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Symb  olic execution has  garnered a lot of attention 
in recent years as an effective technique for generating 
high-coverage test suites and for finding deep errors 
in complex software applications. While the key idea 
behind symbolic execution was introduced more 
than three decades ago,6,12,23 it has only recently been 
made practical, as a result of significant advances 
in constraint satisfiability,16 and of more scalable 
dynamic approaches that combine concrete and 
symbolic execution.9,19

Symbolic execution is typically used in software 
testing to explore as many different program paths as 
possible in a given amount of time, and for each path to 
generate a set of concrete input values exercising it, and

check for the presence of various 
kinds of errors including assertion 
violations, uncaught exceptions, se-
curity vulnerabilities, and memory 
corruption. The ability to generate 
concrete test inputs is one of the ma-
jor strengths of symbolic execution: 
from a test generation perspective, it 
allows the creation of high-coverage 
test suites, while from a bug-finding 
perspective, it provides developers 
with a concrete input that triggers the 
bug, which can be used to confirm the 
error independently of the symbolic 
execution tool that generated it.

Furthermore, note that in terms 
of finding errors on a given program 
path, symbolic execution is much 
more powerful than traditional dy-
namic execution techniques such as 
those implemented by popular tools 
like Valgrind28 or Purify,21 because it 
has the ability to find a bug if there are 
any buggy inputs on that path, rather 
than depending on having a concrete 
input that triggers the bug.

Finally, unlike other program analy-
sis techniques, symbolic execution is 
not limited to finding generic errors 
such as buffer overflows, but can reason 
about higher-level program properties, 
such as complex program assertions.

This article gives an overview of 
symbolic execution by showing how it 
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 key insights

 � �Modern symbolic execution techniques 
provide an effective way to automatically 
generate test inputs for real-world 
software. Such inputs can achieve high 
test coverage and find corner-case bugs 
such as buffer overflows, uncaught 
exceptions, and assertion violations.

 � �Symbolic execution works by exploring 
as many program paths as possible in 
a given time budget, creating logical 
formula encoding the explored paths, and 
using a constraint solver to generate test 
inputs for feasible execution paths.

 � �Modern symbolic execution techniques 
mix concrete and symbolic execution 
and benefit from significant advances in 
constraint solving to alleviate limitations 
which prevented traditional symbolic 
execution from being useful in practice 
for about 30 years.
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works on a simple example and high-
lighting its main features. We describe 
a couple of modern approaches to sym-
bolic execution that make it effective 
for real-world software. Then, we ex-
plore the main challenges of symbolic 
execution, including path explosion, 
constraint solving, and memory mod-
eling. Finally, we present several rep-
resentative symbolic execution tools. 
Note that we do not aim to provide here 
a comprehensive survey of existing 
work in the area, but instead choose to 
illustrate some of the main challenges 
and proposed solutions by using exam-
ples from the authors’ own work.

Overview of Classical 
Symbolic Execution
The key idea behind symbolic execu-
tion6,12,23 is to use symbolic values, in-
stead of concrete data values, as input 
values, and to represent the values of 
program variables as symbolic expres-
sions over the symbolic values. As a re-
sult, the output values computed by a 
program are expressed as a function of 
the input symbolic values. In software 
testing, symbolic execution is used to 
generate a test input for each feasible 
execution path of a program. A feasible 
execution path is a sequence of true 
and false, where a value of true (re-
spectively false) at the ith position in 
the sequence denotes that the ith condi-
tional statement encountered along the 
execution path took the “then” (respec-
tively the “else”) branch. All the feasible 
execution paths of a program can be 
represented using a tree, called the ex-
ecution tree. For example, the function 
testme() in Figure 1 has three feasible 
execution paths, which form the ex-
ecution tree shown in Figure 2. These 
paths can be executed, for instance, by 
running the program on the inputs {x 
= 0, y = 1}, {x = 2, y = 1} and {x = 30, y = 
15}. The goal of symbolic execution is 
to generate such a set of inputs so that 
all the feasible execution paths (or as 
many as possible in a given time bud-
get) can be explored exactly once by 
running the program on those inputs.

