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is difficult. To this end, we provide a comprehensive guide for the practitioner or system emulation researcher.
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1 INTRODUCTION

The number of connected devices, from appliances to smart home and personal gadgets, has in-
creased dramatically with the explosion of Internet of Things (IoT). Along with these every day
gadgets, large-scale infrastructures, such as the electric grid, cellular networks, and other large
control systems, have become smarter, digital, and interconnected [62, 98, 107, 120, 178]. Under-
standing how these systems work and discovering vulnerabilities in their firmware is an important
and growing topic in academic and industrial research, with large companies paying millions of
dollars for bugs found in their devices [1, 30, 32, 77, 118, 140]. The increased effort to protect con-
nected devices has come from an increased awareness of their vulnerability and the attacks tar-
geting them [3, 43, 82, 85, 101, 123, 166, 174, 183]. Many of these systems have access to sensitive
financial data, personal information, or control critical processes. Malicious actors are exploiting
vulnerabilities in these systems to cause harm to businesses, individuals, and critical systems such
as electrical grids and cellular infrastructure.

Emulation of embedded systems is an emerging technique to accelerate discovery and mitigation
of vulnerabilities in embedded system firmware. Embedded system emulation has traditionally
been used during development to allow embedded software to be written and tested without the
need for hardware. In cases where hardware is concurrently being developed, is costly to have
in quantity, or is susceptible to damage, emulation is an appealing option. Just as emulation can
be used to verify system behavior during development, it can be used for vulnerability research
and analysis. Emulation provides the ability to deeply observe and instrument firmware in ways
that are not possible on physical hardware. It can help analyze what operations are actually being
performed at a lower level than static analysis of either the high level source code or even the
binary level, and is a useful tool that is the basis for a host of vulnerability discovering techniques
[35, 44, 91, 137, 146, 151, 160, 169] among other uses outlined in Section 2.

For a practitioner to use emulation or re-host1 a firmware, there is a learning curve and a
plethora of tools available. Our primary purpose is to provide an end-to-end guide to the prac-
titioner for firmware re-hosting. We limit our focus on emulation and re-hosting to the embedded
space, as virtually any system will have embedded devices, from wearable IoT devices to power
plants, which if vulnerable will affect the entire system’s security and functionality. We present an
overview of current techniques/tools for the practitioner along with classification categories and
techniques for evaluating which tool is best for the emulation task at hand. We provide tables for
the practitioner to reference in subsequent challenge sections that specify whether a tool attempts
to address the presented challenges, giving a starting point for the practitioner to evaluate the
right tool to overcome challenges.

We proceed with a brief history and background of emulation in Section 2. We then introduce
surveyed works in Section 3 before introducing different comparison techniques in Section 4.
We continue by comparing surveyed works for emulation in Section 5. We discuss the necessary
pre conditions and challenges for re-hosting firmware in Section 6. We then proceed to break the
challenges into three categories, Pre-Emulation, Emulation, and Post Emulation, and provide tool
comparisons in Section 7, Section 8, and Section 9 respectively. We finish by discussing different
considerations when choosing re-hosting tools in Section 10 and a summary in Section 11.

1Re-hosting specifies that a binary that would run on a specific hardware is instead run on a host system using system
emulation and is therefore “re-hosted.”
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2 EMULATION BACKGROUND

2.1 Evolution of Emulation

Since before the era of personal computers, emulation has been a technique used to broaden hard-
ware use and increase simulation speed. For example, most printing software used to be designed
for HP, so many non-HP printers would write an emulator to re-host the software designed for
HP [73]. Re-using HP software allowed for faster time to market for new printers and reduced the
development time and effort for creating new products.

Emulation theory was first developed in the early 1960s, with the 7070 Emulator for the IBM
System/360 series of mainframe computers being the first implemented emulator [83]. This emula-
tor allowed IBM’s customers to continue running their existing applications after upgrading their
hardware. As was the case for the 7070 emulator, early uses of emulation was to avoid obsoles-
cence and increase hardware compatibility with the limited available software. Over time, manu-
facturers started creating hardware emulators to allow software development before the hardware
production; decreasing product development time. Emulators are now becoming a popular tool for
security analysis and logic debugging [91, 129, 160, 169].

