
82 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 m
a

r
i

u
s

 w
a

t
z

Symb olic execution has garnered a lot of attention
in recent years as an effective technique for generating
high-coverage test suites and for finding deep errors
in complex software applications. While the key idea
behind symbolic execution was introduced more
than three decades ago,6,12,23 it has only recently been
made practical, as a result of significant advances
in constraint satisfiability,16 and of more scalable
dynamic approaches that combine concrete and
symbolic execution.9,19

Symbolic execution is typically used in software
testing to explore as many different program paths as
possible in a given amount of time, and for each path to
generate a set of concrete input values exercising it, and

check for the presence of various
kinds of errors including assertion
violations, uncaught exceptions, se-
curity vulnerabilities, and memory
corruption. The ability to generate
concrete test inputs is one of the ma-
jor strengths of symbolic execution:
from a test generation perspective, it
allows the creation of high-coverage
test suites, while from a bug-finding
perspective, it provides developers
with a concrete input that triggers the
bug, which can be used to confirm the
error independently of the symbolic
execution tool that generated it.

Furthermore, note that in terms
of finding errors on a given program
path, symbolic execution is much
more powerful than traditional dy-
namic execution techniques such as
those implemented by popular tools
like Valgrind28 or Purify,21 because it
has the ability to find a bug if there are
any buggy inputs on that path, rather
than depending on having a concrete
input that triggers the bug.

Finally, unlike other program analy-
sis techniques, symbolic execution is
not limited to finding generic errors
such as buffer overflows, but can reason
about higher-level program properties,
such as complex program assertions.

This article gives an overview of
symbolic execution by showing how it

Symbolic
Execution
for Software
Testing: Three
Decades Later

doi:10.1145/2408776.2408795

The challenges—and great promise—
of modern symbolic execution techniques,
and the tools to help implement them.

By Cristian Cadar and Koushik Sen

 key insights

 � �Modern symbolic execution techniques
provide an effective way to automatically
generate test inputs for real-world
software. Such inputs can achieve high
test coverage and find corner-case bugs
such as buffer overflows, uncaught
exceptions, and assertion violations.

 � �Symbolic execution works by exploring
as many program paths as possible in
a given time budget, creating logical
formula encoding the explored paths, and
using a constraint solver to generate test
inputs for feasible execution paths.

 � �Modern symbolic execution techniques
mix concrete and symbolic execution
and benefit from significant advances in
constraint solving to alleviate limitations
which prevented traditional symbolic
execution from being useful in practice
for about 30 years.

february 2013 | vol. 56 | no. 2 | communications of the acm 83

84 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

works on a simple example and high-
lighting its main features. We describe
a couple of modern approaches to sym-
bolic execution that make it effective
for real-world software. Then, we ex-
plore the main challenges of symbolic
execution, including path explosion,
constraint solving, and memory mod-
eling. Finally, we present several rep-
resentative symbolic execution tools.
Note that we do not aim to provide here
a comprehensive survey of existing
work in the area, but instead choose to
illustrate some of the main challenges
and proposed solutions by using exam-
ples from the authors’ own work.

Overview of Classical
Symbolic Execution
The key idea behind symbolic execu-
tion6,12,23 is to use symbolic values, in-
stead of concrete data values, as input
values, and to represent the values of
program variables as symbolic expres-
sions over the symbolic values. As a re-
sult, the output values computed by a
program are expressed as a function of
the input symbolic values. In software
testing, symbolic execution is used to
generate a test input for each feasible
execution path of a program. A feasible
execution path is a sequence of true
and false, where a value of true (re-
spectively false) at the ith position in
the sequence denotes that the ith condi-
tional statement encountered along the
execution path took the “then” (respec-
tively the “else”) branch. All the feasible
execution paths of a program can be
represented using a tree, called the ex-
ecution tree. For example, the function
testme() in Figure 1 has three feasible
execution paths, which form the ex-
ecution tree shown in Figure 2. These
paths can be executed, for instance, by
running the program on the inputs {x
= 0, y = 1}, {x = 2, y = 1} and {x = 30, y =
15}. The goal of symbolic execution is
to generate such a set of inputs so that
all the feasible execution paths (or as
many as possible in a given time bud-
get) can be explored exactly once by
running the program on those inputs.

Symbolic execution maintains a
symbolic state σ, which maps variables
to symbolic expressions, and a symbol-
ic path constraint (or path condition)
PC, which is a quantifier-free first-order
formula over symbolic expressions. At
the beginning of a symbolic execution,

σ is initialized to an empty map and PC
is initialized to true. Both σ and PC are
populated during the course of sym-
bolic execution. At the end of a sym-
bolic execution along a feasible execu-
tion path of the program, PC is solved
using a constraint solver to generate
concrete input values. If the program
is executed on these concrete input val-
ues, it will take exactly the same path as
the symbolic execution and terminate
in the same way.

