
discovRE: Efficient Cross-Architecture Identification
of Bugs in Binary Code

Sebastian Eschweiler∗†, Khaled Yakdan∗†, Elmar Gerhards-Padilla†,
∗University of Bonn, Germany

{yakdan, eschweil}@cs.uni-bonn.de

†Fraunhofer FKIE, Germany
elmar.gerhards-padilla@fkie.fraunhofer.de

Abstract—The identification of security-critical vulnerabilities
is a key for protecting computer systems. Being able to perform
this process at the binary level is very important given that
many software projects are closed-source. Even if the source
code is available, compilation may create a mismatch between
the source code and the binary code that is executed by the
processor, causing analyses that are performed on source code to
fail at detecting certain bugs and thus potential vulnerabilities.
Existing approaches to find bugs in binary code 1) use dynamic
analysis, which is difficult for firmware; 2) handle only a single
architecture; or 3) use semantic similarity, which is very slow
when analyzing large code bases.

In this paper, we present a new approach to efficiently
search for similar functions in binary code. We use this method
to identify known bugs in binaries as follows: starting with
a vulnerable binary function, we identify similar functions in
other binaries across different compilers, optimization levels,
operating systems, and CPU architectures. The main idea is to
compute similarity between functions based on the structure of
the corresponding control flow graphs. To minimize this costly
computation, we employ an efficient pre-filter based on numeric
features to quickly identify a small set of candidate functions.
This allows us to efficiently search for similar functions in large
code bases.

We have designed and implemented a prototype of our
approach, called discovRE, that supports four instruction set
architectures (x86, x64, ARM, MIPS). We show that discovRE is
four orders of magnitude faster than the state-of-the-art academic
approach for cross-architecture bug search in binaries. We also
show that we can identify Heartbleed and POODLE vulnerabilities
in an Android system image that contains over 130,000 native
ARM functions in about 80 milliseconds.

I. INTRODUCTION

One key problem in computer security is the identification
of bugs and security-critical vulnerabilities in software. Despite
intensive efforts by the research community and the industry,
vulnerabilities continue to emerge regularly in popular soft-
ware projects. Unfortunately, a single flaw in program code,
such as the failure to check buffer boundaries or sanitize
input data, can render the whole program vulnerable, which
can have a huge security impact given that popular software

programs are used by millions of people on a daily basis.
Prominent recent examples of these cases include the Heart-
bleed vulnerability in the cryptographic library OpenSSL [5],
the “Shellshock” vulnerability in GNU Bash [8], and the
POODLE vulnerability in the SSLv3 protocol [7]. Given the
evolving nature of programs and the increasing complexity,
efficient and accurate approaches to identify vulnerabilities in
large code bases are needed.

There has been an extensive research on identifying vul-
nerabilities at the source code level. Security research has
focused on finding specific types of vulnerabilities, such as
buffer overflows [66], integer-based vulnerabilities [17, 59],
insufficient validation of input data [37], or type-confusion
vulnerabilities [42]. A similar line of research to our work
is identifying bugs in source code by searching for code
fragments similar to an already known venerability [27, 34,
35, 38, 63]. Unfortunately, performing bug search at the
source level only is not sufficient for two reasons: first, many
prominent and popular software projects such as MS Office,
Skype, and Adobe Flash Player are closed-source, and are
thus only available in the binary form. Second, compilation
optimizations may change some code properties, creating a
mismatch between the source code of a program and the
compiled binary code that is executed on the processor [15].
For example, zeroing a buffer containing sensitive information
before freeing it may be marked as useless code and thus
removed by the compiler since the written values are never
used at later stages. As a result, performing analysis on the
source code may fail to detect certain vulnerabilities. This
illustrates the importance of being able to perform bug search
at the binary level.

Bug search at the binary level is very challenging. Due to
the NP-complete nature of the compiler optimization problem
[12], even recompiling the same source code with the same
compiler and optimization options can potentially alter the
resulting binary. In many cases the same source code is com-
piled using different toolchains, i.e., compilers or optimization
levels. This can heavily alter the generated binary code, making
it extremely difficult to identify the binary code fragments that
stemmed from the same source code fragment. This is even
further complicated by the fact the same source code can be
cross-compiled for different CPU architectures, which results
in binaries that differ, among others, in instruction sets, register
names, and function calling conventions.

Previous work to identify bugs in binary code either relied
on dynamic analysis [e.g., 23], supported a single architec-
ture [e.g., 26], or used semantic similarity [e.g., 53, 44]. Dy-
namic analysis relies on architecture-specific tools to execute

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23185

or emulate binaries. As a result, extending these approaches
to support other architectures would be tedious. Moreover,
code coverage is a fundamental shortcoming for any dynamic
approach, limiting the amount of code that can be searched
for bugs. Approaches based on semantic similarity provide the
most accurate results. However, SAT/SMT solvers which are
often used to measure semantic similarity are computationally
expensive. For example, the most recent and advanced method
to perform cross-architecture bug search in binary code needs
on average 286.1 minutes for each 10,000 basic blocks to
prepare a binary for search. This means that it would need
about one month to prepare a stock Android image that
contains about 1.4 million basic blocks. This motivated us
develop a new and efficient bug search method that can be
used with realistically large code bases.

In this paper, we aim at improving the state of the art by
presenting a new approach for robust and efficient search of
similar functions in binary code. We apply this approach to
identify already known bugs in binaries as follows: starting
with a known vulnerable binary function, we are searching for
binaries containing the same vulnerable function, which are
possibly compiled for different architectures and compiler opti-
mizations. To this end, we identify a set of code features that do
not vary a lot across different compilers, optimization options,
operating systems, and CPU architectures. These features can
be grouped in two categories: structural features and numeric
features. The structural features denote the structure of control-
flow inside a binary represented by its CFG. Our experiments
show that structural information is a very robust feature for
function similarity. However, it is computationally expensive
and impractical for comparing a large number of functions.
To remedy this situation, we use the second type of features.
Numeric features represent meta information about a binary
function, e.g., the number of instructions and number of basic
blocks. We embed these numeric features in a vector space and
leverage techniques from machine learning to quickly identify
a set of candidates to be checked for structural similarity. We
implemented a prototype of our approach called discovRE.
Based on the implementation, we evaluate the correctness
of our method and show that it is four order of magnitude
faster than the state-of-the-art academic approach for cross-
architecture bug search in binary code. Also, based on a
vulnerable function extracted from x86 OpenSSL code, we
show that we can find the Heartbleed vulnerability in an
Android system image that contains over 130,000 native ARM
functions in less than 80 milliseconds.

In summary, we make the following contributions:

• We present a novel, multistaged approach for efficient
and robust search of binary functions in large code
bases. The key property of our approach is that it works
across different CPU architectures, operating systems, and
compiler optimization levels.

• We propose a set of robust numeric features that allow
for a fast similarity comparison between binary functions.

• We introduce a new metric to measure structural similarity
between two binary functions based on the maximum
common subgraph isomorphism (MCS). To reach effi-
ciency, we use a very good approximate and efficient
solution to the MCS problem.

• We implement a prototype of our approach called dis-
covRE, and evaluate its performance against state-of-the-
art approaches.

• We demonstrate the application of discovRE for cross-
architecture vulnerability search in real-world applica-
tions.

II. APPROACH OVERVIEW

We focus on a similar use case to the one presented by
Pewny et al. [53]. That is, we start from a known bug (vul-
nerable function) and then search for the same vulnerability in
other binaries by identifying similar functions in those binaries.
A high-level overview of discovRE is presented in Figure 1.
It takes as input a code base of known functions and a binary
function to be searched in the code base. We use IDA Pro [6]
to disassemble the binary code and then extract numeric and
structural features that we use to compute similarity. Examples
for numeric features are the number of instructions, size of
local variables, and number of basic blocks (§III-B). Structural
features include the function’s CFG and other features of its
basic blocks. Should the binary be obfuscated several methods
can be used to extract the binary code (e.g., [39], [60], or [65]).
For each function the code base stores the set of extracted
features.

The similarity computation comprises two filters: a numeric
filter, and a structural filter. These filters have increasing
precision, but also increasing computational complexity. For
this reason we have combined them in a pipeline so that we can
filter out dissimilar functions at an early stage. Thus, we use
the complex filter only on a small set of candidate functions.

Numeric filter. The numeric features of the searched function
serve as search pattern in the code base. We use the k-Nearest
Neighbors algorithm (kNN) to find similar functions based
on these features. Here, we use the observation that numeric
features can be compared efficiently. To this end, we identified
a set of features that enables a reliable comparison of functions
across different architectures.

Structural similarity. This is the most precise yet most
complex filter. This filter checks the similarity of the CFG
of the target function against the set of candidates that passed
the previous two filters (§III-C). To this end, we present a
similarity metric based on the maximum common subgraph
isomorphism (MCS). Although the MCS problem is NP-
hard, there exist efficient solutions that achieve a very good
approximation.