Around the same time frame, simulation was also used, but it allowed for executing and ex-
panding systems beyond what existed. Simulation is sometimes referred to in scientific modeling
and investigating, but in this context, simulation is another technique to model the internals of
a system. In the computer science context, simulation is modeling a system with implementation
of the internals, whereas emulation is modeling by replacing some of the internals of the sys-
tem. By replacing some of the internals, emulation can sometimes reduce complexity or increase
firmware re-hosting speed. Emulation will often allow for original machine code to run directly on
the emulator. Beyond the computer science context, simulation and emulation are sometimes used
interchangeably, with simulation sometimes refering to a system being replaced by software. For
our case, the distinction is not important, but the tools we survey mostly refer to their techniques
as emulation.

One of the early emulation successes was Bochs [96], which was released in the early 1990s. It
emulated the underlying hardware needed for PC operating systems development, which enabled
completely isolating the OS from the hardware. This isolation enabled restarting the emulator
instead of reconfiguring hardware during OS development. Bochs was originally commercial li-
censed but was open sourced in 2000. In addition to Bochs, many other emulators were created
including DOSBox [52], FX!32 [27], and PCem [126]. These solutions were mainly geared for x86
or PC emulation.

As multiple emulators emerged, the execution and memory fidelity (i.e., how closely the emu-
lated system matches the real system, sometimes referred to as accuracy) varied from high (Cycle
and Register accurate) to low (Module and Black box accurate). We discuss fidelity and give more
classification points in Section 4.3, but fidelity and emulator speed are perhaps the greatest distin-
guishing factors between different emulators.

2.2 Emulation Bases

In the early 2000s, Simics [105] was created and evolved to emulate multiple architectures including
Alpha, x86-64, IA-64, ARM, MIPS (32- and 64-bit), MSP430, PowerPC (32- and 64-bit), SPARC-V8
and V9, and x86 instruction set architectures (ISAs). It was originally developed by the Swedish
Institute of Computer Science (SICS) before moving to Virtutech and eventually working its way
to Wind River Systems, who currently sells it. Simics is designed to have fidelity at the instruction
level, allowing for interrupt testing to occur between any pair of instructions. It also provides
configuration management, scripting, automated debugging (forward and reverse), and other built
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in static and dynamic analysis tools to help with constructing an emulated system. One popular
use for Simics was during the DARPA Cyber Grand Challenge to automatically vet submissions to
check whether the submitted binaries adhered to the competition infrastructure [168].

In contrast to Simics and emulators that work at the instruction level fidelity, QEMU [11] gives
up some accuracy to improve emulation speed. Instead of working as a sub-instruction simulator
(performing multiple actions per instruction), QEMU execution and emulation occurs at the basic
block level (sequential, non-control flow instructions), by translating entire blocks of instructions
to the host system’s instruction set and executing the translated instructions. This allows QEMU
to work much faster, as it does not have to check for interrupts at each instruction, and caching of
blocks greatly reduces translation overhead. Because of its open-source license and community,
QEMU has become one of the staples in academia and for industry professionals. It emulates the IA-
32, x86, MIPS, SPARC, ARM, SH4, PowerPC, ETRAX CRIS, MicroBlaze, and RISC-V architectures
and provides peripherals for many systems, making it and Simics two of the most widely used
emulators.

One of the newest emulators available is Ghidra Emulator. Ghidra [119] is an open source soft-
ware reverse engineering tool developed by the National Security Agency (NSA). The initial release
in March 2019 contains emulation tools that allow for traditional software reverse engineering and
emulation to be combined into the same environment. Because of the richness of features in these
tools, there has been a large user base since release. Ghidra uses their own processor modeling
language called Sleigh and an intermediate register transfer language called P-code, with each
machine instruction translating to up to 30 P-code instructions. This implies that the Ghidra Em-
ulator works at the sub-instruction level (multiple emulator instructions performed per machine
instruction), giving a relatively high execution fidelity as a base. Ghidra currently supports var-
ious existing architectures including X86 16/32/64, ARM/AARCH64, PowerPC 32/64, VLE, MIPS,
MSP430, Z80, AVR, and so on. To add a new architecture is simple in their framework, with the
user only specifying how the new architectures instructions are dissassembled into the interme-
diate P-code language. Ghidra includes loaders, disassemblers, decompiler and analysis tools with
the base of supplied analyses written in Java. Beyond the built-in emulator, there have been Ghidra
P-code emulators emerging that allow for partial re-hosting of firmwares [153].

