Taint-based Directed Whitebox Fuzzing

Vijay Ganesh and Tim Leek and Martin Rinard
MIT Computer Science and Artificial Intelligence Lab
vganesh, tleek, rinard@csail.mit.edu

Abstract

We present a new automated white boz fuzzing tech-
nique and a tool, BuzzFuzz, that implements this tech-
nique. Unlike standard fuzzing techniques, which ran-
domly change parts of the input file with little or no
information about the underlying syntactic structure of
the file, BuzzFuzz uses dynamic taint tracing to au-
tomatically locate regions of original seed input files
that influence values used at key program attack points
(points where the program may contain an error). Buz-
zFuzz then automatically generates new fuzzed test in-
put files by fuzzing these identified regions of the orig-
inal seed input files. Because these new test files typi-
cally preserve the underlying syntactic structure of the
original seed input files, they make it past the initial
input parsing components to exercise code deep within
the semantic core of the computation.

We have used BuzzFuzz to automatically find er-
rors in two open-source applications: Swfdec (an Adobe
Flash player) and MuPDF (a PDF viewer). Our results
indicate that our new directed fuzzing technique can ef-
fectively expose errors located deep within large appli-
cations. Because the directed fuzzing technique uses the
taint information to automatically discover and exploit
information about the input file format, it is especially
appropriate for testing applications that have complex,
highly structured input file formats.

1 Introduction

Fuzz testing [19] is a form of automatic, black-box
testing which uses a fuzzer to randomly generate or mu-
tate sample inputs. This technique has been shown to
be surprisingly effective in revealing errors in software
systems [19, 25, 18]. It is especially useful for testing
input parsing components — the randomly generated
inputs often exercise overlooked corner cases in the ini-
tial parsing and error checking code.

But fuzz testing (or simply fuzzing) has been less

effective at exposing deeper semantic errors revealed
by legal inputs that the system fails to process cor-
rectly [25, 10] — for many systems virtually all of the
randomly generated inputs fail to satisfy the basic syn-
tactic constraints that characterize well-formed inputs,
and hence fail to make it past the initial parsing phase
to exercise the remaining code.

This paper presents a new testing approach, directed
whitebox fuzz testing, and a new tool, BuzzFuzz, that
implements this testing approach. Instead of generat-
ing random inputs that primarily exercise the initial
input parsing components, directed fuzz testing is de-
signed to produce well-formed test inputs that exercise
code deep within the core semantic processing com-
ponents of the program-under-test. As such, it com-
plements random fuzzing and significantly extends the
reach of automated testing techniques. Directed fuzz
testing is based on the following techniques:

e Taint Tracing: The program-under-test executes
on one or more valid sample inputs. The execu-
tion is instrumented to record taint information.
Specifically, the instrumented execution records,
for each value that the program computes, the in-
put bytes that influence that value.

e Attack Point Selection: Specific points in the
system under test are identified as potential at-
tack points, i.e., locations that may exhibit an
error if the system is presented with an appro-
priate error-revealing input. By default, our im-
plemented BuzzFuzz system selects all library and
system calls as attack points. BuzzFuzz can also
be configured, under user control, to select any
arbitrary set of program points as attack points.

e Directed Fuzzing: For each attack point and
each sample input, BuzzFuzz computes the set of
input bytes that affect the values at that attack
point. For library and system calls, for example,
the values at the attack point are the parameters
passed to the library or system call. BuzzFuzz
then generates new inputs as follows: Each new

input is identical to one of the sample inputs, ex-
cept that the input bytes that affect the values
at one or more attack points have been altered.
By default, our implemented BuzzFuzz system sets
these bytes to extremal values, e.g., large, small,
or zero integer values. BuzzFuzz can also be con-
figured to use different policies such as generating
random values for the corresponding input bytes.

e Directed Testing: Finally, BuzzFuzz runs the
system under test on the newly generated inputs
to see if the inputs reveal any errors.

This approach has several benefits:

e Preservation of Syntactic Structure: Di-
rected fuzzing tends to target input bytes that can
be changed without violating the legal syntactic
structure of original inputs. The automatically
generated fuzzed inputs therefore tend to make
it past the initial parsing components to exercise
code within the semantic core of the computation.

e Targeted Values: The altered input bytes are
designed to target values that are directly relevant
to specific potential vulnerabilities. The generated
test suite therefore tends to have a high concen-
tration of inputs that can reveal errors that may
exist at these potential vulnerabilities.

e Coordinated Changes: Finally, directed
fuzzing can identify and alter multiple disjoint re-
gions of the input space that must change together
in a coordinated way to reveal the presence of an
erTor.

We have used BuzzFuzz to test several systems that
process highly structured binary data such as video,
images, document, and sound files. We have found that
directed fuzzing is able to successfully generate inputs
that satisfy complex input consistency constraints, and
make it past the initial input processing components to
reveal errors at attack points within the semantic core.
More specifically, our results show that BuzzFuzz is
able to preserve the syntactic structure present in the
original inputs, generate new inputs that satisfy the
key properties that characterize legal inputs, and suc-
cessfully target vulnerabilities deep within the semantic
core of the system under test. In the context of pro-
grams for decoding highly structured inputs like movies
or documents, BuzzFuzz nicely complements random
fuzzing, since random fuzzing usually uncovers errors
in shallower parts of the program such as input valida-
tion code.