III. DISCOVRE

In this section we describe discovRE in details, focusing
on the techniques that it uses to find similarities between
binary functions. In order to identify a robust set of features,
i.e., features that do not change or change only slightly over
different compilers, compilation options, operating systems
and CPU architectures, we need a code base that allows for
a substantial analysis. Hence, we start by describing the data
set that was used to derive robust features and several key
parameters.

2

Code Base

Vulnerable
Function

Feature Extraction

Numeric
Features

Structural
Features

Similarity Computation

Numeric
Filter

Structural
Similarity Match

Fig. 1: discovRE architecture

A. Data Set

To derive robust features, we needed a large collection
of binaries that are compiled with a variety of compilers,
compilation options and for different CPU architectures and
operating systems. Further, in order to match functions from
different binaries, a ground truth is required at binary function
level. This is possible by keeping the symbolic information in
the binary. To the authors’ best knowledge, no such collection
exists, and we therefore created it ourselves. To this end, we
selected four widely used compilers, three CPU architectures,
and two operating systems. Seven well-known open source
projects were compiled with above combinations where feasi-
ble with a total of over 1,700 unique compiler options. In the
remainder of this section, we present the details of our data
base.

For personal computers and server systems, the most
prevalent CPU architectures today are Intel-compatible x86
and x64 CPUs. In the world of mobile computing, the ARM
architecture is the most common one. The design philosophy
behind both CPUs is different. While Intel CPUs offer a rich
instruction set (CISC architecture), ARM CPUs are designed to
support a limited set of CPU instructions (RISC architecture).
A more detailed discussion about the differences is out of the
scope of this work. From various revisions, the ARM v7 CPU
was selected for its wide distribution in consumer hardware.
For x86 and x64, we allowed the compiler to utilize extended
instruction sets, such as MMX and SSE.

To cover a vast spectrum of compilers, we used four of the
most widely used compilers. Namely, the compilers GNU GCC
version 4.8.2 (GCC)[25], LLVM Clang version 3.3 (CL)[41],
Intel ICC version 14.0.1 (ICC)[31] and Microsoft Visual C++
version 16.00 (VC)[48] were chosen. All selected compilers
support the Intel x86 and x64 architectures. GCC and CL addi-
tionally support the ARM architecture. We compiled Windows
binaries with GCC (MinGW), ICC, and VC. Linux binaries
were compiled with GCC, ICC, and CL.

Regarding compiler optimization options, we only set one
explicit limit. We excluded the optimization function inlining.
Inlining replaces the function call to small functions by the
actual code of that function. Thus, the resulting binary lacks
a function call at this location for the benefit of improved
runtime, however, at the cost of slightly larger binary size.
Function inlining would have interfered with establishing a
ground truth, as there would emerge a code overlap in the
corresponding function labels.

Windows Linux

GCC CL ICC VC GCC CL ICC
Intel x86 166 - 98 120 166 83 98
Intel x64 166 - 98 120 166 83 98
ARM v7 - - - - 166 83 -

TABLE I: Number of compilation options per compiler and
CPU architecture

From the remaining compiler optimization options, we
selected a wide spectrum. Alongside standard compiler options
that have no special optimizations or optimize for speed
or size, options that aim at specific optimizations, such as
loop unrolling, were taken into account. Table I shows the
number of different compilation options per compiler and
CPU architecture. There are altogether 1,711 different compiler
options.

1) Open source projects: The evaluation requires the col-
lection of source code to meet several conditions: firstly,
the source code needs to be compiled on different operating
systems and CPU architectures, secondly, the source code has
to be compatible with the selected compilers.

We selected BitDHT [1], GnuPG [2], ImageMagick [30],
LAME [57], OpenCV [32], SQlite [3], and stunnel [4] for
our experiments. They contain a total number of over 31,000
functions that implement a wealth of different algorithms. All
libraries are widely used and hence serve well as testing body.

When compiling for different operating systems or CPU
architectures, it has to be made sure that the underlying
source code remains the same. During the compilation process,
the preprocessor checks for a set of definitions that aim at
distinguishing the corresponding operating system or CPU ar-
chitecture, e.g., #ifdef WIN32. The scrutinized open source
projects contain several code portions that are specific to a
certain operating system. These functions were removed from
the data set, as they implied changes of the source code
with inevitable changes in the resulting binary. We identified
and excluded 1,158 functions that contained such OS-specific
code. Additionally, some functions contain highly optimized
assembler code. Assembler code is not affected by compiler
optimizations and thus the resulting machine code remains the
same over all compiliation options. As the outcome of the
evaluation over these binary functions would be quite clear,
we decided to remove them.

3

We observed that some compilation options result in the
same binary code. To identify binary duplicates, it does not
suffice to compare the binaries by their checksums, as some
compilers insert the compilation time stamp into the binary.
Instead, we used ssdeep with a minimum similarity score of
95. This procedure reduced the number of unique binaries
from over 1,700 to about 600 for each corresponding set of
binaries. This means that many compilation options seem to
have virtually no effect on the resulting binaries.

By leaving the symbolic information intact during compila-
tion we could match functions from different binaries by their
name. The resulting machine code is not altered by keeping
symbols, as this information resides either in a different part
of the executable or is stored in an external file, depending on
the compiler and compilation options. Special care needed to
be taken with idiosyncrasies in the compiler name-mangling
schemes to match the symbolic names.

All binaries were disassembled and the features were
extracted for each function. The commercial disassembler IDA
Pro [28] was used as framework. It required little implemen-
tation effort, as it natively supports the analysis of a vast
number of different CPU architectures. Additionally, IDA Pro
is able to load symbolic information from different compilers.
We only considered functions with at least five basic blocks
in our experiments. This is unproblematic as the probability
that less complex functions have a vulnerability is significantly
lower [46].

With all above considerations, 8,895 individual functions
with at least five basic blocks could be matched by their
symbol name over all compilation options. This resulted in
over 6 million individual binary functions.

2) Removal of duplicate functions: Exact binary duplicates
obviously have the same numeric and structural features. As
these would lead to a bias during the robustness analysis of
the features, we first needed to exclude them. To this end, we
calculated the checksum of each function over its bytecode
sequence. In the bytecode all references to memory locations
were zeroed as they are likely to change over compilations.
This includes target addresses of calls, string references and
other pointers such as virtual method tables.

Despite careful removal of duplicates at file level we still
observed that a large amount of functions had the same check-
sum. After eliminating the possibility of a hash collision from
different inputs, we could think of two possible reasons for this
phenomenon: Either the source code had been duplicated, i.e.,
there exist two different functions with the same source code,
or the source code had been compiled to the same machine
code, despite different compilation options.

We checked both hypotheses and found both to be true.
While the duplication of source code amounted for 1.41 %
of the total code base, the lion’s share were compilation
duplicates with a total amount of 58.06 %. Although very
different compilation options had been selected, they seemed
to have only limited effect on the resulting binary code. This
insight is especially interesting for labeling methods based on
the binary code, such as IDA FLIRT [28].

3) Identification of robust numeric features: Each function
holds a wealth of numeric information or ”meta data”, e.g.,

the number of instructions. For the numeric filter, the key
hypothesis is that there exists a set of numeric features that
can correctly characterize a binary function, even across above
described boundaries. The intuition is that a function has
semantics, which is expressed in the source code by a certain
syntax. The compiler translates the function’s source code
to a target platform, where it can use several optimizations.
However, the underlying semantics must remain the same.
Thus, certain key features should not alter significantly.

As an extensive description of all scrutinized features is
outside the scope of this work, we only concentrate on the most
interesting ones. Quite obvious is the number of instructions,
the size of local variables and the number of parameters. We
additionally classified each instruction by its functionality [33].
The classes are arithmetic, logic, data transfer, and redirection
instructions. Based on the CFG, we counted the number of
basic blocks and edges. Additionally, we counted the number
of strongly connected components as a rough estimate for
loops. By analyzing the call graph we counted the number of
incoming and outgoing edges to/from a function as a measure
how ”often” a function is called and how many functions it
calls.

There are two key aspects to assess the robustness of a nu-
meric feature: Firstly, its value should only change minimally
over all compilation options, and secondly, the values should
be distributed over a larger domain.

To assess the quality of the former, we employed the
Pearson product-moment correlation coefficient. A value of
−1 resembles perfect anti-correlation of two numeric vectors,
a value of 0 means no correlation, and a value of +1 denotes
perfect correlation. Here, we are seeking correlations towards
+1. To generate the numeric vectors, we matched the symbolic
names of the functions over the according binaries and ex-
tracted the scrutinized feature. We then calculated the average
over all pair-wise correlation coefficients and additionally
the standard deviation. The quality of the value distribution
was checked by counting the number of different values and
calculating the standard deviation.

Table II shows the robustness of various features. Higher
values in the first two columns imply better robustness of a
selected feature. Column three displays the average correlation,
column four shows the standard deviation of the correlation.
We aim for a high average correlation and a low standard
deviation. Highlighted in Table II are the features we selected
as sufficiently robust.