Symbolic execution maintains a 
symbolic state σ, which maps variables 
to symbolic expressions, and a symbol-
ic path constraint (or path condition) 
PC, which is a quantifier-free first-order 
formula over symbolic expressions. At 
the beginning of a symbolic execution, 

σ is initialized to an empty map and PC 
is initialized to true. Both σ and PC are 
populated during the course of sym-
bolic execution. At the end of a sym-
bolic execution along a feasible execu-
tion path of the program, PC is solved 
using a constraint solver to generate 
concrete input values. If the program 
is executed on these concrete input val-
ues, it will take exactly the same path as 
the symbolic execution and terminate 
in the same way.

For example, symbolic execution 
of the code in Figure 1 starts with an 
empty symbolic state and with sym-
bolic path constraint true. At every 
read statement var = sym_input() that 
receives program input, symbolic ex-
ecution adds the mapping var  s to 
σ, where s is a fresh symbolic value. 
For example, symbolic execution of the 
first two lines of the main() function 
(lines 16–17) results in σ = {x  x0, y 
 y0}, where x0, y0 are two initially un-
constrained symbolic values. At every 
assignment v = e, symbolic execution 
updates σ by mapping v to σ(e), the 
symbolic expression obtained by evalu-
ating e in the current symbolic state. 
For example, after executing line 6, σ = 
{x  x0, y  y0, z  2y0}.

At every conditional statement 
if (e) S1 else S2, PC is updated to 
PC∧σ(e) (“then” branch), and a fresh 
path constraint PC′ is created and ini-
tialized to PC∧¬σ(e) (“else” branch). If 
PC is satisfiable for some assignment 
of concrete to symbolic values, then 
symbolic execution continues along 
the “then” branch with the symbolic 
state σ and symbolic path constraint 
PC. Similarly, if PC′ is satisfiable, then 
another instance of symbolic execu-
tion is created with symbolic state σ 
and symbolic path constraint PC′, 
which continues the execution along 
the “else” branch; note that unlike in 
concrete execution, both branches can 
be taken, resulting in two execution 
paths. If any of PC or PC′ is not satis-
fiable, symbolic execution terminates 
along the corresponding path. For 
example, after line 7 in the example 
code, two instances of symbolic execu-
tion are created with path constraints 
x0 = 2y0 and x0 ≠ 2y0, respectively. Simi-
larly, after line 8, two instances of sym-
bolic execution are created with path 
constraints (x0 = 2y0) ∧ (x0 > y0 + 10) and 
(x0 = 2y0) ∧ (x0 ≤ y0 + 10), respectively.

Unlike other 
program analysis 
techniques, 
symbolic execution 
is not limited to 
finding generic 
errors such as 
buffer overflows, 
but can reason 
about higher-level 
program properties, 
such as complex 
program assertions.
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If a symbolic execution instance hits 
an exit statement or an error (for ex-
ample, the program crashes or violates 
an assertion), the current instance of 
symbolic execution is terminated and 
a satisfying assignment to the current 
symbolic path constraint is generated, 
using an off-the-shelf constraint solver. 
The satisfying assignment forms the 
test inputs: if the program is executed 
on these concrete input values, it will 
take exactly the same path as the sym-
bolic execution and terminate in the 
same way. For example, on our exam-
ple code we get three instances of sym-
bolic executions that result in the test 
inputs {x = 0, y = 1}, {x = 2, y = 1}, and 
{x = 30, y = 15}, respectively.

Symbolic execution of code con-
taining loops or recursion may result 
in an infinite number of paths if the 
termination condition for the loop or 
recursion is symbolic. For example, the 
code in Figure 3 has an infinite num-
ber of feasible execution paths, where 
each feasible execution path is either 
a sequence of an arbitrary number of 
true’s followed by a false or a se-
quence of infinite number of true’s. 
The symbolic path constraint of a path 
with a sequence of n true’s followed 
by a false is: 

	
(∧

i∈[1,n]
Ni > 0) ∧ (Nn+1 ≤ 0)  

	
where each Ni is a fresh symbolic value, 
and the symbolic state at the end of the 
execution is {N  Nn+1, sum ∑i∈[1,n]Ni}. 
In practice, one needs to put a limit on 
the search (for example, a timeout, or a 
limit on the number of paths, loop it-
erations, or exploration depth).