For example, symbolic execution
of the code in Figure 1 starts with an
empty symbolic state and with sym-
bolic path constraint true. At every
read statement var = sym_input() that
receives program input, symbolic ex-
ecution adds the mapping var  s to
σ, where s is a fresh symbolic value.
For example, symbolic execution of the
first two lines of the main() function
(lines 16–17) results in σ = {x  x0, y
 y0}, where x0, y0 are two initially un-
constrained symbolic values. At every
assignment v = e, symbolic execution
updates σ by mapping v to σ(e), the
symbolic expression obtained by evalu-
ating e in the current symbolic state.
For example, after executing line 6, σ =
{x  x0, y  y0, z  2y0}.

At every conditional statement
if (e) S1 else S2, PC is updated to
PC∧σ(e) (“then” branch), and a fresh
path constraint PC′ is created and ini-
tialized to PC∧¬σ(e) (“else” branch). If
PC is satisfiable for some assignment
of concrete to symbolic values, then
symbolic execution continues along
the “then” branch with the symbolic
state σ and symbolic path constraint
PC. Similarly, if PC′ is satisfiable, then
another instance of symbolic execu-
tion is created with symbolic state σ
and symbolic path constraint PC′,
which continues the execution along
the “else” branch; note that unlike in
concrete execution, both branches can
be taken, resulting in two execution
paths. If any of PC or PC′ is not satis-
fiable, symbolic execution terminates
along the corresponding path. For
example, after line 7 in the example
code, two instances of symbolic execu-
tion are created with path constraints
x0 = 2y0 and x0 ≠ 2y0, respectively. Simi-
larly, after line 8, two instances of sym-
bolic execution are created with path
constraints (x0 = 2y0) ∧ (x0 > y0 + 10) and
(x0 = 2y0) ∧ (x0 ≤ y0 + 10), respectively.

Unlike other
program analysis
techniques,
symbolic execution
is not limited to
finding generic
errors such as
buffer overflows,
but can reason
about higher-level
program properties,
such as complex
program assertions.

review articles

february 2013 | vol. 56 | no. 2 | communications of the acm 85

If a symbolic execution instance hits
an exit statement or an error (for ex-
ample, the program crashes or violates
an assertion), the current instance of
symbolic execution is terminated and
a satisfying assignment to the current
symbolic path constraint is generated,
using an off-the-shelf constraint solver.
The satisfying assignment forms the
test inputs: if the program is executed
on these concrete input values, it will
take exactly the same path as the sym-
bolic execution and terminate in the
same way. For example, on our exam-
ple code we get three instances of sym-
bolic executions that result in the test
inputs {x = 0, y = 1}, {x = 2, y = 1}, and
{x = 30, y = 15}, respectively.

Symbolic execution of code con-
taining loops or recursion may result
in an infinite number of paths if the
termination condition for the loop or
recursion is symbolic. For example, the
code in Figure 3 has an infinite num-
ber of feasible execution paths, where
each feasible execution path is either
a sequence of an arbitrary number of
true’s followed by a false or a se-
quence of infinite number of true’s.
The symbolic path constraint of a path
with a sequence of n true’s followed
by a false is:

	
(∧

i∈[1,n]
Ni > 0) ∧ (Nn+1 ≤ 0)

	
where each Ni is a fresh symbolic value,
and the symbolic state at the end of the
execution is {N  Nn+1, sum ∑i∈[1,n]Ni}.
In practice, one needs to put a limit on
the search (for example, a timeout, or a
limit on the number of paths, loop it-
erations, or exploration depth).

A key disadvantage of classical sym-
bolic execution is that it cannot gener-
ate an input if the symbolic path con-
straint along a feasible execution path
contains formulas that cannot be (ef-
ficiently) solved by a constraint solver
(for example, nonlinear constraints).
Consider performing symbolic ex-
ecution on two variants of the code in
Figure 1: in one variant, we modify the
twice function as in Figure 4; in the
other variant, we assume that the code
of twice is not available. Let us assume
that our constraint solver cannot han-
dle non-linear arithmetic. For the first
variant, symbolic execution will gener-
ate the path constraints x0 ≠ (y0y0)%50
and x0 = (y0y0)%50 after the execution

of the first conditional statement. For
the second variant, symbolic execution
will generate the path constraints x0
≠ twice(y0) and x0 = twice(y0), where
twice is an uninterpreted function.
Since the constraint solver cannot
solve any of these constraints, symbolic
execution will fail to generate any input
for the modified programs. We next de-
scribe two modern symbolic execution
techniques that alleviate this problem
and generate at least some inputs for
the modified programs.

Modern Symbolic
Execution Techniques
One of the key elements of modern
symbolic execution techniques is their
ability to mix concrete and symbolic
execution. We present here two such
extensions, and then discuss the main
advantages they provide.

Concolic Testing. Directed Auto-
mated Random Testing (DART),19 or
concolic testing35 performs symbolic
execution dynamically, while the pro-
gram is executed on some concrete in-
put values. Concolic testing maintains
a concrete state and a symbolic state:
the concrete state maps all variables
to their concrete values; the symbolic
state only maps variables that have
non-concrete values. Unlike classical
symbolic execution, since concolic ex-
ecution maintains the entire concrete
state of the program along an execu-
tion, it needs initial concrete values for
its inputs. Concolic testing executes a
program starting with some given or

Figure 1. Simple example illustrating symbolic execution.