Figure 1 illustrates the information that BuzzFuzz
manipulates. The tester provides BuzzFuzz with an

Program Attack Points

Pro%ram
Fuzzed Test Inputs

Seed Inputs

Figure 1. BuzzFuzz Diagram. The inputs to
BuzzFuzz are: source of a C program, seed
inputs, and a list of program attack points.
The output of BuzzFuzz is a set of fuzzed test
inputs

application and set of seed input files for that appli-
cation. BuzzFuzz also accepts a specification of attack
points; this set of attack points can be provided by the
tester or automatically provided along with the Buz-
zFuzz system. Given these inputs, BuzzFuzz instru-
ments the source to trace taint information, then runs
the instrumented source on the provided inputs to find
out which input file locations influence attack point
values. It then uses this information to produce new
fuzzed test input files.

We have used BuzzFuzz to automatically expose
errors in two open-source applications: Swfdec (an
Adobe Flash player) and MuPDF (a PDF viewer).
These results show that BuzzFuzz can automatically
generate fuzzed test input files that preserve the syn-
tactic validity of the original seed input files and that
the fuzzed files can expose subtle errors within both
applications.

All of the experimental results presented in this pa-
per are available at http://people.csail.mit.
edu/vganesh/buzzfuzz.html This web site in-
cludes the source code for our benchmark applications,
the automatically generated test files that expose er-
rors in these applications, and the seed test input files
that BuzzFuzz started with to generate the test files.

This paper makes the following contributions:

e Technique: It presents a new technique for us-
ing taint information to automatically fuzz input
files. This technique uses the taint information
to identify promising locations in the input file to
fuzz, while preserving the syntactic structure and
validity of the original input file.

e Results: It presents experimental results that
demonstrate the effectiveness of our technique on
two sizable open-source applications. These re-
sults show that our technique is effective in gen-
erating inputs that make it past the initial input

parsing components to automatically expose sub-
tle errors within the core of applications that have
complex input file formats.

2 Example

We next present an example that illustrates the
basic concepts and operation of BuzzFuzz. The ex-
ample presents an error that BuzzFuzz exposed in
Swifdec, an open source C program that decodes and
renders Adobe Shockwave Flash movie and animation
formats [23, 1]. Figure 2 presents two procedures: the
jpeg_decoder procedure from the Swfdec Version
0.5.5 source code and the clipconv8x8_u8_s16_c
procedure that Swfdec invokes from the libOIL Ili-
brary [3]. libOIL is an optimized inner loop library;
it contains a variety of simple functions that have been
optimized to take advantage of extended instruction set
features such as MMX [4] and Altivec [2]. Swfdec uses
various libOIL functions to improve the performance
of its image processing operations.

In the example code in Figure 2, the Swfdec
jpeg_decoder procedure reads in JPEG images em-
bedded inside Flash movie files, decodes the images,
and populates the datastructure dec that holds the
resulting decoded images. As part of this computa-
tion, it invokes the libOIL clipconv8x8 u8 sl16 c
procedure to convert 8 by 8 arrays of signed 16 bit inte-
gers into corresponding 8 by 8 arrays of unsigned 8 bit
integers. Each 8 by 8 destination array is embedded
within a larger array that holds the converted image
blocks. Because this larger array stores the decoded
image, its size depends on the size of the image that
Swifdec is currently processing.

Before the call to jpeg_decoder , Swfdec stored
the width and height of the image in dec->width
and dec->height . Swfdec originally read these val-
ues in from the (syntactically valid) Flash input file.
During the setup for the image decode, these values
were copied into the dec data structure that Swfdec
uses to store the decoded image.

Taint Tracing: Figure 2 shows in boldface the flow of
dynamic taint from dec->width and dec->height
(line numbers 3 and 6, respectively, in the source
code shown in Figure 2) to the ptr parameter of
clipconv8x8 u8_s16 c (line number 27).

As this flow illustrates, the taint flows from
dec->height and dec->width through the com-
putation of the image_size value to the ptr pa-
rameter of clipconv8x8 u8_s16_c . As part of its
dynamic taint trace computation, BuzzFuzz records
that input bytes 0x1843 through 0x1846 in the orig-
inal input Flash file (these bytes contain the image

32

33

34

35

36

37

38

39

40

jpeg_decoder(JpegDecoder * dec){
dec->wi dt h_bl ocks =

(dec->wi dth + 8+*max_h_sample - 1)/
(8 *max_h_sample);

dec- >hei ght _bl ocks =

(dec->hei ght + 8+*max_v_sample - 1)/
(8 *max_v_sample);

int rowstride;

int i mage_size;

rowstride =

dec->w dt h_bl ocks * 8+*max_h_sample/
dec->compsi.h_subsample;

i mge_size = rowstride *

(dec->hei ght _bl ocks * 8x*max_v_sample/
dec->compsi.v_subsample);
dec->ci . i mmge=malloc(i nmage_si ze);
//ILIibOIL API function call
clipconv8x8 u8 s16 c(dec->ci . i mage...);

}end of jpeg_decoder

/llibrary code reproduced bel ow

clipconv8x8 u8 s16 c(ptr..X

for (i = 0; i < 8; i++) {
for = 0;j <8 j++) {

X = BLOCKS8x8_S16 (src,sstr,i,j);
if (x <0)x =0;
if (x > 255) x = 255;

(* ((uint8_t *)((void *)ptr +
stride xrow) + column)) = x;

Figure 2. Swfdec JPEG decoder, and libOIL
Code. Highlighted code indicates dynamic
taint transfer from width and height of JPEG
image to clipconv8x8 _u8_s16 _c, the libOIL
library API

height and width that Swfdec read and copied into
dec->height and dec->width for that particular
input) influence the parameter values at the call to
clipconv8x8 u8 s16 c . BuzzFuzz also records the
fact that Swfdec interprets input bytes 0x1843 through
0x1846 as integer values.