A key disadvantage of classical sym-
bolic execution is that it cannot gener-
ate an input if the symbolic path con-
straint along a feasible execution path 
contains formulas that cannot be (ef-
ficiently) solved by a constraint solver 
(for example, nonlinear constraints). 
Consider performing symbolic ex-
ecution on two variants of the code in 
Figure 1: in one variant, we modify the 
twice function as in Figure 4; in the 
other variant, we assume that the code 
of twice is not available. Let us assume 
that our constraint solver cannot han-
dle non-linear arithmetic. For the first 
variant, symbolic execution will gener-
ate the path constraints x0 ≠ (y0y0)%50 
and x0 = (y0y0)%50 after the execution 

of the first conditional statement. For 
the second variant, symbolic execution 
will generate the path constraints x0 
≠ twice(y0) and x0 = twice(y0), where 
twice is an uninterpreted function. 
Since the constraint solver cannot 
solve any of these constraints, symbolic 
execution will fail to generate any input 
for the modified programs. We next de-
scribe two modern symbolic execution 
techniques that alleviate this problem 
and generate at least some inputs for 
the modified programs.

Modern Symbolic 
Execution Techniques
One of the key elements of modern 
symbolic execution techniques is their 
ability to mix concrete and symbolic 
execution. We present here two such 
extensions, and then discuss the main 
advantages they provide.

Concolic Testing. Directed Auto-
mated Random Testing (DART),19 or 
concolic testing35 performs symbolic 
execution dynamically, while the pro-
gram is executed on some concrete in-
put values. Concolic testing maintains 
a concrete state and a symbolic state: 
the concrete state maps all variables 
to their concrete values; the symbolic 
state only maps variables that have 
non-concrete values. Unlike classical 
symbolic execution, since concolic ex-
ecution maintains the entire concrete 
state of the program along an execu-
tion, it needs initial concrete values for 
its inputs. Concolic testing executes a 
program starting with some given or 

Figure 1. Simple example illustrating symbolic execution.

1   int twice (int v) {
2             return 2*v;
3   }
4 
5   void testme (int x, int y) {
6             z = twice (y);
7             if (z == x) {
8                       if (x > y+10)
9                              ERROR;
10                      }
11            }
12  }
13
14  /* simple driver exercising testme () with sym inputs */
15  int main() {
16            x = sym_input();
17            y = sym_input();
18            testme (x, y);
19            return 0;
20  }

x = 0 
y = 1

x = 2 
y = 1

x = 30 
y = 15

x > y + 10

2*y == x

false

false

true

true

ERROR!

Figure 2. Execution tree for the example  
in Figure 1.

Figure 3. Simple example illustrating an 
infinite number of feasible execution paths.

1   void testme_inf() {
2            int sum = 0;
3            int N = sym_input();
4            while (N > 0) {
5                sum = sum + N
6                N = sym_input();
7            }
8   }

Figure 4. Simple modification of the  
example in Figure 1. The function twice now 
performs some non-linear computation.

1   int twice (int v) {
2             return (v*v) % 50;
3   }
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other places—such as unhandled in-
structions (for example, floating-point) 
or complex functions that cause con-
straint solver timeouts—and the use of 
concrete values allows symbolic execu-
tion to recover from that imprecision, 
albeit at the cost of missing some fea-
sible paths, and thus sacrificing com-
pleteness.

To illustrate, we describe the behav-
ior of concolic testing on the version 
of our running example in which the 
function twice returns the non-linear 
value (v*v)%50 (see Figure 4). Let us 
assume that concolic testing gener-
ates the random input {x = 22, y = 7}. 
Then, the symbolic execution will gen-
erate the symbolic path constraint x0 ≠ 
(y0y0)%50 along the concrete execution 
path on this input. If we assume that 
the constraint solver cannot handle 
non-linear constraints, then concolic 
testing will fail to generate an input 
for an alternate execution path. We get 
a similar situation if the source code 
for the function twice is not available 
(for example, twice is some third-party 
closed-source library function or a sys-
tem call), in which case the path constraint 
becomes x0 ≠ twice(y0), where twice 
is an uninterpreted function. Concolic 
testing handles this situation by replac-
ing some of the symbolic values with their 
concrete values so that the resultant con-
straints are simplified and can be solved. 
For instance, in the example, concolic 
testing replaces y0 by its concrete value 
7. This simplifies the path constraint 
in both program versions to x0 ≠ 49. 
By solving the path constraint x0 = 49, 
concolic testing generates the new 
input {x = 49, y = 7} for a previously 
unexplored execution path. Note that 
classical symbolic execution cannot 
perform this simplification because 
the concrete state is not available dur-
ing symbolic execution.