1 int twice (int v) {
2 return 2*v;
3 }
4
5 void testme (int x, int y) {
6 z = twice (y);
7 if (z == x) {
8 if (x > y+10)
9 ERROR;
10 }
11 }
12 }
13
14 /* simple driver exercising testme () with sym inputs */
15 int main() {
16 x = sym_input();
17 y = sym_input();
18 testme (x, y);
19 return 0;
20 }

x = 0
y = 1

x = 2
y = 1

x = 30
y = 15

x > y + 10

2*y == x

false

false

true

true

ERROR!

Figure 2. Execution tree for the example
in Figure 1.

Figure 3. Simple example illustrating an
infinite number of feasible execution paths.

1 void testme_inf() {
2 int sum = 0;
3 int N = sym_input();
4 while (N > 0) {
5 sum = sum + N
6 N = sym_input();
7 }
8 }

Figure 4. Simple modification of the
example in Figure 1. The function twice now
performs some non-linear computation.

1 int twice (int v) {
2 return (v*v) % 50;
3 }

86 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

other places—such as unhandled in-
structions (for example, floating-point)
or complex functions that cause con-
straint solver timeouts—and the use of
concrete values allows symbolic execu-
tion to recover from that imprecision,
albeit at the cost of missing some fea-
sible paths, and thus sacrificing com-
pleteness.

To illustrate, we describe the behav-
ior of concolic testing on the version
of our running example in which the
function twice returns the non-linear
value (v*v)%50 (see Figure 4). Let us
assume that concolic testing gener-
ates the random input {x = 22, y = 7}.
Then, the symbolic execution will gen-
erate the symbolic path constraint x0 ≠
(y0y0)%50 along the concrete execution
path on this input. If we assume that
the constraint solver cannot handle
non-linear constraints, then concolic
testing will fail to generate an input
for an alternate execution path. We get
a similar situation if the source code
for the function twice is not available
(for example, twice is some third-party
closed-source library function or a sys-
tem call), in which case the path constraint
becomes x0 ≠ twice(y0), where twice
is an uninterpreted function. Concolic
testing handles this situation by replac-
ing some of the symbolic values with their
concrete values so that the resultant con-
straints are simplified and can be solved.
For instance, in the example, concolic
testing replaces y0 by its concrete value
7. This simplifies the path constraint
in both program versions to x0 ≠ 49.
By solving the path constraint x0 = 49,
concolic testing generates the new
input {x = 49, y = 7} for a previously
unexplored execution path. Note that
classical symbolic execution cannot
perform this simplification because
the concrete state is not available dur-
ing symbolic execution.

EGT can handle this situation in a
similar way: when it encounters the
statement return (v*v) % 50 or the
external call z = twice(y), it will call
the constraint solver on the current
symbolic path constraint to generate a
satisfying assignment to y0, say y0 = 7,
replace this value in the symbolic state
and in the path constraint, and contin-
ue the execution in a partial symbolic
state {x  x0, y  7}. The tool KLEE
optimizes this by keeping a counter-
example cache (described later).

concrete and symbolic execution by
dynamically checking before every
operation if the values involved are
all concrete. If so, the operation is ex-
ecuted just as in the original program.
Otherwise, if at least one value is sym-
bolic, the operation is performed sym-
bolically, by updating the path condi-
tion for the current path. For example,
if line 17 in Figure 1 is changed to y =
10, then line 6 will simply call function
twice() with the concrete argument
10, call which will be executed as in
the original program (note that twice
could perform an arbitrarily complex
operation on its input, but this would
not place any additional strain on sym-
bolic execution, because the call will be
executed concretely). Then, the branch
on line 7 will become if (20 == x), and
execution will be forked, one instance
adding the constraint that x = 20 and
following the “then” branch, and the
other adding the constraint that x ≠ 20
and following the “else” branch. Note
that on the “then” branch, the condi-
tional at line 8 becomes if (x > 20),
and therefore its “then” side is infea-
sible because x is constrained to have
value 20 on this path.

Imprecision vs. completeness in
concolic testing and EGT. One of the
key advantages in mixing concrete and
symbolic execution is that imprecision
in symbolic execution (due to, for ex-
ample, interaction with external code,
or constraint solving timeouts), can be
alleviated using concrete values (and
in the case of concolic testing, also
randomization).

For example, real applications al-
most always interact with the outside
world, for instance, by calling librar-
ies that are not instrumented for sym-
bolic execution, or by issuing OS sys-
tem calls. If all the arguments passed
to such a call are concrete, the call can
be simply performed concretely, as in
the original program. However, even if
some operands are symbolic, EGT and
concolic testing can use one of the pos-
sible concrete values of the symbolic
arguments: in EGT this is done by solv-
ing the current path constraint for a
satisfying assignment, while concolic
testing can immediately use the con-
crete runtime values of those inputs
from the current concolic execution.