Fuzzed Test Input Generation: Because the
call to clipconv8x8 u8 _s16 c is an attack point,
BuzzFuzz fuzzes the corresponding input bytes 0x1843
through 0x1846 when it constructs its new test input.
Specifically, BuzzFuzz uses the fact that Swfdec inter-
prets the input bytes as integers to set the height and
width to the extremal value Oxffff in the new test input
files. Bytes that do not affect values at attack points
are left unchanged.

Execution on Test Input: When Swfdec attempts
to process the new fuzzed test input, the computa-
tion of image_size overflows, causing the call to
malloc to allocate a destination image array that is
too small to hold the decoded image. The resulting out
of bounds array writes in clipconv8x8 u8_s16 c
cause Swfdec to fail with a SIGSEGV violation.

Discussion: This example illustrates several features
of the BuzzFuzz system. First, the use of taint trac-
ing enables BuzzFuzz to automatically find input file
bytes that it can change without destroying the syntac-
tic structure of the original input file. In our example,
the taint tracer identifies which bytes in the input file
represent the integer height and width. This informa-
tion enables BuzzFuzz to apply targeted changes that
preserve the underlying syntactic structure of the in-
put Flash file. The result is that the new fuzzed input
Flash file makes it past the initial input parsing compo-
nents to exercise components (like the jpeg_decode
procedure) in the core of the computation.

Second, this use of taint information enables
BuzzFuzz to operate in a completely automatic, push-
button fashion. In effect, BuzzFuzz observes how the
application itself manipulates the input file bytes to
discover how to change the input without invalidating
the underlying synactic structure of the original input
file. There is no need for the BuzzFuzz tester to specify
or even understand the input file format. BuzzFuzz is
therefore especially appealing for applications (such as
Swfdec) with very complex input file formats. On the
one hand, traditional random fuzzing techniques have
great difficulty producing syntactically valid input files
for such applications, and are therefore primarily use-
ful for testing the input file parsing components of such
applications. On the other hand, more structured tech-
niques that assume the presence of some specification
of the input file format require the tester to understand
and specify the input file format before effective test-

ing can begin [25, 14, 10]. By automatically discovering
enough information about the input file format to en-
able effective directed fuzz testing, BuzzFuzz makes it
possible to automatically obtain test cases that exer-
cise the core of the computation (rather than the input
parsing) without the requiring the tester to understand
or specify the input file format.

Finally, the example illustrates how library calls can
provide relevant attack points. Many modern appli-
cations make extensive use of libraries, with the core
data structures (as in Swfdec) passed as parameters to
libraries. These library parameter values are often de-
termined by specific combinations of input bytes (such
as the image height and width in our example) that the
application uses to compute the shape and form of its
internal data structures. In many cases (as in Swfdec),
related distinct values must be changed together in a
coordinated way to expose the underlying error in the
code that processes the data structures. Choosing li-
brary calls as attack points is one productive way to
identify these kinds of related combinations of input
file bytes.

3 Technique

The BuzzFuzz system, as illustrated in Figure 1, re-
quires three inputs:

e The source code of a program P written in the C
language,

e A list of attack points in the form of a list of
function names (our production BuzzFuzz system
comes with this list preconfigured to include li-
brary and system calls), and

e One or more seed inputs I for the program P.

Given these inputs, the system automatically and
without any human intervention produces new test in-
puts T that are derived from I by appropriately fuzzing
input bytes that affect values at attack points accord-
ing to the types of these attack point values.

Figure 3 graphically illustrates the operation of Buz-
zFuzz. The BuzzFuzz taint instrumentator takes as
input the source of the application under test. It pro-
duces as output the instrumented program, which runs
on the provided seed test inputs. The result of each in-
strumented execution is a BuzzFuzz attack point taint
report which indicates how specific locations in the in-
put file influence values at attack points. Finally, the
BuzzFuzz test input generator uses the taint reports
and the seed inputs to produce the fuzzed test inputs.
We next describe the individual BuzzFuzz components
in more detail.

BuzzFuzz Taint
Instrumentor

Program Source —— =

Y

Instrumented
Program

Seed Inputs

Y

Attack Point
Taint Report

BuzzFuzz
—— Test Input Generator

¢

Fuzzed Test Inputs

Figure 3. Internals of BuzzFuzz

3.1 Dynamic Taint Tracing

BuzzFuzz implements a standard taint tracing algo-
rithm. The first step is to process the source code of the
program-under-test to appropriately insert calls to the
BuzzFuzz taint trace library. This library maintains
a mapping that records, for each computed value, the
input bytes that affect that value. This mapping is im-
plemented as a hash table that maps addresses to sets
of byte locations in the input file. Whenever the appli-
cation uses a set of existing values to compute a new
value, the inserted taint tracing calls use the hash ta-
ble to retrieve the input byte locations for the existing
values used to compute the new value, take the union
of these sets of input byte locations, then record this
set of input byte locations in the hash table indexed
under the address where the new value is stored.