2.3 Related Vulnerability Discovery Techniques

As emulation has been used more frequently for vulnerability discovery, it is worth mentioning
some closely related vulnerability discovery techniques that often leverage emulation. The tech-
niques introduced are integrated into some frameworks that work with the base emulators, requir-
ing at least some familiarity during discussion. We do not go into extensive depth for the areas,
but rather overview the techniques briefly, and recommend further reading for an in depth review.
We mention some of the tools that are more popular, but it is not necessary to understand their
differences or techniques in the scope of our review, rather the techniques are mentioned briefly
in subsequent sections when integrated into a tool.

Symbolic Execution is where symbols representing arbitrary values are supplied as inputs to
a program (similar to letters in algebra representing numbers). The goal of symbolic execution is
to analyze a program to determine what inputs can cause different parts of a program to execute.
Rather than analyze and follow a single path with concrete values, a symbolic execution engine
will use symbols to describe all program execution paths that can execute by using constraints on
symbols.

Concolic Execution is when the tool will switch between using symbolic symbols and con-
crete symbols (like an algebra symbol having a set value, e.g., x = 5) during emulation or execution.
When reverse engineering firmware, an analyst will occasionally want to determine under what
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conditions a program will execute a certain portion of code. Symbolic and Concolic execution are
tools that help solve this problem among other vulnerability discovery uses. Symbolic execution
is now a common software testing practice, even though it was introduced in the 1970s [20]. Com-
monly used symbolic and concolic execution tools include References [10, 13, 15, 16, 19, 23, 24, 28,
38, 47, 61, 79, 103, 111, 141, 144, 147, 151].

Fuzzing is an automated vulnerability/bug discovery technique where random inputs are pro-
vided, and the system observed for undesired behavior (e.g., crashes). There are many challenges to
fuzzing and various tools that try to address these challenges. In the context of emulation, fuzzers
often leverage the visibility into, and control over, a binary’s execution to optimize their random
inputs to improve their exploration of the binary. Some popular fuzzing tools that can be integrated
with emulation are References [2, 14, 39, 51, 63–71, 80, 108, 127, 134, 135, 145, 156–158, 184].

3 SURVEYED WORKS

Prior to introducing emulation comparison axes, we introduce surveyed works that enable emula-
tion and firmware re-hosting. We do not discuss or reintroduce Simics, QEMU, or Ghidra Emulator,
as they are described in Section 2.2, but they are the base emulators used in the tools introduced
in this section. Base emulators can either run in user mode emulation (i.e., running just user level
applications) or full system emulation; with full-system emulation currently being the primary
mode used for firmware re-hosting. Full-system emulation will emulate the processor as well as
hardware peripherals; however, the set of emulated peripherals available in the base emulators are
small compared to the diversity of hardware found in embedded systems. Much of the work in
firmware emulation aims at solving this lack of emulated peripherals.

Avatar2 [112] is a dynamic multi-target orchestration and instrumentation framework that focuses
on firmware analysis. This tool was created by the same group as Avatar but is a multi-target
orchestration tool that has completely been re-designed from the original Avatar implementation
[185].

The main contribution of this tool is that it allows various other tools (angr, QEMU, gdb) to
interact and transfer data. Using these tools it can enable hardware in the loop emulation, where
portions of execution or memory accesses are carried out by physical hardware.

angr [151] is a symbolic execution engine, that has been integrated with Avatar2 to enable com-
bining symbolic execution and other analysis into the concrete base QEMU emulator. angr is a
binary analysis framework that provides building blocks for many analyses, both static and dy-
namic. angr provides an architecture library, an executable and library loader, a symbolic execution
engine, built in analyses, and a python wrapper around a binary code lifter. It is actively devel-
oped and used in various other academic works including References [9, 104, 124, 128, 148, 150, 158,
175, 176]. We include this as one of the surveyed works because of its ability to use base emulators
while providing new approaches and solutions to overcome emulation challenges from beginning
to end.