EGT can handle this situation in a 
similar way: when it encounters the 
statement return (v*v) % 50 or the 
external call z = twice(y), it will call 
the constraint solver on the current 
symbolic path constraint to generate a 
satisfying assignment to y0, say y0 = 7, 
replace this value in the symbolic state 
and in the path constraint, and contin-
ue the execution in a partial symbolic 
state {x  x0, y  7}. The tool KLEE 
optimizes this by keeping a counter-
example cache (described later).

concrete and symbolic execution by 
dynamically checking before every 
operation if the values involved are 
all concrete. If so, the operation is ex-
ecuted just as in the original program. 
Otherwise, if at least one value is sym-
bolic, the operation is performed sym-
bolically, by updating the path condi-
tion for the current path. For example, 
if line 17 in Figure 1 is changed to y = 
10, then line 6 will simply call function 
twice() with the concrete argument 
10, call which will be executed as in 
the original program (note that twice 
could perform an arbitrarily complex 
operation on its input, but this would 
not place any additional strain on sym-
bolic execution, because the call will be 
executed concretely). Then, the branch 
on line 7 will become if (20 == x), and 
execution will be forked, one instance 
adding the constraint that x = 20 and 
following the “then” branch, and the 
other adding the constraint that x ≠ 20 
and following the “else” branch. Note 
that on the “then” branch, the condi-
tional at line 8 becomes if (x > 20), 
and therefore its “then” side is infea-
sible because x is constrained to have 
value 20 on this path.

Imprecision vs. completeness in 
concolic testing and EGT. One of the 
key advantages in mixing concrete and 
symbolic execution is that imprecision 
in symbolic execution (due to, for ex-
ample, interaction with external code, 
or constraint solving timeouts), can be 
alleviated using concrete values (and 
in the case of concolic testing, also 
randomization).

For example, real applications al-
most always interact with the outside 
world, for instance, by calling librar-
ies that are not instrumented for sym-
bolic execution, or by issuing OS sys-
tem calls. If all the arguments passed 
to such a call are concrete, the call can 
be simply performed concretely, as in 
the original program. However, even if 
some operands are symbolic, EGT and 
concolic testing can use one of the pos-
sible concrete values of the symbolic 
arguments: in EGT this is done by solv-
ing the current path constraint for a 
satisfying assignment, while concolic 
testing can immediately use the con-
crete runtime values of those inputs 
from the current concolic execution.

Besides external code, imprecision 
in symbolic execution creeps into many 

random input, gathers symbolic con-
straints on inputs at conditional state-
ments along the execution, and then 
uses a constraint solver to infer vari-
ants of the previous inputs in order to 
steer the next execution of the program 
toward an alternative feasible execu-
tion path. This process is repeated sys-
tematically or heuristically until all fea-
sible execution paths are explored or a 
user-defined coverage criteria is met.

For the example in Figure 1, concolic 
execution will generate some random 
input, say {x = 22, y = 7}, and execute 
the program both concretely and sym-
bolically. The concrete execution will 
take the “else” branch at line 7 and the 
symbolic execution will generate the 
path constraint x0 ≠ 2y0 along the con-
crete execution path. Concolic testing 
negates a conjunct in the path con-
straint and solves x0 = 2y0 to get the test 
input {x = 2, y = 1}; this new input will 
force the program execution along a 
different execution path. Concolic test-
ing repeats both concrete and symbolic 
execution on this new test input. The 
execution takes a path different from 
the previous one—the “then” branch 
at line 7 and the “else” branch at line 8 
are now taken in this execution. As in 
the previous execution, concolic test-
ing also performs symbolic execution 
along this concrete execution and gen-
erates the path constraint (x0 = 2y0) ∧ (x0 
≤ y0 + 10). Concolic testing will gener-
ate a new test input that forces the pro-
gram along an execution path that has 
not been previously executed. It does so 
by negating the conjunct (x0 ≤ y0 + 10) 
and solving the constraint (x0 = 2y0) ∧ 
(x0 > y0 + 10) to get the test input {x = 30, 
y = 15}. The program reaches the ER-
ROR statement with this new input. Af-
ter this third execution of the program, 
concolic testing reports that all execu-
tion paths of the program have been 
explored and terminates test input gen-
eration. Note that in this example, con-
colic testing explores all the execution 
paths using a depth-first search strat-
egy; however, one could employ other 
strategies to explore paths in different 
orders, as we discuss later.