For example, consider the case where the program-
under-test uses an assignment statement to copy a
value from an input buffer into a local variable. The
inserted taint tracing call causes the BuzzFuzz dynamic
taint tracing system to retrieve the set of input byte lo-
cations for the accessed input buffer address, then store
that set of input byte locations in the hash table in-
dexed under the address of the assigned local variable.

Statements that combine multiple values to compute a
new value (for example, a statement that adds several
values) take the union of the input byte locations for
all of the values used to compute the new value.
Type Information: In addition to the file location (or
input byte location) information, the taint tracing sys-
tem also records the type of the new value. BuzzFuzz
uses this information during its directed fuzzing step
to choose appropriate extremal values for the fuzzed
input file bytes.

Procedure Calls: To trace taint across procedure
calls, BuzzFuzz maintains a stack that records informa-
tion about the taint information for procedure param-
eters. At each procedure call point, the inserted calls
to the taint trace library push taint information for the
parameters onto the stack. The taint trace calls inside
the invoked procedure then use this stack to retrieve
taint information for statements that use the parame-
ters.

Library Procedures: In certain cases BuzzFuzz does
not have access to the source code for procedures in li-
braries. BuzzFuzz is therefore unable to insert the taint
tracing calls into these procedures. BuzzFuzz instead
maintains an internal database of information about
how taint flows across a small set of important library
procedure calls. For example, BuzzFuzz’s database
specifies that taint flows from the parameter of malloc
to its return value. BuzzFuzz uses this information to
insert appropriate calls to the taint library at such pro-
cedure call points.

Attack Points: At each attack point the inserted
BuzzFuzz instrumentation records the taint informa-
tion for all of the values at the attack point each time
the attack point executes.

Report: When the execution terminates, BuzzFuzz
produces a report that contains recorded taint infor-
mation for each attack point. For each execution of
each attack point, and for each value at that execu-
tion, the report presents the list of input file locations
that influenced that value. The report also contains
the type of each value as it is used in the program. We
present several lines from a Swfdec report below. These
lines identify an attack point, a list of input bytes that
influence values at that attack point, and the types of
these input bytes.

clipconv8x8_u8_s16 _c:
((int) 0x1862 0x1863)
((int) 0x1862 0x1863 0x1864 0x1865)

Limitations: As is standard for most taint tracing
systems of which we are aware, BuzzFuzz does not trace
indirect tainting relationships that occur at condition-
als or array accesses. So if a particular set of input

bytes is used to determine whether to execute the true
or false branch of a conditional, the locations of those
bytes may not appear as influencing the values com-
puted along the executed side of the conditional. Sim-
ilarly, for array assignments taint flows only from the
array index to the assigned array element and not to
the remaining unmodified array elements.

Performance: The inserted instrumentation imposes
a performance overhead. Specifically, our results indi-
cate that the taint tracing calls cause the instrumented
version of the program to execute between 20 and 30
times slower than the original non-instrumented ver-
sion. As the results in Section 3.3 indicate, this perfor-
mance overhead does not significantly impair the abil-
ity of our system to generate test inputs that reveal
errors in our benchmark applications.

3.2 Generating Fuzzed Inputs

The first step in generating fuzzed inputs is to ac-
quire a corpus of seed inputs. Given such a set,
BuzzFuzz runs the instrumented version of the appli-
cation on each input in turn. The result is a report
containing the taint tracing information for each exe-
cution of each attack point.

The next step is to use the report to fuzz the corre-
sponding seed input to obtain a new test input. Each
report entry identifies a coherent set of input file bytes
that BuzzFuzz can change along with the type of the
value stored in that set of bytes. Many possible fuzzing
strategies are possible — for example, the new value
for the bytes may be chosen at random or from a pre-
defined set of values. The current implementation of
BuzzFuzz chooses extremal values such as very large
or small values. The specific bit-level representation of
the value is chosen based on the type recorded in the
report.

The final step is to combine and apply the changes
from all of the report entries. The current BuzzFuzz
implementation simply combines and applies changes
from all of the entries in the report. If two entries
conflict (i.e., specify overlapping but not equal byte
ranges or conflicting types), BuzzFuzz arbitrarily se-
lects changes from only one of the entries. It is, of
course, possible to apply strategies that select changes
from some but not all of the entries. It is also possible
to generate multiple fuzzed test input files from a sin-
gle seed file (by simply selecting and applying changes
from different subsets of entries).

3.3 Testing

The last step is to run the uninstrumented version of
the program on the new fuzzed test inputs and observe
any failures. These failures can then be reported to
developers.

4 Results

We experimentally evaluate BuzzFuzz on two open-
source C application programs, namely, Swidec [23]
version 0.5.5, an Adobe Flash player, and MuPDF [6]
version 0.1, a PDF viewer.

4.1 Methodology

We first obtained an initial corpus of seed input files
for each application. We would like to thank Pedram
Amini [25] for providing us with a corpus of Adobe
Flash files, and Adam Kiezun of MIT for providing us
with a corpus of Adobe PDF files. We verified that
each application processes all of the files in its corpus
correctly without failures.