Besides external code, imprecision
in symbolic execution creeps into many

random input, gathers symbolic con-
straints on inputs at conditional state-
ments along the execution, and then
uses a constraint solver to infer vari-
ants of the previous inputs in order to
steer the next execution of the program
toward an alternative feasible execu-
tion path. This process is repeated sys-
tematically or heuristically until all fea-
sible execution paths are explored or a
user-defined coverage criteria is met.

For the example in Figure 1, concolic
execution will generate some random
input, say {x = 22, y = 7}, and execute
the program both concretely and sym-
bolically. The concrete execution will
take the “else” branch at line 7 and the
symbolic execution will generate the
path constraint x0 ≠ 2y0 along the con-
crete execution path. Concolic testing
negates a conjunct in the path con-
straint and solves x0 = 2y0 to get the test
input {x = 2, y = 1}; this new input will
force the program execution along a
different execution path. Concolic test-
ing repeats both concrete and symbolic
execution on this new test input. The
execution takes a path different from
the previous one—the “then” branch
at line 7 and the “else” branch at line 8
are now taken in this execution. As in
the previous execution, concolic test-
ing also performs symbolic execution
along this concrete execution and gen-
erates the path constraint (x0 = 2y0) ∧ (x0
≤ y0 + 10). Concolic testing will gener-
ate a new test input that forces the pro-
gram along an execution path that has
not been previously executed. It does so
by negating the conjunct (x0 ≤ y0 + 10)
and solving the constraint (x0 = 2y0) ∧
(x0 > y0 + 10) to get the test input {x = 30,
y = 15}. The program reaches the ER-
ROR statement with this new input. Af-
ter this third execution of the program,
concolic testing reports that all execu-
tion paths of the program have been
explored and terminates test input gen-
eration. Note that in this example, con-
colic testing explores all the execution
paths using a depth-first search strat-
egy; however, one could employ other
strategies to explore paths in different
orders, as we discuss later.

Execution-Generated Testing (EGT).
The EGT approach,9 implemented and
extended by the EXE10 and KLEE8 tools,
works by making a distinction between
the concrete and symbolic state of a
program. To this end, EGT intermixes

review articles

february 2013 | vol. 56 | no. 2 | communications of the acm 87

Concolic testing and EGT’s ap-
proach to simplify constraints using
concrete values help them generate
test inputs for execution paths for
which symbolic execution gets stuck,
but this approach comes with a caveat:
due to simplification, concolic testing
and EGT could loose completeness,
that is, they may not be able to generate
test inputs for some feasible execution
paths. For instance, in our example
both techniques will fail to generate an
input for the path true, false. How-
ever, this is clearly preferable to the
alternative of simply aborting execu-
tion when unsupported statements or
external calls are encountered.

Challenges and Extensions
Here, we discuss the main challenges
in symbolic execution, and some inter-
esting solutions and extensions devel-
oped in response to them.

Path Explosion. One of the key chal-
lenges of symbolic execution is the
huge number of programs paths in
all but the smallest programs, which
is usually exponential in the number
of static branches in the code. How-
ever, note that symbolic execution
explores only feasible paths that de-
pend on the symbolic input, which
reduces the number of conditionals
that spawn new paths. For example,
in several experiments on testing a
number of medium-sized applica-
tions we found that less than 42% of
the executed statements depend on
the symbolic input, and often less
than 20% of the symbolic branches
encountered during execution have
both sides feasible.10

Despite this implicit filtering, path
explosion represents one of the big-
gest challenges facing symbolic execu-
tion, and given a fixed time budget, it
is critical to explore the most relevant
paths first. Here, we present a repre-
sentative selection of the techniques
developed to address this problem.

Search heuristics. The main mecha-
nism used by symbolic execution tools
to prioritize path exploration is the
use of search heuristics. Most heuris-
tics focus on achieving high statement
and branch coverage, but they could
also be employed to optimize other de-
sired criteria. We describe here several
coverage-optimized search heuristics
successfully used by current symbolic

execution tools.
One particularly effective approach

is to use the static control-flow graph
(CFG) to guide the exploration toward
the path closest (as measured stati-
cally using the CFG) from an uncov-
ered instruction.7,8 A similar approach,
described in Cadar et al.,10 is to favor
statements that were run the fewest
number of times.

As another example, heuristics
based on random exploration have also
proved successful.7,8 The main idea is
to start from the beginning of the pro-
gram, and at each symbolic branch for
which both sides are feasible to ran-
domly choose which side to explore.
Note that this random strategy has
a number of important advantages:
compared to randomly choosing a path
to execute, it avoids starvation when a
part of the program rapidly forks many
new paths; and compared to randomly
generating inputs, it has a higher prob-
ability to reach branches that are cov-
ered by a very small fraction of the in-
puts. Furthermore, this strategy favors
paths early in the execution, with fewer
constraints on the inputs, and thus on
reaching new program statements.

Interleaving random and symbolic ex-
ecution. Another successful approach,
which was explored in the context of
concolic testing, is to interleave sym-
bolic exploration with random test-
ing.26 This approach combines the abil-
ity of random testing to quickly reach
deep execution states, with the power
of symbolic execution to thoroughly
explore states in a given neighborhood.