B. Numeric filter

To minimize the expensive structural comparison of two
CFGs, we added an efficient filter by only relying on numeric
features. We chose the kNN algorithm, as it fits best for a
candidate search. The filter uses the robust numeric features
described above to efficiently identify a set of candidates. In
this section, we will present the details of the filter and discuss
potential alternatives.

There exists a vast amount of machine learning algorithms
that are apt to search a function in a code base by their numeric
features. However, the search for similar functions has some
special requirements that allow us to sort out some machine

4

Feature sd(values) values avg.cor sd(cor)

Arithmetic Instr. 39.483 623 0.907 0.109
Function Calls 22.980 273 0.983 0.073
Logic Instr. 49.607 625 0.953 0.067
Redirections 40.104 556 0.978 0.066
Transfer Instr. 163.443 1,635 0.961 0.075
Local Vars. 2.78E6 890 0.983 0.099
Basic Blocks 48.194 619 0.978 0.067
scc 25.078 389 0.942 0.128
Edges 76.932 835 0.979 0.066
Incoming Calls 46.608 261 0.975 0.086
Instr. 295.408 2,447 0.970 0.069
Parameters 2.157 38 0.720 0.228

TABLE II: Robustness of numeric features. The selected
features are highlighted.

learning algorithms. One key requirement is performance.
Hence, to make the system feasible for real-world applications,
the search algorithm needs to find similar elements in a
large amount of elements in a few milliseconds. Memory
consumption should be moderate to cope with large code bases.
The classification algorithm should be able to return multiple
elements in one search. Further, the algorithm needs the ability
to cope with many different labels, as the number of functions
in the database is roughly the same size as the number of
labels.

The machine learning algorithm being suited best for all
aforementioned criteria is the kNN algorithm and was hence
chosen as numeric filter. a potential alternative are Support
Vector Machines, however, they require relatively much mem-
ory, additionally, the setup times are much higher. The main
benefit of kNN is that the list of the k most similar functions
can be retrieved. Next, the control flow graphs (CFGs) of
the resulting candidate functions are compared to that of the
queried function.

1) Data normalization: The numeric features have different
value ranges. For example, the size of local variables com-
monly ranges from zero to a few thousand bytes, while the
number of arguments is in the range of zero to about a dozen.
This would lead to problems in the distance calculation of
the kNN algorithm. Hence, each feature is normalized, i.e.,
its value domain is adjusted to an average value of 0.0 and
a standard deviation of 1.0. Both statistic values were derived
from the data set.

It is well possible that two functions collide wrt. their nu-
meric features, i.e., the features have the same values. During
the code base creation phase, duplicate entries are mapped to
the same point in the vector space. If that representative point
is returned by the kNN algorithm, all functions that are mapped
to that point are returned. Additionally, a distance threshold is
introduced to remove functions that are too dissimilar.

2) Evaluation of the numeric filter: There exists a plethora
of different implementations of the kNN algorithm. We se-
lected OpenCV’s Fast Library for Approximate Nearest Neigh-
bors (FLANN) [50]. It brings a variety of different nearest
neighbor implementations, of which we selected three different
that each highlight special aspects:

• linear index,
• k-d trees, and
• hierarchical k-means.

The linear index iterates over all elements of the search
space and stores the current nearest neighbors in a priority
queue of size k. Once all elements have been visited, the queue
contains the k nearest elements. Hence, the query times are
in O(n). As the algorithm does not need any special data
structures for storage, the memory consumption is negligible.
We chose this algorithm to serve as lower/upper bound to
give an estimate about the expected times. The k-d trees
algorithm is a set of multidimensional binary search trees.
During the creation of one tree, one dimension is randomly
chosen and the data set is subdivided by the hyperplane
perpendicular to the corresponding axis. In the query phase,
all trees are searched in parallel [50]. For low dimensions,
the average running time of a query is O(log n). Clearly,
this algorithm requires more memory, as it needs to store
several k-d trees, which is typically in O(kn), with k being the
number of trees. We set the number of trees in the k-d trees
algorithm to 8 as a compromise between quality and memory
consumption. Hierarchical k-means recursively splits the data
set into smaller clusters, aiming at maximizing the distance
between the clusters. Also here, the expected running time of
a query is in O(log n). The space complexity is typically in
O(k + n)

One key observation from the data set was that some
optimization options generally tend to generate more machine
code instructions per line of source code. This means that we
can expect larger absolute differences for larger functions. We
responded to this phenomenon by applying the decadic log-
arithm to all numeric values. After normalizing each feature,
we populated the vector space of each kNN algorithm and
measured the times to create the search structure. After that
we let the kNN implementation search for a randomly chosen
point. We repeated the search 10,000 times and calculated the
average values where feasible.

Note that the classical application of the kNN algorithm
performs a majority vote on the labels of the k nearest
neighbors. Contrary to that, we actually submit the k nearest
points to the detailed filter stage. Figure 2 shows the creation
and query times for various numbers of points. Most notably,
k-d trees take significantly longer to set up. Interestingly, the
query times do not significantly increase over the number of
functions in the search index, apart from the linear index.

The evaluation shows that even for larger code bases (e.g.,
a full Android image has over 130,000 functions) both, the
times to create the search structure of the code base and the
times to search similar functions in it are feasible for real-world
applications. However, there still remains space for further
optimizations, as we show in the next section.

3) Dimensionality reduction: As higher dimensions of a
data set might lead to significantly longer runtime of the kNN
algorithm (see the curse of dimensionality [45]), we analyzed
the data set for linear dependencies using principal component
analysis. With five components the cumulative proportion of
the variance was already at 96.82 %. We repeated above
measurements on the data set with reduced dimensionality
only for k-d trees as selected pre-filter. By reducing the

5

●●●●●●●●●
●

●

●

●

●

●

0

5

10

15

20

25

0 250000 500000 750000 1000000
number of subroutines

tim
e

(s
ec

on
ds

)

type
●●●●● kNN − hierarchical k−means

kNN − k−d trees (8)
kNN − linear index
kNN (k−d trees (8)) + graph
VP tree

(a)

●●●●●●●●●● ● ● ● ● ●0

20

40

60

0 250000 500000 750000 1000000
number of subroutines

tim
e

(m
s)

type
●●●●● kNN − hierarchical k−means

kNN − k−d trees (8)
kNN − linear index
kNN (k−d trees (8)) + graph
VP tree

(b)

Fig. 2: (a) setup and (b) query times for the presented algorithms.

dimensionality of the search space to 5, the average setup time
was reduced by 3.1 %, and memory consumption was lowered
by 4.6 %. Most interestingly, query times dropped by 31.1 %,
which gives a significant advantage to repeated queries on the
same data structure.

4) Conclusion: Based on the above results, we decided to
use the kNN algorithm based on k-d trees. We have found that
the value k = 128 is sufficient for our purposes. Note that this
value is configurable and can be adapted.

C. Structural Similarity

In this search stage, the CFG of the queried function and
the CFGs of the candidates from the kNN search are compared.
The CFG is an easily approachable structure and has been
shown to be a good predictor for the labeling of binaries [29]
and was hence selected as structural feature. There exist
many other potential syntactic and semantic features, e.g., the
abstract syntax tree, the decompiled source code, or semantic
approaches. However, we deem them too complex, as they
require a large amount of preparation time.

Input to the complex filtering stage are the nearest neigh-
bors of the queried function. During this stage, a linear search
over all elements is conducted. We define the (intra-)procedural
control flow graph as a structural representation of a function
f given by basic blocks and their connections [13]:

Gf := ({v|v is basic block in f} , {(u, v) |u redirects to v}) .

A basic block is a sequence of machine code instructions
that has exactly one entry and one exit point. Commonly, a
redirection is a conditional jump, a function call or a return
from a function. The CFG represents the program logic of
a function and consequently should not alter substantially

over compilers and optimization options. Prior work [24, 26]
showed that features based on the CFG perform very well in
labeling functions.

1) Basic block distance: We not only rely on the structural
properties of the function. Additionally, we enrich all nodes
with several features from their respective basic blocks. First,
each node receives a label according to its topological order
in the function. Second, string references and constants are
stored. Third, each node contains its own set of robust features.
We assumed that robust features of functions closely resemble
to those of basic blocks, and hence used a similar feature set,
sans features that are not applicable at basic-block level, such
as the number of basic blocks.

For each numeric feature, we calculate the absolute differ-
ence and multiplied a weight αi to it. The resulting distance
function is:

dBB =

∑
αi |cif − cig|∑

αi max (cif , cig)

with cif being numeric feature i of function f . For lists of
strings, the Jaccard distance is used as distance measure. The
term in the denominator ensures that the distance function is in
the range [0, 1]. In Section III-C4 we will discuss good choices
for αi.