We next used the corpus as a basis for directed fuzz
testing. Specifically, we provided BuzzFuzz with 1) an
instrumented version of the application program under
test (this version uses dynamic taint tracing to compute
the input bytes that affect each value at each attack
point), 2) the corpus of seed input files for that appli-
cation, and 3) the uninstrumented production version
of the application. BuzzFuzz then iterated through the
files in the corpus of seed input files, performing the
following steps for each file:

e Instrumented Execution: The instrumented
version of the application executes on the seed in-
put file. This execution produces a report that
identifies, for each attack point, the input bytes
that influence the values that occur at that attack
point and the types of these values.

e Directed Fuzzing: BuzzFuzz processes the re-
port generated in the step above, and the seed
input file in order to produce a new fuzzed test
file. This test file differs from the seed input file in
only those bytes that affect values at attack points.
Those bytes are set to extremal values, with the
specific extremal value chosen as a function of the
type of the corresponding attack point value.

e Testing: The uninstrumented version of the ap-
plication executes on the automatically generated
fuzzed test file. All failures are logged and infor-
mation (such as the test input file and stack back
trace at the point of failure) recorded.

Apps Lines of Number of Total Distinct Mean Crashes Distinct
‘ Code Fuzzed tests Crashes Errors Stack Depth per hour Errors/hour
Swidec 70,000 2152 128 5 28 11.33 0.41
MuPDF ‘ 40,000 553 1 1 7 .25 0.25
Table 1. BuzzFuzz Results

App Crash Type File:# Library Stack Depth

Swidec BADALLOC XCreatePixMap X11 23

Swidec BADALLOC XCreatePixMap X11 23

Swidec SIGABRT cairo_pen.c :325 CAIRO library 43

Swidec SIGSEGV convert8x8_c.c :130 LibOIL library 40

Swidec SIGSEGV swfdec_sprite_movie.c :377 source code 11

MuPDF | SIGSEGV atoi libc 7

Table 2. Information on Specific Errors revealed by BuzzFuzz

We conducted all experiments on a 64 bit, 3 GHz
Ubuntu Linux box.

4.2 Results

Table 1 presents our results for both Swfdec and
MuPDFEF. The first column presents the number of lines
of code in each application (excluding libraries), the
second presents the total number of fuzzed test in-
puts presented to each application, the third presents
the number of executions that failed, and the fourth
presents the number of distinct errors responsible for
these failures (in some cases a single error was responsi-
ble for failures in multiple different runs), and the fifth
presents the mean depth of the stack trace when the
failure occurred. The last two columns represent the
number of errors found per hour, and the number of
distinct errors found per hour.

We note that the error discovery rate per hour of
testing reflects the overall effectiveness of our tech-
nique. In general, the mean stack depth trace numbers
reflect the fact (discussed further below) that the er-
rors occur deep within the core of application rather
than in shallower, more peripheral components.

Table 2 presents additional detail for each error.
There is one row in the table for each error that
BuzzFuzz revealed. The first column presents the ap-
plication with the error; the second column identifies
the manifestation of the error as a specific crash type.
The next column identifies the location of the man-
ifestation of the error, either as a filename plus line
number or (if that information is not available) as a
function name. The next column identifies this loca-
tion as either in a specific named library (such as Li-
bOIL, CAIRO, X11 [3], or libc) or within the source
code of the application itself. The next column identi-

fies the depth of the stack at the manifestation point.
The final column gives a description of the fields in in-
put files that were automatically discovered and fuzzed
by BuzzFuzz in order to expose the errors in the table.

The information in this table indicates that
BuzzFuzz (configured with attack points at library
and system calls) can effectively reveal errors related
to problematic interactions across module boundaries.
Specifically, five of the six errors manifest themselves
within library rather than application code. The
BADALLOC errors, for example, are caused by the
application passing very large x and y window size pa-
rameters to the X11 graphics library. The memory
management system is unable to satisfy the library’s
ensuing attempt to allocate a data structure to hold
the (very large) window’s contents, and the program
fails because of a BADALLOC error.

The CAIRO SIGABRT error similarly involves a
problematic interaction between the application and
the library. This error occurs when a field specifying
the number of strokes in a given image representation is
inconsistent with the actual number of strokes. This in-
consistency does not effect the application until is deep
within the CAIRO library actually using the number
of strokes as it attempts to render the image. And as
discussed above in Section 1, the SIGSEGV error in
the libIOL library occurs because of an overflow when
computing the size of a memory block used to hold
converted JPEG images.

These errors reflect the difficulty of making libraries
with complex interfaces robust in the face of incon-
sistent or simply unusual or unanticipated parameter
settings. Many of the errors involve corrupted meta-
data that is passed (potentially after translation) from
the input file through the application into the library,

which either fails to check the validity of the metadata
or simply does not have enough information to do so.
The application itself, on the other hand, is often act-
ing primarily as a conduit for the information and is
in no position to perform the detailed checks required
to detect parameter combinations that may cause the
library to fail. In effect, the division of the computa-
tional task into an application plus a library has left an
information gap that provides room for errors to occur.

