not modify the carry flag,
so any modification to this flag induced by the obfuscator
before the instruction executes would result in incorrect
machine state.

Figure 4 illustrates a more subtle example of poten-
tial incorrectness in translation. This (deobfuscated) in-
struction sequence loads an address (stored in enciphered
form) from the memory location pointed at by the esi reg-
ister, deciphers the address in the next four instructions,
then loads a byte from that address and pushes it onto
the stack. Since the ciphering process is invertible, this
code snippet enforces no restriction upon the range of ad-
dresses from which the byte could potentially be loaded.
Therefore, the address could well point onto the stack,
below the location of the current stack pointer. Since the
obfuscator introduces many spurious writes to the stack,
the value loaded in the deobufscated world could differ
from the one in the obfuscated world. This translation
error would be unlikely to result in a runtime error in the
real world, but it demonstrates the exhaustive capabilities
of SMT solvers towards the equivalence checking prob-
lem.

1: lodsd dword ptr ds:[esi]
2: sub eax, ebx
3: xor eax, 7134B21Ah
4: add eax, 2564E385h
5: xor ebx, eax
6: movzx ax, byte ptr ds:[eax]
7: push ax

Figure 4: Deobfuscated sequence

4.2 SMT-based input crafting for semi-
automated cryptanalysis

When it comes to constructing licensing systems, best
practices dictate that only properly-vetted implementa-
tions of trusted cryptographic algorithms be utilized as
part of securely-designed cryptosystems. (Even then,
that this may be insufficient to prevent against certain
types of attacks such as those where the attacker is able
to replace private keys within a binary or otherwise patch
the program’s logic. As part of the never-ending cat

and mouse game in software protection, techniques such
as [39] can be used to obfuscate cryptographic keys,
and techniques such as [36] demonstrate that these tech-
niques are not necessarily infallible). Many protection
authors unfortunately still do not heed this advice, lead-
ing to a glut of cracked software available on peer-to-peer
networks.

SMT solvers can be utilized as a medium for manu-
ally modelling licensing schemes. [14] focuses on one
scheme in particular, which is partially depicted in Fig-
ure 5.

1: again:
2: lodsb
3: sub al, bl
4: xor al, dl
5: stosb
6: rol edx, 1
7: rol ebx, 1
8: loop again

Figure 5: The main loop of the serial algorithm

First, the authors manually cryptanalyze the protec-
tion from an algebraic standpoint and construct a highly
efficient key generator. Next, the authors demonstrate
how to manually model the scheme in terms of an
instance of the SAT problem. Since modern SMT
solvers subsume SAT solvers, the scheme can obviously
be manually modelled in terms of operations within
the bitvector theory, in a manner that is more succinct
and natural than the low-level bitwise manual CNF
encoding. For instance, a multiplication operator can
be modelled natively as one term within many solvers,
whereas to model such a thing in terms of operations
upon individual bits (as in a SAT instance) gener-
ates complex circuits. One iteration of the loop shown
in Figure 5 can be manually modelled in SMT as follows:

First, the authors manually cryptanalyze the protection
from an algebraic standpoint and construct a highly effi-
cient key generator. Next, the authors demonstrate how
to manually model the scheme in terms of an instance of
the SAT problem. Since modern SMT solvers subsume
SAT solvers, the scheme can obviously be manually
modelled in terms of operations within the bitvector
theory, in a manner that is more succinct and natural
than the low-level bitwise manual CNF encoding. For
instance, a multiplication operator can be modelled na-
tively as one term within many solvers, whereas to model
such a thing in terms of operations upon individual bits
(as in a SAT instance) generates complex circuits. One
iteration of the loop (particulary, iterationi) as shown
in Figure 5 can be manually modelled in SMT as follows:
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al0,i = activation code[i]
∧ al1,i = al0,i − ebxi[7 : 0]
∧ al2,i = al1,i ⊕ edxi[7 : 0]
∧ output[i] = al2,i
∧ edxi+1 = rotate left(edxi, 1)
∧ ebxi+1 = rotate left(ebxi, 1)

In this formula,activation code corresponds to the
memory region pointed at by theesi register and is
an input to the serial algorithm,output corresponds to
the memory region pointed at by theedi register, and
rotate left is a built-in function in many SMT solvers
for performing leftward rotation.

The same technology that is used in other problem do-
mains for more conventional tasks in programming lan-
guage theory, such as those discussed hereinbefore i.e.
vulnerability discovery and test-case/exploit generation,
can also be repurposed for the sake of solving problems
such as this one semi-automatically. The Pandemic bi-
nary program analysis framework was employed [30] to
automatically (statically) generate an execution trace of
a run of the algorithm, where the user’s input is treated
as free variables. We then manually constructed the post-
condition that the output must satisfy, and then fed the re-
sults to an SMT solver. The inputs derived by the solver
correctly break the scheme. Space considerations force
us to refer the interested reader to [30] for more details
of the problem, the system architecture of Pandemic, and
the solutions.

These problems can be attacked purely statically, if the
analyst is willing to invest the time in manually mod-
elling the state required to simulate the execution of the
serial algorithm, or in a concolic fashion (which allows
for greater automation). Static solutions may be pre-
ferred when the analyst wishes to investigate the prop-
erties of some piece of code that he or she might not
know how to trigger; a static investigation may inform
the analyst whether such an undertaking is merited (i.e.,
whether the portion of code exhibits some vulnerability;
if this is not the case, then the broader problem of driving
execution to that location would be fruitless).

This particular problem instance has the nice property
that the path that the algorithm takes is not dependent
upon the user’s input. Specifically, the algorithm con-
sists of a loop that executes for a fixed number of it-
erations before comparing the output to a fixed value.
Hence, the problem is easier to solve than what might
be the case if the path were input-dependent, for exam-
ple, if multiple checks lead to failure cases, or if the in-
put length were unbounded and the algorithm iterated
over it in its entirety (such conditions could potentially
be mitigated through the use of loop invariants, perhaps
automatically-synthesized ones). We emphasize, how-
ever, that there is nothing special about serial algorithms

that place them in a strictly restricted class of the general
input-crafting problem: any type of code (including ob-
fuscated code) with unrestricted programming language
constructs might be utilized to implement a serial check
– and in fact, the constraints might even be harder than
the ordinary case due to the prevalence of hard crypto-
graphic operations. Hence, progress towards this pursuit
is tied to progress in binary program analysis and verifi-
cation/SMT solvers in general. Nevertheless, these early
results are encouraging.

5 Conclusion

SMT solvers are becoming an integral part of the secu-
rity engineer’s tool kit. We presented three applications
of SMT solvers in vulnerability discovery by static anal-
ysis, exploit generation (a specialization of input craft-
ing), and copy protection analysis. In these three appli-
cations, solvers do a remarkable job of assisting the an-
alysts in deciding whether suggested solutions are valid
in their respective problem space. Yet, solvers are not
suited for generating domain-specific problem descrip-
tions as the preliminary constraint generation step has to
be performed outside the solver. We expect that special-
ized constraint inference assistants will improve in the
future and help generate formal problem definitions for
non-trivial problems in the area of computer security.
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