2) Graph matching algorithm: Several approaches have
been described to calculate the similarity of two CFGs. A
prominent approach uses bipartite matching on the list of basic
blocks [29]. As the bipartite matching algorithm is agnostic
to the original graph structure, the algorithm was adapted to
respect neighborhood relations. One drawback of the described
method is that an erroneous matching might propagate and thus
lead to undesirable results. The distance function between two
basic blocks is the weighted sum over their respective features.

6

A different approach is a graph similarity algorithm based
on the maximum common subgraph isomorphism problem
(MCS) [47]. It is a well-known problem to finding the largest
subgraph isomorphic to two graphs.

The traditional MCS distance function is defined as

dmcs.orig(G1,G2) := 1− |mcs (G1,G2)|
max (|G1| , |G2|)

with graphs G1, G2. To account for the similarity between
two basic blocks, we extended the distance function to the
following form:

dmcs(G1,G2) := 1− |mcs (G1,G2)| −
∑
dBB (bi, bj)

max (|G1| , |G2|)

As the problem is NP-complete for arbitrary graphs, special
care has to be taken to keep the complexity as low as possible.
Our implementation uses the McGregor algorithm [47]. In the
expansion phase candidate nodes of both graphs are checked
for potential equivalence and selected as match if they are
considered equivalent. At this stage we use the basic block
distance dBB for two purposes: early pruning and deciding
which candidate pair to expand next. A pair of basic blocks
is removed from the set of potential matches if the distance
exceeds a certain threshold. Our experiments showed that 0.5
is a good threshold. Next, the candidate pairs are sorted by
their distance. The pair with the lowest distance is expanded
first, as it is highly likely that nodes with the lowest distance
are indeed a correct match.

To cope with the potentially exponential running time, we
terminate the MCS algorithm after a predefined number of
iterations and return the currently calculated minimal distance.
We call the relaxed form the maximal common subgraph
(mCS).

3) Evaluation of the structural similarity: To evaluate the
function distances, we first needed to derive a parameter
set αi for the basic block distance dBB . On that basis, we
could scrutinize the convergence speed of the graph-based
approaches. After that, we could measure the predictive quality
of all presented approaches.

4) Evaluation of the basic block distance: Our goal was to
find a parameter set for the basic block distance function dBB

(cf. Section III-C1). However, even with debug information
there is no straightforward way of matching a piece of source
code to its corresponding basic block. Especially with more
aggressive optimization options whole portions of source code
might be removed (dead code elimination), or even duplicated
(loop unrolling). Hence, we cannot establish a ground truth at
the basic-block level to match two basic blocks from different
binaries.

The data set, as described in Section III-A, already contains
a ground truth about the labels of each function. Assuming
different functions imply (a large amount of) different basic
blocks, and simultaneously same functions imply same or
similar basic blocks, we can rephrase above problem. We
seek a parameter set that maximizes the distance of different
functions while simultaneously minimizing the distance of
equal functions. Put another way, we want to maximize the
difference between equal and different functions:

Feature αi

No. of Arithmetic Instructions 56.658
No. of Calls 87.423
No. of Instructions 40.423
No. of Logic Instructions 76.694
No. of Transfer Instructions 6.841
String Constants 11.998
Numeric Constants 15.382

TABLE III: Best parameter set for distance function dBB .

max (dBB (fi, gj)− dBB (fi, fj)) ,

with f 6= g being functions with different labels.

To approach this optimization problem we used a genetic
algorithm. Our implementation uses GALib [58], a widely
used library for genetic algorithms. We executed an arithmetic
crossover using a Gaussian mutator for 100 times. The pop-
ulation size was 500 and we let it run for 1,000 generations.
The value range for αi was set to [0..100]. For the calculation
of equally-labeled functions, two random compilation options
and two functions with the same label were drawn. Note that
we performed this experiment on all binaries, i.e., over all
compilers, optimization options and CPU architectures. The
approach was similar for differently-labeled functions, but
additionally we allowed to draw a function from the same
binary. We only made sure that the function label was different.

We scrutinized the ten highest scoring parameter sets. It
showed that strings and numeric constants were assigned a
relatively low weight by the genetic algorithm. One possible
explanation is that by far not every basic block contains
constants and thus the data is deemed less important. Over
all runs, the number of data transfer instructions received a
relatively low weight. Most probably the reason is that transfer
instructions are very common and thus do not add much
information. The highest values were given to the number
of logic instructions and the number of function calls. The
number of instructions received values in the middle of the
value range. The overall best parameter set is depicted in
Table III. The calculated average distance between different
and equal functions for this parameter set is 0.378.

5) Robustness of the Graph Distance Function: In this sec-
tion we evaluate the predictive quality of the mCS algorithm.
For that, we calculate the distance between randomly selected
equal and different functions. To keep the runtime manageable,
we abort the mCS algorithm after 10,000 iterations and return
the current maximal value.

In Figures 3 a) and b) the size of the larger function is
depicted on the x-axis, the distance is shown at the y-axis. The
average distance of functions with the same label, Figure 3a
a), is 0.436 (standard deviation 0.242). The average distance of
different functions, Figure 3b b), is 0.814 (standard deviation
0.081).

Each point is plotted with transparency, hence the opacity
of a coordinate gives an indicator about the respective density.
Additionally, topological lines depict the density at a given

7

(a) Equal Functions (b) Different Functions

Fig. 3: Scatter plot showing distance function dmcs for the set of functions.

area. In average, equal functions show substantially lower
distances than different functions.

Comparing both figures it becomes evident that the graph
distance function dmcs.orig is robust.

6) Uncoupling the distance function from function size: As
seen in Figure 3, the mCS distance measure has a tendency
towards higher values for larger graphs. This tendency is not
surprising, as larger graphs have a higher potential of adding
more constraints. E.g., some compilers optimize towards a
single returning basic block whereas other compilers create
code that allows returning from several different locations.

An approximation of the distance function to a constant has
the advantage that a constant threshold value can be used to
distinguish equal from different functions. This in turn allows
us to utilize the distance function in efficient search algorithms.

Figure 3a shows two regression lines in each graph.
The solid line is a B-spline crossing central midpoints. It
is computationally more expensive than other methods, but
gives a good estimate about the ideal regression line. It has a
relative standard error (RSE) of 0.164. The dotted line depicts
a logarithmic regression with an RSE of 0.168.

To uncouple the distance function from the number of basic
blocks, the distance function dmcs is altered in the following
way to compensate for the function size:

dmcs comp(G1,G2) :=
dmcs(G1,G2)

comp (G1,G2)

with comp being the logarithmic compensation term:

comp (G1,G2) := i+ k log (max (|G1| , |G2|)) .

7) Convergence Speed of the MCS: The potentially expo-
nential runtime of an exact solution for the maximum common
subgraph problem deems the problem unfeasible for real-
world application. The computational complexity of a good
approximation, however, may be significantly lower. Hence,
an important research question is when to terminate the mCS
algorithm, or how fast the mCS algorithm converges to its
maximum value. We conducted the following experiment only
on the basic-block sensitive approach dmcs.

Our mCS implementation provides a callback mechanism
that is invoked when a new solution is found, allowing to
collect information about the currently found subgraph. As
discussed in Section III-C2, the basic block distance function
dBB serves as good heuristic for the mCS algorithm in order
to early prune the search space. At this place, we can discard
a potential match if dBB is too high.

Figure 4 depicts the advance of the currently found max-
imal common subgraph size of the first 1,000 iterations for
an example function. After a steep, quasilinear ascend, the
mCS is reached after only 56 iterations. We conducted an
analysis of the convergence speed over our data set. In average
64.68 iterations are needed for the algorithm to generate a
common subgraph of the same size as the maximal size after
10,000 iterations. When aborting the mCS algorithm after
16max (|G1| , |G2|) iterations, the size of the largest found
subgraph reaches on average 99.11% of the subgraph size after
10,000 iterations.

As the exact value of the MCS is no precondition to cor-
rectly label functions. The potentially exponential complexity
can instead be reduced to a linear runtime with a reasonable
approximation to the MCS.

8

0

10

20

30

0 250 500 750 1000
iteration

m
C

S
 s

iz
e

Fig. 4: Advance of the current maximal subgraph of function
pkey_rsa_ctrl compiled with options CLANG 01 and
CLANG 02.

8) Comparison of dmcs with Other Distance Functions:
In Section III-C2 we described three different algorithms to
match two CFGs. The first one is based on bipartite matching,
as described in [29], the second and third algorithms are both
based on the MCS: The plain mCS algorithm dmcs.orig and
the extended algorithm dmcs, using the basic block distance
dBB as additional measure.

Figure 5 shows the receiver operating characteristics (ROC)
of the three distance functions with logarithmic compensation.
To calculate the characteristics, we computed the distances
of 1 million randomly chosen pairs of equal and different
functions. We compared the classic mCS distance function
dmcs.orig with the basic-block sensitive approach dmcs and
with the bipartite matching distance [29] The figure shows that
the dmcs performs better than the plain mCS algorithm. The
ROC curve of the bipartite matching approach is significantly
lower than that of both structure-aware approaches for low
false positive rates.