4.3 Comparison with Random Fuzzing

To compare directed and random fuzzing, we im-
plemented a random fuzzer that reads in an arbitrary
input file, then randomly fuzzes bytes within the file
to generate new fuzzed test files. Like the directed
fuzzing technique that BuzzFuzz uses, the purely ran-
dom fuzzer provides a fully automatic, push-button
testing environment. Unlike directed fuzzing, however,
the random fuzzer does not attempt to exploit any in-
formation about how the application processes input
file bytes. It therefore implements a less targeted test-
ing strategy.

The random fuzzer can be configured to fuzz a cho-
sen percentage of the input files. For our set of bench-
mark applications, randomly fuzzing bytes in the file
headers also almost always produces an invalid file that
is immediately rejected by the inital input parsing code.
Moreover, fuzzing over 20 percent of the remaining in-
put file bytes also almost invariably produces an imme-
diately rejected invalid file. Fuzzing less than 5 percent
of the remaining input bytes, on the other hand, pro-
duces minimally perturbed files that fail to reveal any
errors at all. We therefore chose to randomly fuzz 10
percent of the non-header bytes in the input files.

Table 3 presents our results for random fuzzing for
both Swfdec and MuPDF. The first column presents
the number of lines of code in each application (exclud-
ing libraries), the second presents the total number of
fuzzed test inputs presented to each application. Unlike
BuzzFuzz, the random fuzzer does not need to execute
an instrumented version of the application on the seed
input files. It can therefore generate new fuzzed input
files much more quickly than BuzzFuzz, which in turn
enables it to test the applications on more input files
(we ran both testers for 12 hours). The third column
presents the number of executions that failed, and the
fourth presents the number of distinct errors responsi-
ble for these failures (in some cases a single error was
responsible for failures in multiple different runs), and
the fifth presents the mean depth of the stack trace
when the failure occurred. The last two columns rep-
resent the number of errors found per hour, and the

number of distinct errors found per hour.

This random fuzzing strategy revealed three distinct
errors in Swfdec and one error in MuPUDF. Table 4
presents additional information for each of the errors.
Some of the errors overlap with the errors in Table 2
that BuzzFuzz revealed. Specifically, the first error in
Table 4 and the third error in Table 2 are the same
error. Also, the MuPDF errors are the same for both
fuzzing techniques.

The remaining errors, however, illustrate the dif-
ferent and complementary strengths of the two tech-
niques. The remaining two errors that the random
fuzzer revealed occurr in the initial parsing of the Flash
action script language embedded within the Flash in-
put file. In fact, both errors manifest themselves as
assertion failures inside the Swfdec source code. They
therefore trigger anticipated and handled fatal error
conditions (and are therefore arguably not errors at
all). On the other hand, the remaining four Swfdec
errors from Table 2 that BuzzFuzz revealed all occur
within the core of the computation after the input has
passed the initial input parsing phase. These differ-
ences reflect the effectiveness of directed fuzz testing
in 1) identifying parts of the input file that, when ap-
propriately fuzzed, expose errors within the core of the
application while 2) preserving the underlying syntac-
tic structure of input files with complex formatting con-
straints to enable the automatically generated test files
to make it past the initial parsing and input validation
to exercise the error-containing code within the core.

Note that because directed fuzz testing tends to pre-
serve the synactic structure of the seed input files, it is
not designed to reveal errors in the initial input parsing
code. And in fact, the results show that simple random
fuzzing is more effective at appropriately exercising the
parsing code to expose such errors.

5 Related Work

Fuzzing Fuzzing refers to a class of techniques for
randomly generating or mutating seed inputs to get
new test inputs. These techniques have been shown to
be surprisingly effective in uncovering errors [19, 25],
and are used heavily by security researchers. Fuzzing
is relatively cheap and easy to apply. However, it suf-
fers from several problems: many random inputs may
lead to the same bug, and the probability of producing
valid inputs may be low especially for deeply structured
formats like movies. Furthermore, the probability of
exposing certain classes of incorrect behavior, which
require many conditions to be simultaneously true in
deep program paths, can be vanishingly small.

Our directed fuzzing technique provides similar ease

Apps Lines of Number of Total Distinct Mean Crashes Distinct

‘ Code Fuzzed tests Crashes Errors Stack Depth per hour Errors/hour
Swidec 70,000 9936 198 3 19 16.5 0.25
MuPDF ‘ 40,000 555 4 1 7 2 0.5

Table 3. Random Fuzzing Results

App | Crash Type File:# Source Stack Depth

Swidec SIGSEGV swfdec_sprite_movie.c :377 source code 11

Swifdec SIGABRT swfdec_as_types.c :500 source code 22

Swidec BADALLOC swfdec_as_context.c 1967 source code 18

MuPDF | SIGSEGV atoi libc 7

Table 4. Information on Specific Errors exposed by Random Fuz

of use benefits. But because it exploits information
about how the program accesses the input file bytes
to preserve the important syntactic structure present
in the initial seed inputs, it can effectively target deep
errors in the core of the computation. The tradeoff is
that it is not designed to expose errors in the initial
input parsing code.

Grammar-based Black Box Fuzzing Black box
fuzzing tools use a grammar to characterize syntacti-
cally legal inputs [25, 5, 14]. The insight behind this
approach is that a fuzzer that understands the input
file format preserve the syntactic validity of the initial
seed inputs (or even inputs generated from scratch) and
therefore produce test inputs that make it past the ini-
tial input parsing code to exercise code in the core of
the computation.