Pruning redundant paths. An alter-
native approach to avoid exploring the
same lines of code over and over again
is to automatically prune redundant
paths during exploration. The key in-
sight behind the RWset technique de-
scribed in Boonstoppel et al.5 is that
if a program path reaches the same
program point with the same symbolic
constraints as a previously explored
path, then this path will continue to ex-
ecute exactly the same from that point
on and thus can be discarded. This
technique is enhanced by an impor-
tant optimization: when comparing
the constraints on the two execution
paths, it discards those that depend
only on values that will not be subse-
quently read by the program. Note that
the effect of pruning these paths can be

Path explosion
represents one
of the biggest
challenges facing
symbolic execution.

88 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

It is essential
to implement
constraint-solving
optimizations that
exploit the type
of constraints
generated during
the symbolic
execution of
real programs.

that exploit the type of constraints gen-
erated during the symbolic execution
of real programs. We present here two
representative optimizations used by
existing symbolic execution tools.

Irrelevant constraint elimination.
The vast majority of queries in sym-
bolic execution are issued in order to
determine the feasibility of taking a
certain branch side. For example, in
the concolic variant of symbolic execu-
tion, one branch predicate of an exist-
ing path constraint is negated and then
the resulting constraint set is checked
for satisfiability in order to determine
if the program can take the other side
of the branch, corresponding to the
negated constraint. An important ob-
servation is that in general a program
branch depends only on a small num-
ber of program variables, and therefore
on a small number of constraints from
the path condition. Thus, one effec-
tive optimization is to remove from the
path condition those constraints that
are irrelevant in deciding the outcome
of the current branch. For example, let
the path condition for the current ex-
ecution be (x + y > 10) ∧ (z > 0) ∧ (y <
12) ∧ (z − x = 0) and suppose we want to
generate a new input by solving (x + y >
10) ∧ (z > 0) ∧¬ (y < 12), where ¬(y < 12)
is the negated branch condition whose
feasibility we are trying to establish.
Then it is safe to eliminate the con-
straint on z, because this constraint
cannot influence the outcome of the
y < 12 branch. The solution of this re-
duced constraint set will give new val-
ues for x and y, and we use the value of
z from the current execution to gener-
ate the new input. More formally, the
algorithm computes the transitive clo-
sure of all the constraints on which the
negated constraint depends, by look-
ing whether they share any variables
between them. The extra complication
is in dealing with pointer dereferences
and array indexing, which is discussed
in detail in Cadar et al.10 and Sen et al.35

Incremental solving. One important
characteristic of the constraint sets
generated during symbolic execution
is that they are expressed in terms of
a fixed set of static branches from the
program source code. For this reason,
many paths have similar constraint
sets, and thus allow for similar solu-
tions; this fact can be exploited to im-
prove the speed of constraint solving

significant, as the number of new paths
spawned by the continued execution
can be exponential in the number of en-
countered branches.

Lazy test generation. Lazy test gen-
eration27 is an approach similar to the
counterexample-guided refinement
paradigm from static software verifica-
tion. The technique first explores, us-
ing concolic execution, an abstraction
of the function under test by replacing
each called function with an uncon-
strained input. Second, for each (pos-
sibly spurious) trace generated by this
abstraction, it attempts to expand the
trace to a concretely realizable execu-
tion by recursively expanding the called
functions and finding concrete execu-
tions in the called functions that can be
stitched together with the original trace
to form a complete program execution.
Thus, it reduces the burden of symbolic
reasoning about interprocedural paths
to reasoning about intraprocedural
paths (in the exploration phase), to-
gether with a localized and constrained
search through functions (in the con-
cretization phase).

Static path merging. One simple ap-
proach that can be used to reduce the
number of paths explored is to merge
them statically using select expressions
that are then passed directly to the con-
straint solver.13 For example, the state-
ment x[i] = x[i] > 0 ? x[i]:−x[i]
can be encoded as (x[i] = select(x[i] > 0,
x[i], −x[i]). If such an expression is com-
puted inside a loop statement with N
iterations, this approach can reduce
the number of explored paths from 2N
to 1. While merging can be effective in
many cases, it is unfortunately passing
the complexity to the constraint solver,
which as discussed in the next section
represents another major challenge of
symbolic execution.

Constraint Solving. Despite signifi-
cant advances in constraint solving
technology during the last few years—
which made symbolic execution practi-
cal in the first place—constraint solving
continues to be one of the main bottle-
necks in symbolic execution, where it
often dominates runtime. In fact, one of
the main reasons for which symbolic ex-
ecution fails to scale on some programs
is that their code is generating queries
that are blowing up the solver.

As a result, it is essential to imple-
ment constraint-solving optimizations

review articles

february 2013 | vol. 56 | no. 2 | communications of the acm 89

tions. In multithreaded programs,
CUTE combines concolic execution
with dynamic partial order reduction
to systematically generate both test in-
puts and thread schedules.

CUTE and jCUTE were developed
at University of Illinois at the Urbana-
Champaign for C and Java programs,
respectively. Both tools have been ap-
plied to several popular open source
software including the java.util library
of Sun JDK 1.4.