HALucinator [35] addresses the challenge of providing peripherals not implemented in the base
emulator by observing that the interactions with peripherals are often performed by a Hardware
Abstraction Layer (HAL). It uses Avatar2 and QEMU as bases to intercept HAL calls and replace
them. They do this by manually providing replacements for HAL functions that execute during
re-hosting. It uses a library matching tool to identify the HAL functions in the firmware. The tool
relies on the assumption that the majority of firmware programmers use Hardware Abstraction
Libraries when writing firmware, which in our experience is a relatively safe assumption.

PANDA [50] is an open-source platform that builds on top of the QEMU whole system emulator
that is used for architecture-neutral dynamic analysis. The main advantage of PANDA is that
it adds the ability to record and replay executions, allowing for deep, whole-system analyses.
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System record has partially been addressed in a hardware-software co-design approach [161] as
well as under more restrictive assumptions, using a purely software approach [159, 162]. Such
whole system record and replay is challenging especially considering the timing requirements.
PANDA, using the QEMU base and abstracting some of the analyses, allows for using a single
analysis implementation across multiple computer architectures while maintaining the speed of
QEMU, allowing some timing challenges to be addressed.

Muench2018 , titled “What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded
Devices” [113], demonstrate that tools used for desktop vulnerability discovery and testing do
not necessarily transfer to the embedded space. In their article, they present different techniques
used for vulnerability assessment implemented by instrumenting an the emulator used for re-
hosting the firmware. They implement segment tracking, format specifier tracking, heap object
tracking, call stack tracking, call frame tracking, and stack object tracking by combining PANDA
and Avatar2.

Using QEMU as a base, both Firmadyne [25] and Costin Firmware Analysis (referred herafter as
CostinFA [43, 44] “A Large-Scale Analysis of the Security of Embedded Firmwares” and “Automated
Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces”) will extract the
filesystem from a given firmware and re-host the filesystem on their own kernel. They perform
system emulation using only software, not involving any physical embedded devices. Their tools
work only for software images that can natively use chroot with QEMU. They then perform static
and dynamic analysis on their re-hosted firmware to report vulnerabilities. Recent efforts that
use the same type of approach as Costin and Firmadyne is ARMX [146]. ARMX requires more
user interaction and configuration and only works for ARM architecture devices while requiring
the rootfs from the firmware and the extracted NVRAM from the firmware. Given these extra
requirements, the results of the emulated devices using their technique is usually of high quality.

PROSPECT [84] and SURROGATES [90] enable emulation by forwarding hardware and periph-
eral accesses to the actual device; a technique known as hardware in the loop. PROSPECT forwards
peripheral and hardware interactions through a normal bus connection to the device, but allows
for analysis and implementation without needing to know the details about the peripherals and
external hardware connected to the system. SURROGATES, in contrast, uses a custom low-latency
FPGA bridge between the host PCI Express bus and the system under test, allowing forwarding
and state transfer to and from the system’s peripherals with transfers much faster than the original
Avatar [185] system.

P2IM [57] uses a drop-in fuzzer (AFL [2]) to provide inputs to their base QEMU emulator. They
abstract peripheral and hardware IO and then use the fuzzer for providing the feedback to the
base emulator. Their approach is different from existing emulation approaches as it does not use
hardware or detailed knowledge of the peripherals, as the fuzzer provides interactions. The fuzzer
enables executing firmware with simple peripherals to be emulated, but its ability to enable emu-
lation of firmware processing data from complex and stateful hardware is unknown.

In contrast to using a random fuzzer, Pretender [72] attempts to re-host firmware by using ma-
chine learning to provide models of hardware interactions. Their system will record hardware
interactions and all accesses to memory mapped input and output (interacting with peripherals is
done through a specified memory-mapped address, MMIO) regions along with any interrupt that
occurs during execution before performing a peripheral clustering and dividing the recordings
into sub-recordings for each peripheral. They then train a memory model, trying to select and
train on known models for each peripheral. The analyst then decides how to introduce inputs into
the system.