Our directed fuzzing technique also preserves the
syntactic validity of the seed inputs to produce fuzzed
inputs that expose deep errors in the core of the com-
putation. But because directed fuzzing exploits the
availability of taint information to effectively identify
and change appropriate parts of the seed input file, it
achieves this effect without requiring the tester to un-
derstand or obtain a specification of the input file for-
mat. In general, the cost of obtaining this specification
can be substantial, especially for files (such as movie,
image, and document files) with complex file structure.
For example, see [25], Chapter 21 for an analysis of
the cost of developing a grammar-based fuzzer for the
Adobe Flash file format.

Another advantage is that the tainting information
enables directed fuzzing to target multiple regions in
the input file that must be changed together in a co-
ordinated way to expose the error. Because the com-
putation tends to combine the values of such regions
when it builds its internal data structures, this group-
ing information is readily available in the taint reports

zing

that BuzzFuzz produces.

Concolic Testing Another recent approach to au-
tomated testing has been concolic testing and its vari-
ants [12, 24, 9, 20]. Generally speaking, a concolic
tester executes the subject program both concretely
and symbolically [15] on a seed input, until some in-
teresting program expression is reached. The concrete
execution serves the purpose of choosing a program
path cheaply, while the symbolic part of the execution
is converted into a constraint, called a path constraint.
The interesting program expression under considera-
tion could be a program assertion or a conditional or
a dangerous expression like division. The path con-
straint is conjoined with a query about this program
expression (e.g., can the assertion be violated or can
negation of the conditional lead to a viable alternate
path or can the denominator of the division go to zero),
and fed to a constraint solver for solution. The solu-
tion, in terms of variables representing the input, is a
test case that can exercise the program path and the
program expression in interesting ways, potentially re-
vealing an error. Concolic testing has been shown to be
effective, has the advantage of being systematic, and is
usually completely automatic.

However, concolic testing faces several challenges [7,
11]. First is the exponential explosion in the number
of shallow paths in the early part of the code (usually
parser code) that are systematically explored by con-
colic testers. In many cases, and especially for appli-
cations that process highly structured input files, the
constraint solver gets bogged down exploring the many
shallow execution paths that lead to parser errors. One
way to ameliorate this problem is to augment the con-
colic tester with a grammar that specifies the legal in-
put file format [13]. By using the grammar to guide
the constraint satisfaction, it is possible to avoid ex-
ploring many error cases in the input parsing code. As

for grammer-based black box fuzzing, a potential draw-
back is the need to obtain a grammar that characterizes
the legal inputs.

The second issue is that, once the concolic tester
makes it past the initial input parsing stages, the re-
sulting deeper program paths may produce very large
constraints with complex conditions that current state
of the art constraint solvers are unable to handle. This
is especially problematic for deep program paths that
contain hard-to-invert functions like hash functions or
encryption.

The common denominator between concolic testing
and its variants on the one hand, and BuzzFuzz on
the other is that they both use the program source in
order to generate some kind of symbolic information
for each program variable in a particular concrete pro-
gram run. However, the key difference is in the kind of
symbolic information maintained by each technique. In
the case of concolic testing, the symbolic information is
essentially a logical expression for each variable that se-
mantically captures all possible values these variables
can take for the particular program path chosen by
the concrete execution. In contrast, BuzzFuzz simply
maintains the set of input bytes that influence the pro-
gram variables in the particular program path chosen,
in particular for the variables involved in the attack
points. In other words, BuzzFuzz uses a simpler and
more tractable algebra of symbolic expressions, i.e.,
sets of input bytes per program variable, as opposed
to concolic testers, which maintain logical expressions
per program variable.

This distinction in the kind of symbolic information
maintained by each technique is a key differentiator.
For programs whose inputs are highly structured, con-
colic execution of deep program paths may result in
heavyweight constraints that are difficult or even im-
possible to solve. BuzzFuzz, on the other hand, works
with much lighter weight symbolic information and is
therefore capable in practice of exploring much deeper
program paths and revealing errors that occur deeper
in the computation. The trade-off, of course, is that
BuzzFuzz cannot systematically enumerate inputs that
exhaust the program execution space — the probability
of exposing an error depends entirely on the interaction
between the fuzzing algorithm and the characteristics
of the application.

Dynamic Monitoring using Taint Tracing Dy-
namic taint tracing has also been used to find potential
security vulnerabilities and monitor deployed applica-
tions for the presence of potential security attacks. The
idea is to use the taint information to detect situations
in which the program uses input data in a potentially
dangerous way (such as the target of a branch instruc-

10

tion) [16, 21, 22].

Protocol Induction The goal of automatic proto-
col induction or protocol reverse engineering is to auto-
matically infer the file format or the grammar for valid
inputs of a given program [8, 26, 17]. Like our tech-
nique, these techniques use taint tracing to obtain in-
formation about the structure of the input file. Unlike
our technique, which aims to expose errors by modify-
ing targeted parts of the input file, the goal of protocol
induction is simply to obtain an understanding of the
input format.

6 Conclusions and Future Work

In comparison with other testing approaches, ran-
dom testing offers clear advantages in automation, ease
of use, and its ability to generate inputs that step out-
side the developer’s expected input space. Our new
directed fuzz testing technique, as implemented in our
BuzzFuzz tool, complements existing random testing
techniques to enable, for the first time, fully automatic
generation of test inputs that exercise code deep within
the semantic core of applications with complex input
file formats.