CREST7 is an open source tool for
concolic testing of C programs. CREST
is an extensible platform for building
and experimenting with heuristics for
selecting which paths to explore. Since
being released as open source in May
2008,a CREST has been downloaded
1,500+ times and has been used by
several research groups. For example,
CREST has been employed to build
tools for augmenting existing test
suites to test newly changed code38 and
detect SQL injection vulnerabilities,29
has been modified to run distributed
on a cluster for testing a flash storage
platform,22 and has been used to ex-
periment with more sophisticated con-
colic search heuristics.3

Concolic testing has also been
studied in different courses at several
universities.

EXE and KLEE. EXE10 is a symbolic
execution tool for C designed for com-
prehensively testing complex soft-
ware, with an emphasis on systems
code. To deal with the complexities
of systems code, EXE models mem-
ory with bit-level accuracy. This is
needed because systems code often
treats memory as untyped bytes, and
observes a single memory location in
multiple ways: for example, by cast-
ing signed variables to unsigned, or
treating an array of bytes as a network
packet, inode, or packet filter through
pointer casting. As importantly, EXE
provides the speed necessary to quick-
ly solve the constraints generated by
real code, through a combination of
low-level optimizations implemented
in its purposely designed constraint
solver STP,10,18 and a series of higher-
level ones such as caching and irrel-
evant constraint elimination.

KLEE8 is a redesign of EXE, built
on top of the LLVM24 compiler infra-

a	 Available at http://code.google.com/p/crest/

by reusing the results of previous simi-
lar queries, as done in several systems
such as CUTE and KLEE.8,35 To illus-
trate this point, we present one such
algorithm, namely the counterexam-
ple caching scheme used by KLEE.8 In
KLEE, all query results are stored in a
cache that maps constraint sets to con-
crete variable assignments (or a special
No solution flag if the constraint set is
unsatisfiable). For example, one map-
ping in this cache could be (x + y < 10) ∧
(x > 5) ⇒ {x = 6, y = 3}. Using these map-
pings, KLEE can quickly answer several
types of similar queries, involving sub-
sets and supersets of the constraint
sets already cached. For example, if
a subset of a cached constraint set is
encountered, KLEE can simply return
the cached solution, because removing
constraints from a constraint set does
not invalidate an existing solution.
Moreover, if a superset of a cached con-
straint set is encountered, KLEE can
quickly check if the cached solution
still works, by plugging in those values
into the superset. For example, KLEE can
quickly check that {x = 6, y = 3} is still a
valid solution for the query (x + y < 10)
∧ (x > 5) ∧ (y ≥ 0), which is a superset
of (x + y < 10) ∧ (x > 5). This latter tech-
nique exploits the fact that in practice,
adding extra constraints often does not
invalidate an existing solution.

Memory Modeling. The precision
with which program statements are
translated into symbolic constraints
can have a significant influence on the
coverage achieved by symbolic execu-
tion, as well as on the scalability of
constraint solving. For example, using
a memory model that approximates
fixed-width integer variables with ac-
tual mathematical integers may be
more efficient, but on the other hand
may result in imprecision in the analy-
sis of code depending on corner cases
such as arithmetic overflow—which
may cause symbolic execution to miss
paths, or explore infeasible ones.

Another example are pointers. On
the one end of the spectrum is a system
like DART that only reasons about con-
crete pointers, or systems like CUTE
and CREST that support only equality
and inequality constraints for point-
ers, which can be efficiently solved.35 At
the other end are systems like EXE, and
more recently KLEE and SAGE10,17,35
that model pointers using the theory of

arrays with selections and updates im-
plemented by solvers like STP or Z3.15,18

The trade-off between precision
and scalability should be determined
in light of the code being analyzed
(for example, low-level systems code
vs. high-level applications code), and
the exact performance difference be-
tween different constraint solving
theories. Note that the trade-off be-
tween precision and scalability is pos-
sible in modern symbolic execution
techniques because we can customize
the use of concrete values in symbolic
formulas and thereby tune both scal-
ability and precision.

Handling Concurrency. Large real-
world programs are often concurrent.
Because of the inherent non-deter-
minism of such programs, testing is
notoriously difficult. Concolic testing
was successfully combined with a vari-
ant of partial order reduction to test
concurrent programs effectively.31–34

This combined method provides one
of the first technique to effectively test
concurrent programs with complex
data inputs.

Tools
Dynamic symbolic execution has
been implemented by several tools
from both academia and research
labs.1,7–10,19,20,35,37 These tools support
a variety of languages, including C/
C++, Java, and the x86 instruction set,
implement several different memory
models, target different types of appli-
cations, and make use of several dif-
ferent constraint solvers and theories.
We discuss here five of these tools,
with whom the authors of this article
have been involved.

DART, CUTE, and CREST. DART19 is
the first concolic testing tool that com-
bines dynamic test generation with
random testing and model checking
techniques with the goal of systemati-
cally executing all (or as many as possi-
ble) feasible paths of a program, while
checking each execution for various
types of errors. DART was first imple-
mented at Bell Labs for testing C pro-
grams, and has inspired many other
extensions and tools since.