During the evaluation we also measured the respective
timings. The mCS algorithm based on dmcs.orig needed in
average 6.3 ms per function, the improved mCS algorithm
based on dmcs needed only 4.4 ms, while the bipartite match-
ing approach needed 4.2 ms.

Thus, the running times of both approaches are in the same
order of magnitude, however, the quality of our approach is
significantly higher.

9) Comparison to VP Tree: Bunke showed that the maxi-
mum common subgraph distance measure dmcs on the basis of
the MCS is a metric [18]. Hence, it is possible to use efficient
search structures, such as vantage point (VP) trees [64] to
efficiently search the most similar binary function. The usage

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

type
bipartite matching
mCS with basic block similarity
plain mCS

Fig. 5: ROC curves of different distance measures based on
the CFG.

of VP trees would make the numeric filter obsolete, as the
function CFG can be directly and efficiently searched.

A VP tree is created by selecting one element as pivot
element. All distances between the remaining elements and the
pivot element are computed. The set of remaining elements
is split up into two sets of roughly the same size based on
their distance to the pivot element. The elements closer than
the selected threshold are added to the left branch of the pivot
element, the other elements are added to the right branch. This
procedure is recursively repeated until the set size becomes
sufficiently small.

To find the nearest neighbor of a given element in the VP
tree, the distance between the pivot element (the respective
root node) and the search element is computed. The tree
is appropriately traversed by making use of the triangular
inequality of the metric until the nearest neighbor or set of
neighbors is found.

In the average case, VP trees have a logarithmic search
complexity. This comes, however, at the cost of building the
VP tree and therefore is only feasible when querying a larger
number of elements.

Also depicted in Figure 2 are the creation and search times
for a VP tree. It clearly shows that both, the creation and search
times, are significantly higher than the timings of the presented
approach. One reason for the long creation time of might be a
high number of rebalancing steps. These pose a critical point
during the creation phase. Both timings make a solution based
on VP trees infeasible for real-world applications.

IV. EVALUATION

In this section, we describe the results of the experiments
we have performed to evaluate discovRE. We first evaluate

9

the correctness of our similarity comparison approach. Then
we show the efficiency achieved by combining the numeric
and structural filters. Finally, we apply discovRE to find bugs
in binaries across several architectures.

A. Similarity Metric

To evaluate our similarity metric, we performed an exten-
sive evaluation using OpenSSL. Note that OpenSSL was not
included in the set of binaries that we used to derive code
features. For our evaluation, we compiled OpenSSL (version
1.0.1.e) for x86, MIPS, and ARM with different compilers,
compiler options, and operating systems as explained in Sec-
tion III-A. This resulted in 593 binaries with 1,293 sufficiently
large functions. We kept the debug symbols as they provide
a ground truth and enable us to verify the correctness of
matching using the functions symbolic names. For clarity, we
denote by f c,an the nth function in OpenSSL that was compiled
for architecture a and using compiler setting c. c comprises
type and version of compiler, compiler optimizations, and the
target operating system. To test discovRE for matching a given
function n, we:

1) randomly select a target function f c1,a1n to be searched for,
2) randomly select a matching function f c2,a2n ,
3) randomly select a a set F of 99,999 functions, and
4) construct the code base to be queried as C = F ∪{f c2,a2n }

(|C| = 100, 000).

We then used discovRE to query for f c1,a1n in C. The ideal
result would be f c2,a2n . To include more variety in the code
base, we included functions from the data set described in
Section III-A. We repeated the previously described process
1 million times. selecting n at random with each iteration.
Table IV shows the results of this evaluation. At a high level,
in 93,93 % of the cases the matching function was in the set
of 128 functions returned by the numeric filter (kNN). When
using the numeric filter alone, the matching function was on
average at rank 5.5. Interestingly, when combining that with
the structural filter, the matching function was always at the
first rank. The average query time was 56.48 ms, illustrating
the efficiency of discovRE. A closer analysis of the false
predictions revealed that in most cases incorrect matching
was caused by the loop unrolling compilation option. The
unrolling of loops duplicates loop bodies several times. Hence,
several numeric features are significantly altered, which in turn
increases the distance.

B. Cross-Architecture Bug Search

In this section, we apply discovRE to real-world case
studies of recent and prominent vulnerabilities. Here we base
our experiment on the techniques used by Pewny et al. [53].
This evaluation searched for the Heartbleed vulnerability in
OpenSSL binaries from three sources:

1) self-compiled binaries for x86, MIPS, and ARM
2) the Linux-based router firmware DD-WRT (r21676) com-

piled for MIPS [10]
3) a NAS device (Netgear ReadyNAS v6.1.6) with an ARM

processor [11]

We contacted the authors of [53] and they kindly agreed
to share the binaries used in their evaluation. We very much

appreciate this good scientific practice. This way, we could
ensure that both approaches are tested on the same binary code
base. All evaluations have been executed on a commodity PC
with an Intel Core i7-2720QM CPU with 2.20 GHz and 8 GB
DDR3 RAM on a single CPU core. We choose this system
because it is very similar to the setup used in their paper (even
a bit slower).

We also extend the evaluation performed by Pewny et al.
by performing bug search over all binaries of the firmware
images. In their original evaluation, the authors first extracted
the OpenSSL libraries from the firmware images and limit
the bug search to these binaries. We conduct a more realistic
experiment where we do not assume that we know the vul-
nerability exists in a given binary from the firmware image.
This is a strong assumption given that firmware images may
contain hundreds of binaries, making the problem of identify-
ing the vulnerable binary very challenging. For example, the
ReadyNAS image contains 1,510 binaries. Moreover, this is
especially true if static linking is used, where library code
is copied into the target executable. For better comparability,
we report the results on both the OpenSSL binaries and the
whole binaries contained in the firmware image. Also, the
authors reported the normalized average time needed for the
preparation and query steps. This is defined as the average
amount needed to process 10,000 basic blocks. This allowed
us to extrapolate the absolute times needed by their approach
to perform bug search on the same firmware images.

We identified a buggy function in the respective
binaries, namely we chose CVE-2014-0160 (Heartbleed).
The Heartbleed bug manifests itself in the two
functions dtls1_process_heartbeat (DTLS) and
tls1_process_heartbeat (TLS) that are virtually
identical. Thus, the search for either of the functions should
also return the other function in the list of similar functions.

Table V shows the results of the comparison of the ap-
proaches by Pewny et al. and discovRE. While the Multi-
MH method has some problems in correctly identifying TLS
from x86 in DD-WRT or DTLS from x86 in MIPS, Multi-
k-MH scores a lot better. In only one case, when trying to
match the x86 TLS function in DD-WRT it ranks the correct
function only at place 5. In contrast, discovRE always correctly
identifies the searched function(s). Summarizing, the quality of
discovRE slightly supersedes that of of Multi-k-MH.

One crucial unit of measure is the time needed to execute
a bug search, especially for real-world problems. Pewny et al.
state that the normalized running time to prepare the data was
either 18.7 minutes (Multi-MH) or 286.1 minutes (Multi-k-
MH) per 10,000 basic blocks. We measured the overall time
of our approach, i.e., including the time IDA Pro needed for
the disassembly and its analysis in order to be more realistic.
Our approach needs only 8.7 seconds for 10,000 basic blocks,
which is a speedup by two or three orders of magnitude,
depending on the approach.

In a typical scenario a binary is only prepared once and
then stored in a code base. Typically, there would several
hundreds or even thousands of binaries reside in the code
base. Once a new bug is published, the vulnerable function
is identified and queried in the code base. Thus, the far more
interesting time is the actual bug search. Here, the approach

10

Method Percent Correct Rank Query Time

kNN – k-d Trees (8) 93.93 % 5.50 0.32 ms
discovRE (kNN (k-d Trees (8)) + Graph) 93.93 % 1.00 56.48 ms

TABLE IV: discovRE evaluation with OpenSSL. The table shows the percentage of cases with correct matching, the average rank for correctly
matched functions, and the average query times.