A key insight behind the success of our technique is
the opportunity to use taint tracing to obtain informa-
tion about which input bytes to change to target spe-
cific attack points deep within the computation. This
taint information enables BuzzFuzz to perturb the seed
input files without violating their syntactic validity. It
also shows BuzzFuzz how to identify and change mul-
tiple regions of the input file that must be modified in
a coordinated way to expose errors. One particularly
important aspect of this taint information is that, with
an appropriate taint tracing system in place, it is avail-
able without any human intervention or, indeed, any
need for the tester to even understand the input file
format. This property makes it especially appropriate
for testing programs with complex input file formats.

Testing is currently the most effective and widely
used technique for enhancing program robustness and
reliability. By opening up a new region of the test-
ing space for automatic exploitation, our directed fuzz
testing technique promises to help developers find and
eliminate deep subtle errors more quickly, efficiently,
and with less effort.

References

[1] Adobe macromedia shockwave flash file for-
mat. http://en.wikipedia.org/wiki/
Adobe_Flash

2]

3]

[13]

[14]

Altivec instruction set. http://en.
wikipedia.org/wiki/AltiVec

Gnome and freedesktop enviroments. http:
/len.wikipedia.org/wiki/Freedesktop.

org .

Mmx instruction set. http://en.wikipedia.
org/wiki/MMX_(instruction_set)

Wikipedia entry on fuzzing. http://en.

wikipedia.org/wiki/Fuzz_testing

T. Andersson. Mupdf: A pdf viewer. http://
cexvii.net/fitz/

P. Boonstoppel, C. Cadar, and D. R. Engler.
Rwset: Attacking path explosion in constraint-
based test generation. In TACAS, pages 351-366,
2008.

J. Caballero, H. Yin, Z. Liang, and D. Song. Poly-
glot: automatic extraction of protocol message
format using dynamic binary analysis. In CCS 07:
Proceedings of the 14th ACM conference on Com-
puter and communications security, pages 317—
329, New York, NY, USA, 2007. ACM.

C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: Automatically generating inputs
of death. In Proceedings of the 153th ACM Confer-
ence on Computer and Communications Security,
October-November 2006.

J. DeMott. The evolving art of fuzzing.
http://www.vdalabs.com/tools/The_

Evolving_Art_of_Fuzzing.pdf , 2006.

P. Godefroid, A. Kiezun, and M. Y. Levin.
Grammar-based whitebox fuzzing. In PLDI, pages
206-215, 2008.

P. Godefroid, N. Klarlund, and K. Sen. Dart: di-
rected automated random testing. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and imple-
mentation, pages 213-223, New York, NY, USA,
2005. ACM.

P. Godefroid, M. Y. Levin, and D. Molnar. Au-
tomated whitebox fuzz testing. In Network and
Distributed Systems Security Symposium, 2008.

R. Kaksonen. A functional method for assessing
protocol implementation security. Technical Re-
port 448, VT'T Electronics, 2001.

11

[15]

[16]

[17]

18]

[19]

[21]

J. C. King. Symbolic execution and program test-
ing. In Communications of the ACM, volume
19(7), pages 385-394, 1976.

E. Larson and T. Austin. High coverage detec-
tion of input-related security facults. In SSYM’03:
Proceedings of the 12th conference on USENIX Se-
curity Symposium, pages 9-9, Berkeley, CA, USA,
2003. USENIX Association.

Z. Lin and X. Zhang. Deriving input syntactic
structure from execution. In Proceedings of the
16th ACM SIGSOF'T International Symposium on
Foundations of Software Engineering (FSE’08),
Atlanta, GA, USA, November 2008.

B. Miller. Fuzzing website. http://pages.cs.
wisc.edu/ ~ bart/fuzz/fuzz.html , 2008.

B. P. Miller, L. Fredriksen, and B. So. An empir-
ical study of the reliability of unix utilities. Com-
mun. ACM, 33(12):32-44, 1990.

D. Molnar and D. Wagner. Catchconv: Symbolic
execution and run-time type inference for integer
conversion errors. Technical Report UCB/EECS-
2007-23, University of California, Berkeley, CA,
Feb 2007.

J. Newsome and D. Song. Dynamic taint analysis
for automatic detection, analysis, and signature
generation of exploits on comnodity software. In
NDSS, 2005.

A. Nguyen-Tuong, S. Guarnieri, D. Greene,
J. Shirley, and D. Evans. Automatically hardening
web applications using precise tainting. In IFIP
Security, 2005.

B. Otte and D. Schleef. Swfdec: A flash animation
player. http://swfdec.freedesktop.org/

wiki/

K. Sen, D. Marinov, and G. Agha. Cute: a con-

colic unit testing engine for c. SIGSOFT Softw.
Eng. Notes, 30(5):263-272, 2005.

M. Sutton, A. Greene, and P. Amini. Fuzzing:
Brute Force Vulnerability Discovery. Addison-
Wesley Professional, 1 edition, July 2007.

G. Wondracek, P. M. Comparetti, C. Kruegel, and
E. Kirda. Automatic network protocol analysis.
In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS08,
2008.