CUTE (A Concolic Unit Testing En-
gine) and jCUTE (CUTE for Java)31,33,35
extend DART to handle multithreaded
programs that manipulate dynamic
data structures using pointer opera-

90 communications of the acm | february 2013 | vol. 56 | no. 2

review articles

15.	D e Moura, L. and Bjørner, N. Z3: An efficient SMT
solver. In Proceedings of TACAS’08, (Mar–Apr 2008).

16.	D e Moura, L. and Bjørner, N. Satisfiability modulo
theories: introduction and applications. Commun. ACM
54, 9 (Sept. 2011), 69–77.

17.	E lkarablieh, B., Godefroid, P. and Levin, M.Y. Precise
pointer reasoning for dynamic test generation. In
Proceedings of ISSTA’09.

18.	G anesh, V. and Dill, D.L. A decision procedure for bit-vectors
and arrays. In Proceedings of CAV’07, (July 2007).

19.	G odefroid, P., Klarlund, N. and Sen, K. DART: Directed
Automated Random Testing. In Proceedings of
PLDI’05, (June 2005).

20.	G odefroid, P., Levin, M., and Molnar, D. Automated
whitebox fuzz testing. In Proceedings of NDSS’08,
(Feb. 2008).

21.	H astings, R. and Joyce, B. Purify: Fast detection of
memory leaks and access errors. In Proceedings of
Winter USENIX Conference, 1992.

22.	 Kim, Y., Kim, M., and Dang, N. Scalable distributed
concolic testing: A case study on a flash storage
platform. In Proceedings of ICTAC’10, 199–213.

23.	 King, J.C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976), 385–394.

24.	L attner, C. and Adve, V. LLVM: A compilation
framework for lifelong program analysis and
transformation. In Proceedings of CGO’04,
(Mar 2004).

25.	L i, G., Li, P., Sawaga, G, Gopalakrishnan, G., Ghosh, I.
and Rajan, S.P. GKLEE: Concolic verification and test
generation for GPUs. In Proceedings of PPoPP’12.

26.	M ajumdar, R. and Sen, K. Hybrid concolic testing. In
Proceedings of ICSE’07, (May 2007).

27.	M ajumdar, R. and Sen, K. Latest: Lazy dynamic test
input generation. Technical Report UCB/EECS-
2007-36. EECS Department, University of California,
Berkeley, Mar. 2007.

28.	N ethercote, N. and Seward, J. Valgrind: A program
supervision framework. Electronic Notes in Theoretical
Computer Science 89, 2 (2003).

29.	R use, M., Sarkar, T. and Basu, S. Analysis & detection
of SQL injection vulnerabilities via automatic test case
generation of programs. In Proceedings of SAINT’10,
(July 2010).

30.	S asnauskas, R., Link, J.A.B., Alizai, M.H., and Wehrle,
K. Kleenet: Automatic bug hunting in sensor network
applications. In Proceedings of IPSN’10, (Apr 2010).

31.	S en, K. Scalable Automated Methods for Dynamic
Program Analysis. Ph.D. thesis. University of Illinois at
Urbana-Champaign, June 2006.

32.	S en, K. and Agha, G. Automated systematic testing
of open distributed programs. In Proceedings of
FASE’06, 2006.

33.	S en, K. and Agha, G. CUTE and jCUTE : Concolic unit
testing and explicit path model-checking tools. In
Proceedings of CAV’06.

34.	S en, K. and Agha, G. A race-detection and flipping
algorithm for automated testing of multi-threaded
programs. In Proceedings of HVC, (2006).

35.	S en, K., Marinov, D. and Agha, G. CUTE: A concolic unit
testing engine for C. In Proceedings of ESEC/FSE’05,
(Sept. 2005).

36.	S ong, J., Ma, T., Cadar, C. and Pietzuch, P. Rule-based
verification of network protocol implementations using
symbolic execution. In Proceedings of ICCCN’11,
(May 2011).

37.	T illmann, N. and de Halleux, J. Pex—White box test
generation for .NET. In Proceedings of TAP’08,
(Apr. 2008).

38.	 Xu, Z., Kim, Y., Kim, M., Rothermel, G. and Cohen, M.B.
Directed test suite augmentation: Techniques and
trade-offs. In Proceedings of FSE’10, (Nov. 2010).

39.	Y ang, J., Sar, C., Twohey, P., Cadar, C. and Engler,
D. Automatically generating malicious disks using
symbolic execution. In IEEE Symposium on Security
and Privacy, (May 2006).

40.	Zamfir, C. and Candea, G. Execution synthesis: A
technique for automated software debugging. In
Proceedings of EuroSys’10, (Apr 2010).

Cristian Cadar (c.cadar@imperial.ac.uk) is a lecturer
in the Department of Computing at Imperial College
London.

Koushik Sen (ksen@cs.berkeley.edu) is an associate
professor in the Department of Electrical Engineering and
Computer Science at the University of California, Berkeley.