Execution-Generated Testing (EGT). 
The EGT approach,9 implemented and 
extended by the EXE10 and KLEE8 tools, 
works by making a distinction between 
the concrete and symbolic state of a 
program. To this end, EGT intermixes 
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Concolic testing and EGT’s ap-
proach to simplify constraints using 
concrete values help them generate 
test inputs for execution paths for 
which symbolic execution gets stuck, 
but this approach comes with a caveat: 
due to simplification, concolic testing 
and EGT could loose completeness, 
that is, they may not be able to generate 
test inputs for some feasible execution 
paths. For instance, in our example 
both techniques will fail to generate an 
input for the path true, false. How-
ever, this is clearly preferable to the 
alternative of simply aborting execu-
tion when unsupported statements or 
external calls are encountered.

Challenges and Extensions
Here, we discuss the main challenges 
in symbolic execution, and some inter-
esting solutions and extensions devel-
oped in response to them.

Path Explosion. One of the key chal-
lenges of symbolic execution is the 
huge number of programs paths in 
all but the smallest programs, which 
is usually exponential in the number 
of static branches in the code. How-
ever, note that symbolic execution 
explores only feasible paths that de-
pend on the symbolic input, which 
reduces the number of conditionals 
that spawn new paths. For example, 
in several experiments on testing a 
number of medium-sized applica-
tions we found that less than 42% of 
the executed statements depend on 
the symbolic input, and often less 
than 20% of the symbolic branches 
encountered during execution have 
both sides feasible.10

Despite this implicit filtering, path 
explosion represents one of the big-
gest challenges facing symbolic execu-
tion, and given a fixed time budget, it 
is critical to explore the most relevant 
paths first.  Here, we present a repre-
sentative selection of the techniques 
developed to address this problem.

Search heuristics. The main mecha-
nism used by symbolic execution tools 
to prioritize path exploration is the 
use of search heuristics. Most heuris-
tics focus on achieving high statement 
and branch coverage, but they could 
also be employed to optimize other de-
sired criteria. We describe here several 
coverage-optimized search heuristics 
successfully used by current symbolic 

execution tools.
One particularly effective approach 

is to use the static control-flow graph 
(CFG) to guide the exploration toward 
the path closest (as measured stati-
cally using the CFG) from an uncov-
ered instruction.7,8 A similar approach, 
described in Cadar et al.,10 is to favor 
statements that were run the fewest 
number of times.

As another example, heuristics 
based on random exploration have also 
proved successful.7,8 The main idea is 
to start from the beginning of the pro-
gram, and at each symbolic branch for 
which both sides are feasible to ran-
domly choose which side to explore. 
Note that this random strategy has 
a number of important advantages: 
compared to randomly choosing a path 
to execute, it avoids starvation when a 
part of the program rapidly forks many 
new paths; and compared to randomly 
generating inputs, it has a higher prob-
ability to reach branches that are cov-
ered by a very small fraction of the in-
puts. Furthermore, this strategy favors 
paths early in the execution, with fewer 
constraints on the inputs, and thus on 
reaching new program statements.

Interleaving random and symbolic ex-
ecution. Another successful approach, 
which was explored in the context of 
concolic testing, is to interleave sym-
bolic exploration with random test-
ing.26 This approach combines the abil-
ity of random testing to quickly reach 
deep execution states, with the power 
of symbolic execution to thoroughly 
explore states in a given neighborhood.

Pruning redundant paths. An alter-
native approach to avoid exploring the 
same lines of code over and over again 
is to automatically prune redundant 
paths during exploration. The key in-
sight behind the RWset technique de-
scribed in Boonstoppel et al.5 is that 
if a program path reaches the same 
program point with the same symbolic 
constraints as a previously explored 
path, then this path will continue to ex-
ecute exactly the same from that point 
on and thus can be discarded. This 
technique is enhanced by an impor-
tant optimization: when comparing 
the constraints on the two execution 
paths, it discards those that depend 
only on values that will not be subse-
quently read by the program. Note that 
the effect of pruning these paths can be 

Path explosion 
represents one 
of the biggest 
challenges facing 
symbolic execution. 
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It is essential 
to implement 
constraint-solving 
optimizations that 
exploit the type 
of constraints 
generated during 
the symbolic 
execution of  
real programs. 

that exploit the type of constraints gen-
erated during the symbolic execution 
of real programs. We present here two 
representative optimizations used by 
existing symbolic execution tools.