Multi-MH Multi-k-MH discovRE

From → To TLS DTLS TLS DTLS TLS DTLS

ARM → MIPS 1;2 1;2 1;2 1;2 1;2 1;2
ARM → x86 1;2 1;2 1;2 1;2 1;2 1;2
ARM → DD-WRT 1;2 1;2 1;2 1;2 1;2 1;2
ARM → ReadyNAS 1;2 1;2 1;2 1;2 1;2 1;2

MIPS → ARM 2;3 3;4 1;2 1;2 1;2 1;2
MIPS → x86 1;4 1;3 1;2 1;3 1;2 1;2
MIPS → DD-WRT 1;2 1;2 1;2 1;2 1;2 1;2
MIPS → ReadyNAS 2;4 6;16 1;2 1;4 1;2 1;2

x86 → ARM 1;2 1;2 1;2 1;2 1;2 1;2
x86 → MIPS 1;7 11;21 1;2 1;6 1;4 1;3
x86 → DD-WRT 70;78 1;2 5;33 1;2 1;2 1;2
x86 → ReadyNAS 1;2 1;2 1;2 1;2 1;2 1;2

Preparation Normalized Avg. Time 18.7 min 286.1 min 0.14 min

Query Normalized Avg. Time 0.3 s 1 s 4.1 · 10−4 s

TABLE V: Results for Pewny et al.’s approaches Multi-MH and Multi-k-MH and discovRE for OpenSSL.

by Pewny et al. takes about 0.3 s (Multi-MH) or 1.0 s (Multi-
k-MH) to search one basic block per 10,000 basic blocks.
In comparison, our approach has a normalized average of
0.41 ms, which is three orders of magnitude faster. This value
was calculated with just the OpenSSL library in the code base.
Note that due to the nature of our approach, this value can
significantly change. E.g., the normalized average query time
for the complete ReadyNAS image with roughly 3 million
basic blocks is 0.015 ms, which would change the factor by
one order of magnitude towards our approach.

1) Cross-Architecture Bug Search in Complete Firmware
Images: As noted above, the scenario of manually identifying
and extracting potentially vulnerable binaries from a firmware
image is a tedious task. A better line of action would be
to extract all binaries from a firmware image and automat-
ically store them in the code base. To put above evaluation
into perspective, we show the total number of basic blocks
of aforementioned firmware images in Table VI. While for
example the OpenSSL binary of DD-WRT contains already
about 11,000 basic blocks, the accumulated number over all
binaries is several orders of magnitude larger.

In addition to DD-WRT and ReadyNAS, we obtained
a vulnerable Android ROM image (version 4.1.1) compiled
for HTC Desire [56]. The HTC Desire has a Qualcomm
Snapdragon CPU with an ARMv7 instruction set. We extracted
the file system and found 527 native ELF binaries. A total of
133,205 functions could be identified as sufficiently large and
were thus stored in the code base. For DD-WRT, 143 binaries

could be identified with a total of 34,884 functions. ReadyNAS
contained 1,510 binaries with a total of 295,792 functions. The
respective preparation times can be found in Table VI.

Even in a realistic scenario the overall time needed to
disassemble all binaries and extract the function features is
manageable, e.g., about 30 minutes for a complete Android
image.

For each combination of CPU architectures and firmware
image we searched the Heartbleed TLS bug and additionally
CVE-2014-3566 (POODLE). The POODLE vulnerability is
found in the function ssl_cipher_list_to_bytes. We
searched each vulnerable function 20 times in the database and
calculated average values where it was useful. Table VII gives
some insights about the search times and placements of the
queried function, split up in the two search stages of discovRE.
While the kNN algorithm is not always able to assign the
queried function a high rank, it is still always among the
first k results. In the next stage, the mCS algorithm correctly
identifies all buggy functions across CPU architectures and
ranks them first.

The query times of the kNN algorithm are under 2 ms
and thus very low, compared to the mCS algorithm. For larger
firmware images, the number of binary functions that share
similar numeric features inevitably becomes larger, as the
density increases. Hence, the number of candidate functions for
the mCS algorithm increases and so does the overall running

11

time. With well under 90 ms the time is acceptable in real-
world scenarios, even for large code bases.

Our results clearly show that the presented syntactic ap-
proach outperforms state-of-the-art semantic approaches wrt.
speed while still maintaining the same predictive quality.

C. Comparison to BinDiff

We compared our results with BinDiff [22]. BinDiff is a
comparison tool for binary files that matches identical and
similar functions in two binaries. It is based on IDA Pro and
can compare binary files for x86, MIPS, ARM, PowerPC,
and other architectures supported by IDA Pro. BinDiff is
not designed to handle our use case, i.e., searching for a
single function in a code base. It relies among others on
calling relationship of functions to identify matches in two
binaries. We emphasize that this comparison is informal, as
it is designed to help understand the quality of discovRE in
comparison to BinDiff when applied for bug search.

For this comparison, we searched for functions correspond-
ing to POODLE and Heartbleed vulnerabilities taken from an
x86 OpenSSL binary in an ARM OpenSSL binary. To create
a similar settings to our bug search use case, we removed all
functions from the IDA Pro database except for the queried
function. Then we used BinDiff to check whether it can
correctly match this function in the ARM binary. For POO-
DLE, BinDiff erroneously predicted ssl_callback_ctrl
as match (with a similarity of 0.03 and a confidence of
0.08). BinDiff also fails in the case of Heartbleed; it returned
dtls1_stop_timer as a match with a similarity of 0.01
and a confidence of 0.03. On the other hand, discovRE
correctly identified the vulnerable functions.

V. LIMITATIONS

The identification of vulnerabilities in large code bases
clearly demonstrates the capabilities of our approach. Never-
theless, there exist limitations that need to be considered: First,
our similarity is purely syntactical and thus cannot handle code
that may be heavily obfuscated to avoid similarity detection
(e.g., malware). To tackle this problem, one can leverage
approaches such as [60, 39, 65, 20] to extract and deobfuscate
the binary code and then apply discovRE on the deobfuscated
code. Moreover, the binary code of many prominent software
products is not obfuscated but instead compiled with different
options/compilers/architectures and evolves over time. Our
approach is very fast and accurate when handling these cases.

Second, our method operates at the function level and thus
cannot be used be with sub-function granularity. However,
the vast majority of bugs can be pinpointed to one or a
list of specific functions. These functions can be efficiently
identified by discovRE and presented to the user for further
analysis. Also, our approach needs a precise identification of
the functions contained in a binary. Our evaluation showed that
IDA Pro delivered satisfactory results in our experiments. To
further improve these results, one can leverage the recent and
advanced academic methods to recognize functions in binary
code such as [16, 55]. These methods employ machine learning
techniques to accurately recognize functions across multiple
operating systems, CPU architectures, compilers, and compiler
options.

Third, function inlining may heavily change the CFG of a
program. This will impact the quality of structural similarity
and may thus become problematic for our approach. We leave
the evaluation of discovRE in case of function inlining for
future work.

The functions considered by discovRE need to have a
certain amount of complexity for the approach to work effec-
tively. Otherwise, the relatively low combinatorial number of
CFGs leads to a high probability for collision. Hence, we only
considered functions with at least five basic blocks, as noted in
Section IV. The potential for bugs in small functions, however,
is significantly lower than in large functions, as shown in
[46]. Hence, in a real-world scenario this should be no factual
limitation.

VI. RELATED WORK

The development of methods for finding vulnerabilities
in software has been in the focus of security research for a
long time and several techniques have been proposed. For our
discussion of related work, we focus on approaches that aim
to measure code similarity and search for already known bugs.
There also exist orthogonal approaches that aim at finding
previously unknown bugs such as AEG [14] or Mayhem [19].
We will not discuss these approaches further since they have
a different goal and employ different methods such as fuzzing
and symbolic execution.

At the core of searching for known bugs in software is
measuring code similarity. Several works focused on finding
code clones at the source code level. Token-based approaches
such as CCFinder [38] and CP-Miner [43] analyze the token
sequence produced by lexer and scan for duplicate token sub-
sequences, which indicate potential code clones. In order to en-
hance robustness against code modifications, DECKARD [35]
characterize abstract syntax trees as numerical vectors and
clustered these vectors wrt. the Euclidean distance metric. Ya-
maguchi et al. [63] extended this idea by determining structural
patterns in abstract syntax trees, such that each function in the
code could be described as a mixture of these patterns. This
representation enabled identifying code similar to a known
vulnerability by finding functions with a similar mixture of
structural patterns. ReDeBug [34] is a scalable system for
quickly finding unpatched code clones in OS-distribution scale
code bases. Contrary to discovRE, these systems assume the
availability of source code and cannot operate at the binary
level.

Due to the significant challenges associated with comparing
binary code, many previous works support a single architec-
ture or make simplifying assumptions that do not hold in
practice. Flake et al. [24] proposed to match the CFGs of
functions, which helps to be robust against some compiler
optimizations such as instruction reordering and changes in
register allocation. However, the approach could only iden-
tify exact CFG matching and is thus not suitable for bug
search. Myles et al. [51] proposed to use opcode-level k-
grams as a software birthmarking technique. BinHunt [26]
and its successor iBinHunt [49] relied on symbolic execution
and a theorem prover to check semantic equivalence between
basic blocks. Checking for semantic equivalence limits the
applicability of this approach for bug search since it is not

12

Preparation Time in Minutes

Firmware Image Binaries (unique) Basic Blocks Multi-MH Multi-k-MH discovRE

DD-WRT r21676 (MIPS) 143 (142) 329,220 616 9,419 2.1
Android 4.1.1 (ARM) 527 (318) 1,465,240 2,740 41,921 28.7
ReadyNAS v6.1.6 (ARM) 1,510 (1,463) 2,927,857 5,475 83,766 51.4

TABLE VI: Preparation times and additional data about three real-world firmware images that are used in the evaluation of
discovRE. Note that the times shown for Multi-MH and Multi-k-MH are projected times and not actual measurements.