© 2013 ACM 0001-0782/13/02

structure. Like EXE, it performs mixed
concrete/symbolic execution, models
memory with bit-level accuracy, em-
ploys a variety of constraint solving op-
timizations, and uses search heuristics
to get high code coverage. One of the
key improvements of KLEE over EXE is
its ability to store a much larger num-
ber of concurrent states, by exploiting
sharing among states at the object-,
rather than at the page-level as in EXE.
Another important improvement is
its enhanced ability to handle interac-
tions with the outside environment—
for example, with data read from the
file system or over the network—by
providing models designed to explore
all possible legal interactions with the
outside world.

As a result of these features, EXE
and KLEE have been successfully
used to check a large number of dif-
ferent software systems, including
network servers and tools (Berkeley
Packet Filter, Avahi, Bonjour, among
others);10,36 file systems (ext2, ext3,
JFS);39 MINIX device drivers (Sound
Blaster 16, Lance, PCI);5 Unix utilities
(Coreutils, MINIX, Busybox suites);8
and computer vision code.13 They ex-
posed bugs and vulnerabilities in all
of these software systems, and con-
structed concrete inputs triggering
them. For example, EXE generated ac-
tual disk images that when mounted
under various file systems cause the
Linux kernel to panic.39 EXE and KLEE
were also able to successfully generate
high-coverage regression suites: when
run on the 89 stand-alone tools of the
Coreutils utility suite, KLEE generates
tests achieving on average over 90%
line coverage, significantly beating
an extensive manual regression suite
built incrementally by developers over
more than 15 years.

KLEE was open sourced in June
2009.b The tool has an active user com-
munity—with approximately 200 mem-
bers on the mailing list and growing—
and several research groups have built
upon it in a variety of areas, ranging
from wireless sensor networks30 to
automated debugging,40 reverse en-
gineering of binary device drivers,11
exploit generation,2 online gaming,4
testing and verification for GPUs,25 and
deterministic multithreading.14

b	 Available at http://klee.llvm.org/

Conclusion
Symbolic execution has become an
effective program testing technique,
providing a way to automatically gen-
erate inputs that trigger software er-
rors ranging from low-level program
crashes to higher-level semantic
properties; generate test suites that
achieve high program coverage; and
provide per-path correctness guaran-
tees. While more research is needed to
scale symbolic execution to very large
programs, existing tools have already
proved effective in testing and finding
errors in a variety of software, varying
from low-level network and operating
systems code to higher-level applica-
tions code.

Acknowledgments
The EGT, EXE, and KLEE projects are
joint work with Dawson Engler and
several other researchers.5,8–10,13,36,39
Daniel Dunbar is the main author of
the KLEE system. The DART and con-
colic testing projects are joint work
with several researchers including Gul
Agha, Jacob Burnim, Patrice Gode-
froid, Nils Klarlund, Rupak Majumdar,
and Darko Marinov.	

References
1.	A nand, S., Păsăreanu, C.S. and Visser, W. JPF-SE: A

symbolic execution extension to Java PathFinder. In
Proceedings of TACAS’07.

2.	A vgerinos, T., Cha, S.K., Hao, B.L.T. and Brumley, D.
AEG: Automatic exploit generation. In Proceedings of
NDSS’11, (Feb. 2011).

3.	B aluda, M., Braione, P., Denaro, G. and Pezzè, M.
Structural coverage of feasible code. In Proceedings
of AST’10.

4.	B ethea, D., Cochran, R. and Reiter, M. Server-side
verification of client behavior in online games. In
Proceedings of NDSS’10, 2010.

5.	B oonstoppel, P., Cadar, C. and Engler, D. RWset: Attacking
path explosion in constraint-based test generation. In
Proceedings of TACAS’08, (Mar–Apr 2008).

6.	B oyer, R.S., Elspas, B. and Levitt, K.N. SELECT—A
formal system for testing and debugging programs
by symbolic execution. SIGPLAN Not. 10 (1975),
234–245.

7.	B urnim, J. and Sen, K. Heuristics for scalable dynamic
test generation. In Proceedings of ASE’08, (Sept. 2008).

8.	C adar, C., Dunbar, D. and Engler, D. KLEE: Unassisted
and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of
OSDI’08, (Dec 2008).

9.	C adar, C. and Engler, D. Execution generated test
cases: How to make systems code crash itself (invited
paper). In Proceedings of SPIN’05, (Aug 2005).

10.	C adar, C., Ganesh, V., Pawlowski, P., Dill, D. and Engler,
D. EXE: Automatically generating inputs of death. In
Proceedings of CCS’06, (Oct–Nov 2006). An extended
version appeared in ACM TISSEC 12, 2 (2008).

11.	C hipounov, V. and Candea, G. Reverse engineering of
binary device drivers with RevNIC. In Proceedings of
EuroSys’10, (Apr 2010).

12.	C larke, L.A. A program testing system. In Proceedings
of the 1976 Annual Conference, 488–491.

13.	C ollingbourne, P., Cadar, C. and Kelly, P.H. Symbolic
crosschecking of floating-point and SIMD code. In
Proceedings of EuroSys’11, (Apr 2011).

14.	C ui, H., Wu, J. che Tsai, C. and Yang, J. Stable
deterministic multithreading through schedule
memoization. In Proceedings of OSDI’10.