Irrelevant constraint elimination. 
The vast majority of queries in sym-
bolic execution are issued in order to 
determine the feasibility of taking a 
certain branch side. For example, in 
the concolic variant of symbolic execu-
tion, one branch predicate of an exist-
ing path constraint is negated and then 
the resulting constraint set is checked 
for satisfiability in order to determine 
if the program can take the other side 
of the branch, corresponding to the 
negated constraint. An important ob-
servation is that in general a program 
branch depends only on a small num-
ber of program variables, and therefore 
on a small number of constraints from 
the path condition. Thus, one effec-
tive optimization is to remove from the 
path condition those constraints that 
are irrelevant in deciding the outcome 
of the current branch. For example, let 
the path condition for the current ex-
ecution be (x + y > 10) ∧ (z > 0) ∧ (y < 
12) ∧ (z − x = 0) and suppose we want to 
generate a new input by solving (x + y > 
10) ∧ (z > 0) ∧¬ (y < 12), where ¬(y < 12) 
is the negated branch condition whose 
feasibility we are trying to establish. 
Then it is safe to eliminate the con-
straint on z, because this constraint 
cannot influence the outcome of the 
y < 12 branch. The solution of this re-
duced constraint set will give new val-
ues for x and y, and we use the value of 
z from the current execution to gener-
ate the new input. More formally, the 
algorithm computes the transitive clo-
sure of all the constraints on which the 
negated constraint depends, by look-
ing whether they share any variables 
between them. The extra complication 
is in dealing with pointer dereferences 
and array indexing, which is discussed 
in detail in Cadar et al.10 and Sen et al.35

Incremental solving. One important 
characteristic of the constraint sets 
generated during symbolic execution 
is that they are expressed in terms of 
a fixed set of static branches from the 
program source code. For this reason, 
many paths have similar constraint 
sets, and thus allow for similar solu-
tions; this fact can be exploited to im-
prove the speed of constraint solving 

significant, as the number of new paths 
spawned by the continued execution 
can be exponential in the number of en-
countered branches.

Lazy test generation. Lazy test gen-
eration27 is an approach similar to the 
counterexample-guided refinement 
paradigm from static software verifica-
tion. The technique first explores, us-
ing concolic execution, an abstraction 
of the function under test by replacing 
each called function with an uncon-
strained input. Second, for each (pos-
sibly spurious) trace generated by this 
abstraction, it attempts to expand the 
trace to a concretely realizable execu-
tion by recursively expanding the called 
functions and finding concrete execu-
tions in the called functions that can be 
stitched together with the original trace 
to form a complete program execution. 
Thus, it reduces the burden of symbolic 
reasoning about interprocedural paths 
to reasoning about intraprocedural 
paths (in the exploration phase), to-
gether with a localized and constrained 
search through functions (in the con-
cretization phase).

Static path merging. One simple ap-
proach that can be used to reduce the 
number of paths explored is to merge 
them statically using select expressions 
that are then passed directly to the con-
straint solver.13 For example, the state-
ment x[i] = x[i] > 0 ? x[i]:−x[i] 
can be encoded as (x[i] = select(x[i] > 0, 
x[i], −x[i]). If such an expression is com-
puted inside a loop statement with N 
iterations, this approach can reduce 
the number of explored paths from 2N 
to 1. While merging can be effective in 
many cases, it is unfortunately passing 
the complexity to the constraint solver, 
which as discussed in the next section 
represents another major challenge of 
symbolic execution.

Constraint Solving. Despite signifi-
cant advances in constraint solving 
technology during the last few years—
which made symbolic execution practi-
cal in the first place—constraint solving 
continues to be one of the main bottle-
necks in symbolic execution, where it 
often dominates runtime. In fact, one of 
the main reasons for which symbolic ex-
ecution fails to scale on some programs 
is that their code is generating queries 
that are blowing up the solver.