Heartbleed (TLS) POODLE

Query Time Query Time

From → To rank (discovRE) Multi-MH Multi-k-MH discovRE rank (discovRE) Multi-MH Multi-k-MH discovRE

ARM → DD-WRT 1;2 1.3 · 105 ms 4.3 · 105 43.8 ms 1 2.2 · 105 7.2 · 105 55.2 ms

ARM → Android 1;2 5.7 · 105 ms 1.9 · 106 49.5 ms 1 9.7 · 105 3.2 · 106 76.1 ms

ARM → ReadyNAS 1;2 1.1 · 106 ms 3.8 · 106 66.5 ms 1 1.9 · 106 6.4 · 106 80.9 ms

MIPS → DD-WRT 1;2 47.2 ms 1 54.7 ms

MIPS → Android 1;2 see above 55.2 ms 1 see above 72.4 ms

MIPS → ReadyNAS 1;2 65.7 ms 1 84.2 ms

x86 → DD-WRT 1;4 43.0 ms 1 51.2 ms

x86 → Android 1;2 see above 58.7 ms 1 see above 77.0 ms

x86 → ReadyNAS 1;5 69.8 ms 1 81.3 ms

TABLE VII: Results for searching different bugs in whole firmware images.

robust against code modifications. BINJUICE [40] normalized
instructions of a basic block to extract its semantic “juice”,
which presents the relationships established by the block.
Semantically similar basic blocks were then identified through
lexical comparisons of juices. This approach only works at
the basic block level and was extended to find similar code
fragments that span several blocks. BINHASH [36] models
functions as a set of features that represent the input-output
behavior of a basic block. EXPOSÉ [52] is a search engine for
binary code that uses simple features such as the number of
functions to identify a set of candidate function matches. These
candidates are then verified by symbolically executing both
functions and leveraging a theorem prover. EXPOSÉ assumes
that all functions use the cdecl calling convention, which
is a very limiting assumptions even for binaries of the same
architecture. David et al. [21] proposed to decompose functions
into continuous, short, partial traces of an execution called
tracelets. The similarity between two tracelets is computed
by measuring how many rewrites are required to reach one
tracelet from another. In the experiments the authors only
considered functions with at least 100 basic blocks, which is
rarely the case. Moreover, this method is not robust against
compiler optimizations. TEDEM [54] automatically identifies
binary code regions that are similar to code regions containing
a known bug. It uses tree edit distances as a basic block centric
metric for code similarity.

The most recent and advanced method to search for known
bugs in binary code across different architectures was proposed
by Pewny et al. [53]. First, the binary code is translated into the
Valgrind intermediate representation VEX [9]. Then, concrete

inputs are sampled to observe the input-output behavior of
basic blocks, which grasps their semantics. Finally, the I/O
behavior is used to find code parts that behave similarly to the
bug signature. While the use of semantics similarity delivers
precise results, it is too slow to be applicable to large code
bases.

Previous work also explored methods that rely on dynamic
analysis. Egele et al. [23] proposed Blanket Execution (BLEX)
to match functions in binaries. To this end, BLEX executes
each function for several calling contexts and collects the
side effects of functions during execution under a controlled
randomized environment. Two functions are considered sim-
ilar if their corresponding side effects are similar. Dynamic
analysis approaches use architecture-specific tools to run and
instrument executables. For this reason, they are inherently
difficult to extend to different architectures.

VII. CONCLUSION AND FUTURE WORK

We presented a system to efficiently identify already known
bugs in binary code across different compilers, compiler op-
timizations, CPU architectures, and operating systems. In the
preparation phase, a code base of known functions is analyzed
and their numeric and structural features are stored. When a
new bug is published, the vulnerable function is identified and
that function is queried. Our approach employs a two-staged
filtering approach to quickly identify the buggy function even
in large code bases. The first filter relies on a set of robust
numeric features to retrieve very similar functions based on the
kNN algorithm. These functions serve as candidates to the next

13

stage that measures the structural similarity of these candidates
to the target function. To this end we use an approximation of
the maximum common subgraph isomorphism.

We implemented our methods in a tool called discovRE and
evaluated its efficacy on real-world firmware images with up
to 3 million basic blocks. Here, the preparation time was about
50 minutes. discovRE could correctly identify buggy function
(e.g., Heartbleed or POODLE) from ARM, MIPS and x86 in
three complete firmware images in about 80 ms.

A. Future Work

One outstanding source of a large distance between two
functions with the same label is the different implementation
of string operations. While some compilers invoke a function
by pointing to the appropriate code, others apply the respective
string operation directly. Additionally, some string operations
are expressed differently, e.g., through rep prefixes vs. loops.
This leads to substantial differences in the respective CFGs.
Hence, a different representation could eliminate some of
the described drawbacks of function inlining. For example,
Yakdan et al. present a method to outline functions such as
strcpy [61]. Other graph representations of functions are
also interesting subjects for scrutinization and left for future
work, e.g., the abstract syntax tree or the program dependence
graph [62]. Additionally, we want to identify unrolled loops
to further improve the recognition rate.

In the future, we plan to evaluate the false positive rate
of discovRE. In our evaluation, the target function was in the
queried code base. If the queried function does not exist in
the binary or the binary has a patched version of the queried
function, the result is false positive. We plan to investigate
the possibility of introducing a threshold on the distance
measure to classify functions as real matches or false positives.
Additionally, the structural distance function can be modified
into a similarity score between the queried function and the
returned match.

In the future, we plan further research on using discovRE to
assist manual reverse engineering of malware. In this setting, a
malware analyst can use discovRE to find similar functions in
a new version of malware. This helps her to quickly identify
new functionality in the new version. Another line of research
that we intend to follow in the future is employing discovRE
for clustering malware families.

ACKNOWLEDGEMENTS

We thank our shepherd Thorsten Holz for his support in
finalizing this paper. We would also like to thank the anony-
mous reviewers for their valuable feedback. We are grateful to
Jannik Pewny for sharing the binaries and experiment results.

REFERENCES

[1] BitDHT. http://bitdht.sourceforge.net/ (last visit: 2015-07-30).
[2] GnuPG. http://www.gnupg.org/ (last visit: 2015-07-30).
[3] SQLite. http://www.sqlite.org (last visit: 2015-01-30).
[4] stunnel. http://www.stunnel.org/ (last visit: 2015-07-30).
[5] The Heartbleed Vulnerability. http://heartbleed.com/. (last visit 2015-

08-10).
[6] The IDA Pro Disassembler and Debugger. http://www.hex-rays.com/

idapro/.

[7] The POODLE Vulnerability. https://www.poodletest.com/. (last visit
2015-08-10).

[8] The Shellshock Vulnerability. https://shellshocker.net/. (last visit 2015-
08-10).

[9] Valgrind Documentation. http://valgrind.org/docs/manual/index.html.
(last visit 2015-10-08).

[10] DD-WRT Firmware Image r21676, 2013. ftp://ftp.dd-wrt.com/others/
eko/BrainSlayer-V24-preSP2/2013/05-27-2013-r21676/senao-eoc5610/
linux.bin (last visit: 2015-04-14).

[11] ReadyNAS Firmware Image v6.1.6, 2013. http://www.downloads.
netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip
(last visit: 2015-04-14).

[12] A. V. Aho. Compilers: Principles, Techniques and Tools, 2/e. Pearson
Education India, 2003.

[13] A. V. Aho, J. E. Hopcroft, and J. D. Vilman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1st edition, 1974.

[14] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:
Automatic Exploit Generation. In Network and Distributed System
Security Symposium (NDSS), 2011.

[15] G. Balakrishnan. WYSINWYX: What You See Is Not What You eXecute.
PhD thesis, Computer Science Department, University of Wisconsin-
Madison, 2007.

[16] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. BYTEWEIGHT:
Learning to Recognize Functions in Binary Code. In Proceedings of the
23rd USENIX Security Symposium, 2014.

[17] D. Brumley, T. Chiueh, R. Johnson, H. Lin, and D. Song. RICH:
Automatically Protecting Against Integer-Based Vulnerabilities. In
Proceedings of the 14th Network and Distributed System Security
Symposium (NDSS), 2007.

[18] H. Bunke and K. Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19(3–4):255–259, 1998.

[19] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing
Mayhem on Binary Code. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy (S&P), 2012.

[20] K. Coogan, G. Lu, and S. Debray. Deobfuscation of Virtualization-
obfuscated Software: A Semantics-based Approach. In Proceedings of
the 18th ACM Conference on Computer and Communications Security
(CCS), 2011.

[21] Y. David and E. Yahav. Tracelet-based code search in executables. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 37. ACM, 2014.