As a result, it is essential to imple-
ment constraint-solving optimizations 
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tions. In multithreaded programs, 
CUTE combines concolic execution 
with dynamic partial order reduction 
to systematically generate both test in-
puts and thread schedules.

CUTE and jCUTE were developed 
at University of Illinois at the Urbana-
Champaign for C and Java programs, 
respectively. Both tools have been ap-
plied to several popular open source 
software including the java.util library 
of Sun JDK 1.4.

CREST7 is an open source tool for 
concolic testing of C programs. CREST 
is an extensible platform for building 
and experimenting with heuristics for 
selecting which paths to explore. Since 
being released as open source in May 
2008,a CREST has been downloaded 
1,500+ times and has been used by 
several research groups. For example, 
CREST has been employed to build 
tools for augmenting existing test 
suites to test newly changed code38 and 
detect SQL injection vulnerabilities,29 
has been modified to run distributed 
on a cluster for testing a flash storage 
platform,22 and has been used to ex-
periment with more sophisticated con-
colic search heuristics.3

Concolic testing has also been 
studied in different courses at several 
universities.

EXE and KLEE. EXE10 is a symbolic 
execution tool for C designed for com-
prehensively testing complex soft-
ware, with an emphasis on systems 
code. To deal with the complexities 
of systems code, EXE models mem-
ory with bit-level accuracy. This is 
needed because systems code often 
treats memory as untyped bytes, and 
observes a single memory location in 
multiple ways: for example, by cast-
ing signed variables to unsigned, or 
treating an array of bytes as a network 
packet, inode, or packet filter through 
pointer casting. As importantly, EXE 
provides the speed necessary to quick-
ly solve the constraints generated by 
real code, through a combination of 
low-level optimizations implemented 
in its purposely designed constraint 
solver STP,10,18 and a series of higher-
level ones such as caching and irrel-
evant constraint elimination.

KLEE8 is a redesign of EXE, built 
on top of the LLVM24 compiler infra-

a	 Available at http://code.google.com/p/crest/

by reusing the results of previous simi-
lar queries, as done in several systems 
such as CUTE and KLEE.8,35 To illus-
trate this point, we present one such 
algorithm, namely the counterexam-
ple caching scheme used by KLEE.8 In 
KLEE, all query results are stored in a 
cache that maps constraint sets to con-
crete variable assignments (or a special 
No solution flag if the constraint set is 
unsatisfiable). For example, one map-
ping in this cache could be (x + y < 10) ∧ 
(x > 5) ⇒ {x = 6, y = 3}. Using these map-
pings, KLEE can quickly answer several 
types of similar queries, involving sub-
sets and supersets of the constraint 
sets already cached. For example, if 
a subset of a cached constraint set is 
encountered, KLEE can simply return 
the cached solution, because removing 
constraints from a constraint set does 
not invalidate an existing solution. 
Moreover, if a superset of a cached con-
straint set is encountered, KLEE can 
quickly check if the cached solution 
still works, by plugging in those values 
into the superset. For example, KLEE can 
quickly check that {x = 6, y = 3} is still a 
valid solution for the query (x + y < 10) 
∧  (x > 5) ∧ (y ≥ 0), which is a superset 
of (x + y < 10) ∧ (x > 5). This latter tech-
nique exploits the fact that in practice, 
adding extra constraints often does not 
invalidate an existing solution.

Memory Modeling. The precision 
with which program statements are 
translated into symbolic constraints 
can have a significant influence on the 
coverage achieved by symbolic execu-
tion, as well as on the scalability of 
constraint solving. For example, using 
a memory model that approximates 
fixed-width integer variables with ac-
tual mathematical integers may be 
more efficient, but on the other hand 
may result in imprecision in the analy-
sis of code depending on corner cases 
such as arithmetic overflow—which 
may cause symbolic execution to miss 
paths, or explore infeasible ones.

Another example are pointers. On 
the one end of the spectrum is a system 
like DART that only reasons about con-
crete pointers, or systems like CUTE 
and CREST that support only equality 
and inequality constraints for point-
ers, which can be efficiently solved.35 At 
the other end are systems like EXE, and 
more recently KLEE and SAGE10,17,35 
that model pointers using the theory of 

arrays with selections and updates im-
plemented by solvers like STP or Z3.15,18

The trade-off between precision 
and scalability should be determined 
in light of the code being analyzed 
(for example, low-level systems code 
vs. high-level applications code), and 
the exact performance difference be-
tween different constraint solving 
theories. Note that the trade-off be-
tween precision and scalability is pos-
sible in modern symbolic execution 
techniques because we can customize 
the use of concrete values in symbolic 
formulas and thereby tune both scal-
ability and precision.