[22] T. Dullien and R. Rolles. Graph-based comparison of executable objects.
SSTIC, 5:1–3, 2005.

[23] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket Execution:
Dynamic Similarity Testing for Program Binaries and Components. In
Proceedings of the 23rd USENIX Security Symposium, 2014.

[24] H. Flake. Structural Comparison of Executable Objects. In Proceedings
of the IEEE Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), pages 161–173, 2004.

[25] Free Software Foundation. GCC, the GNU Compiler Collection, 2010.
http://gcc.gnu.org/ (last visit: 2015-01-30).

[26] D. Gao, M. K. Reiter, , and D. Song. BinHunt: Automatically Finding
Semantic Differences in Binary Programs. In Proceedings of the 4th
International Conference on Information Systems Security, 2008.

[27] F. Gauthier, T. Lavoie, and E. Merlo. Uncovering Access Control
Weaknesses and Flaws with Security-discordant Software Clones. In
Proceedings of the 29th Annual Computer Security Applications Con-
ference (ACSAC), 2013.

[28] I. Guilfanov. Fast Library Identification and Recognition Technology in
IDA Pro, 12 1997. https://www.hex-rays.com/products/ida/tech/flirt/in
depth.shtml (last visit: 2015-01-22).

[29] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale malware indexing
using function-call graphs. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 611–620. ACM, 2009.

[30] ImageMagick Studio LLC. ImageMagick. http://www.imagemagick.org
(last visit: 2015-07-30).

[31] Intel Corporation. Intel C++ Compiler. http://software.intel.com/en-us/
intel-compilers/ (last visit: 2015-01-30).

[32] Intel Corporation. The OpenCV Library. http://sourceforge.net/projects/
opencvlibrary/ (last visit: 2015-07-30).

[33] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manuals 1–3, 2009.

[34] J. Jang, D. Brumley, and A. Agrawal. ReDeBug: Finding Unpatched
Code Clones in Entire OS Distributions. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (S&P), 2012.

14

http://bitdht.sourceforge.net/
http://www.gnupg.org/
http://www.sqlite.org
http://www.stunnel.org/
http://heartbleed.com/
http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/
https://www.poodletest.com/
https://shellshocker.net/
http://valgrind.org/docs/manual/index.html
ftp://ftp.dd-wrt.com/others/eko/BrainSlayer-V24-preSP2/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
ftp://ftp.dd-wrt.com/others/eko/BrainSlayer-V24-preSP2/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
ftp://ftp.dd-wrt.com/others/eko/BrainSlayer-V24-preSP2/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip
http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip
http://gcc.gnu.org/
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
http://www.imagemagick.org
http://software.intel.com/en-us/intel-compilers/
http://software.intel.com/en-us/intel-compilers/
http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/

[35] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and
Accurate Tree-Based Detection of Code Clones. In Proceedings of the
29th International Conference on Software Engineering (ICSE), 2007.

[36] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and
P. Narasimhan. Binary function clustering using semantic hashes. In
Machine Learning and Applications (ICMLA), 2012 11th International
Conference on, volume 1, pages 386–391. IEEE, 2012.

[37] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities. In Proceedings of the
2006 IEEE Symposium on Security and Privacy (S&P), 2006.

[38] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic
Token-based Code Clone Detection System for Large Scale Source Code.
IEEE Trans. Softw. Eng., 28(7):654–670, July 2002.

[39] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static Disassembly of
Obfuscated Binaries. In Proceedings of the 13th Conference on USENIX
Security Symposium, 2004.

[40] A. Lakhotia, M. D. Preda, and R. Giacobazzi. Fast Location of Similar
Code Fragments Using Semantic ’Juice’. In Proceedings of the 2Nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop
(PPREW), 2013.

[41] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on, pages 75–86. IEEE,
2004.

[42] B. Lee, C. Song, T. Kim, and W. Lee. Type Casting Verification:
Stopping an Emerging Attack Vector. In Proceedings of the 24th USENIX
Security Symposium, 2015.

[43] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code. In Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation (OSDI), 2004.

[44] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu. Semantics-based
Obfuscation-resilient Binary Code Similarity Comparison with Appli-
cations to Software Plagiarism Detection. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2014.

[45] R. Marimont and M. Shapiro. Nearest neighbour searches and the curse
of dimensionality. IMA Journal of Applied Mathematics, 24(1):59–70,
1979.

[46] McCabe Software. More Complex = Less Secure. Miss a Test Path
and You Could Get Hacked, 2012. http://www.mccabe.com/pdf/More%
20Complex%20Equals%20Less%20Secure-McCabe.pdf (last visit:
2015-04-14).

[47] J. J. McGregor. Backtrack search algorithms and the maximal common
subgraph problem. Software: Practice and Experience, 12(1):23–34,
1982.

[48] Microsoft Corporation. Microsoft Visual C++, 2007. http://msdn.
microsoft.com/visualc (last visit: 2015-01-30).

[49] J. Ming, M. Pan, and D. Gao. iBinHunt: Binary Hunting with Inter-
procedural Control Flow. In Proceedings of the 15th International
Conference on Information Security and Cryptology, 2013.

[50] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2, 2009.

[51] G. Myles and C. Collberg. K-gram Based Software Birthmarks. In
Proceedings of the 2005 ACM Symposium on Applied Computing (SAC),
2005.

[52] B. H. Ng and A. Prakash. Exposé: Discovering Potential Binary Code
Re-use. In Proceedings of the 37th Annual IEEE Computer Software
and Applications Conference (COMPSAC), 2013.

[53] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-
Architecture Bug Search in Binary Executables. In Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P), 2015.

[54] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow. Leveraging
Semantic Signatures for Bug Search in Binary Programs. In Proceedings
of the 30th Annual Computer Security Applications Conference (ACSAC),
2014.

[55] E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing Functions in
Binaries with Neural Networks. In Proceedings of the 24th USENIX
Security Symposium, 2015.

[56] Source Forge. http://sourceforge.net (last visit: 2015-02-20).
[57] The LAME Project. LAME MP3 Encoder. http://lame.sourceforge.net

(last visit: 2015-01-30).
[58] M. Wall. Galib: A c++ library of genetic algorithm components. Mechan-

ical Engineering Department, Massachusetts Institute of Technology,
87:54, 1996.

[59] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving
Integer Security for Systems with KINT. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2012.

[60] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A Generic
Approach to Automatic Deobfuscation of Executable Code. In Proceed-
ings of the 36th IEEE Symposium on Security and Privacy (S&P), 2015.

[61] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith. No
More Gotos: Decompilation Using Pattern-Independent Control-Flow
Structuring and Semantics-Preserving Transformations. In Proceedings
of the 22nd Annual Network and Distributed System Security Symposium
(NDSS), 2015.

[62] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In Proceedings
of the 35th IEEE Symposium on Security and Privacy (S&P), 2014.

[63] F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized Vulnerability
Extrapolation Using Abstract Syntax Trees. In Proceedings of the 28th
Annual Computer Security Applications Conference (ACSAC), 2012.

[64] P. N. Yianilos. Data structures and algorithms for nearest neighbor search
in general metric spaces. In Proceedings of the fourth annual ACM-
SIAM Symposium on Discrete algorithms, pages 311–321. Society for
Industrial and Applied Mathematics, 1993.

[65] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu. Obfuscation
Resilient Binary Code Reuse Through Trace-oriented Programming. In
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS), 2013.

[66] M. Zitser, R. Lippmann, and T. Leek. Testing Static Analysis Tools
Using Exploitable Buffer Overflows from Open Source Code. In Pro-
ceedings of the 12th ACM SIGSOFT Twelfth International Symposium
on Foundations of Software Engineering (SIGSOFT FSE), 2004.

15

http://www.mccabe.com/pdf/More%20Complex%20Equals%20Less%20Secure-McCabe.pdf
http://www.mccabe.com/pdf/More%20Complex%20Equals%20Less%20Secure-McCabe.pdf
http://msdn.microsoft.com/visualc
http://msdn.microsoft.com/visualc
http://sourceforge.net
http://lame.sourceforge.net

	Introduction
	Approach Overview
	discovRE
	Data Set
	Open source projects
	Removal of duplicate functions
	Identification of robust numeric features

	Numeric filter
	Data normalization
	Evaluation of the numeric filter
	Dimensionality reduction
	Conclusion

	Structural Similarity
	Basic block distance
	Graph matching algorithm
	Evaluation of the structural similarity
	 Evaluation of the basic block distance
	Robustness of the Graph Distance Function
	Uncoupling the distance function from function size
	Convergence Speed of the MCS
	Comparison of dmcs with Other Distance Functions
	Comparison to VP Tree

	Evaluation
	Similarity Metric
	Cross-Architecture Bug Search
	Cross-Architecture Bug Search in Complete Firmware Images

	Comparison to BinDiff

	Limitations
	Related Work
	 Conclusion and Future Work
	Future Work