Handling Concurrency. Large real-
world programs are often concurrent. 
Because of the inherent non-deter-
minism of such programs, testing is 
notoriously difficult. Concolic testing 
was successfully combined with a vari-
ant of partial order reduction to test 
concurrent programs effectively.31–34 

This combined method provides one 
of the first technique to effectively test 
concurrent programs with complex 
data inputs.

Tools
Dynamic symbolic execution has 
been implemented by several tools 
from both academia and research 
labs.1,7–10,19,20,35,37 These tools support 
a variety of languages, including C/
C++, Java, and the x86 instruction set, 
implement several different memory 
models, target different types of appli-
cations, and make use of several dif-
ferent constraint solvers and theories. 
We discuss here five of these tools, 
with whom the authors of this article 
have been involved.

DART, CUTE, and CREST. DART19 is 
the first concolic testing tool that com-
bines dynamic test generation with 
random testing and model checking 
techniques with the goal of systemati-
cally executing all (or as many as possi-
ble) feasible paths of a program, while 
checking each execution for various 
types of errors. DART was first imple-
mented at Bell Labs for testing C pro-
grams, and has inspired many other 
extensions and tools since.

CUTE (A Concolic Unit Testing En-
gine) and jCUTE (CUTE for Java)31,33,35 
extend DART to handle multithreaded 
programs that manipulate dynamic 
data structures using pointer opera-
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structure. Like EXE, it performs mixed 
concrete/symbolic execution, models 
memory with bit-level accuracy, em-
ploys a variety of constraint solving op-
timizations, and uses search heuristics 
to get high code coverage. One of the 
key improvements of KLEE over EXE is 
its ability to store a much larger num-
ber of concurrent states, by exploiting 
sharing among states at the object-, 
rather than at the page-level as in EXE. 
Another important improvement is 
its enhanced ability to handle interac-
tions with the outside environment—
for example, with data read from the 
file system or over the network—by 
providing models designed to explore 
all possible legal interactions with the 
outside world.

As a result of these features, EXE 
and KLEE have been successfully 
used to check a large number of dif-
ferent software systems, including 
network servers and tools (Berkeley 
Packet Filter, Avahi, Bonjour, among 
others);10,36 file systems (ext2, ext3, 
JFS);39 MINIX device drivers (Sound 
Blaster 16, Lance, PCI);5 Unix utilities 
(Coreutils, MINIX, Busybox suites);8 
and computer vision code.13 They ex-
posed bugs and vulnerabilities in all 
of these software systems, and con-
structed concrete inputs triggering 
them. For example, EXE generated ac-
tual disk images that when mounted 
under various file systems cause the 
Linux kernel to panic.39 EXE and KLEE 
were also able to successfully generate 
high-coverage regression suites: when 
run on the 89 stand-alone tools of the 
Coreutils utility suite, KLEE generates 
tests achieving on average over 90% 
line coverage, significantly beating 
an extensive manual regression suite 
built incrementally by developers over 
more than 15 years.

KLEE was open sourced in June 
2009.b The tool has an active user com-
munity—with approximately 200 mem-
bers on the mailing list and growing—
and several research groups have built 
upon it in a variety of areas, ranging 
from wireless sensor networks30 to 
automated debugging,40 reverse en-
gineering of binary device drivers,11 
exploit generation,2 online gaming,4 
testing and verification for GPUs,25 and 
deterministic multithreading.14

b	 Available at http://klee.llvm.org/

Conclusion
Symbolic execution has become an 
effective program testing technique, 
providing a way to automatically gen-
erate inputs that trigger software er-
rors ranging from low-level program 
crashes to higher-level semantic 
properties; generate test suites that 
achieve high program coverage; and 
provide per-path correctness guaran-
tees. While more research is needed to 
scale symbolic execution to very large 
programs, existing tools have already 
proved effective in testing and finding 
errors in a variety of software, varying 
from low-level network and operating 
systems code to higher-level applica-
tions code.
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