In summary of the tools that are surveyed (highlighted in bold throughout Section 2 and
Section 3) the general-purpose emulators surveyed that have a wide variety of specialties and uses
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include Avatar2, CostinFA, Firmadyne, Ghidra, HALucinator, Muench2018, Panda, QEMU, and
Simics. Emulators that use hardware in the loop include Avatar2, SURROGATES, and PROSPECT.
Emulators that can use symbolic execution and/or fuzzing include angr, Ghidra, HALucinator,
and P2IM. The only emulator that uses machine learning for models is Pretender, which at the
moment to be successful requires fairly simple firmware. If the reader is anxious for a flow-chart
of which tool to use, then refer to Figure 4 that is explained in Section 10. While this is not an
exhaustive list of tools or methods, as there are many more available including References [17,
18, 33, 40, 48, 48, 60, 75, 76, 82, 86, 87, 92, 94, 99, 136, 139, 155, 156, 164, 167, 173] among others,
we believe the scope of tools and their applicability is encompassed in the tools mentioned above.

4 EMULATION COMPARISON AXES

Prior to discussing the core challenges of emulation, we first introduce axes over which the com-
parison of different emulators can be compared. Various emulators and emulation techniques are
used for different purposes and thus make different design decisions. Establishing common axes
to evaluate emulators is necessary to enable the practitioner to do a useful comparison before
choosing the ideal emulation tool for their use.

4.1 Emulation Techniques

A significant challenge to re-hosting firmware is the large expanse of hardware peripherals that
need to be emulated; thus, one evaluation axis is the fundamental technique the emulator uses
to provide these peripherals. The technique employed will directly relate to another axis of
comparison—the complexity of the hardware that is feasible to emulate. Some systems are sim-
ple with no peripherals, whereas others may be connected to Remote Terminal Units (RTU),
Programmable Logic Controllers (PLC), Field-Programable Gate Array (FPGAs), multiple sensors,
databases, Human Machine Interface controllers (HMI), and so on. The amount of hardware the
practitioner wants to emulate will range from a single chip or sensor, all the way up to the entire
large-scale system. The amount of hardware and complexity of the hardware emulation is largely
limited by the peripheral emulation technique used.

The main peripheral interaction techniques used include hardware in the loop (HITL), learning,
fuzzing, and abstraction replacement. HITL will use the emulator to perform instruction execu-
tion, but if accesses are made to hardware peripherals they are forwarded to the actual hardware.
Learning refers to using machine learning to provide hardware interactions, whereas fuzzing will
use random generation to provide simulated hardware interactions. Abstraction replacement pro-
vides peripheral hardware functionality by identifying software abstractions within the firmware
and replaces execution of these abstractions with its own implementations. Examples of surveyed
works that allow HITL are SURROGATES [90] and Avatar2 [112]. P2IM [57] uses fuzzing, and Pre-
tender [72] uses Learning, whereas Firmadyne [25], CostinFA [43, 44], and HALucinator [35] use
abstraction replacement.

4.2 Types of Systems

In addition to how hardware peripherals are provided, it is important to consider the type of system
the emulator is designed to support. The range and capabilities of embedded systems ranges from
large multi-processor systems running customized versions of desktop OSes (e.g., Linux) to low
cost, low power micro-controllers running a few KB of code without an OS. The challenges and
techniques in emulating these systems vary and may or may not translate from system to system.
We reuse the classification presented by Muench et al. [113], though use our own names instead of

ACM Computing Surveys, Vol. 54, No. 1, Article 5. Publication date: December 2020.



5:8 C. Wright et al.

numbers for the types of systems, splitting the embedded system types into three different classes,
based on the type of firmware they execute.

General Purpose Embedded Systems (GPES): Also known as Type 1 embedded system, use
a general-purpose operating system that is primarily used on servers and desktop systems. Ex-
amples include real-time Linux, embedded Windows, and Raspberry Pi. The operating systems
are retrofitted for the embedded space but retain many desktop level features, but with stripped
down components, and are coupled with lightweight user space environments such as busybox
or uClibc. Tools such as Firmadyne and CostinFA require the embedded system they work on to
be Linux based systems and will only work on this type of system. Emulating these types of sys-
tems greatly benefits from the work done to enable emulation of desktop software and operating
systems (e.g., QEMU directly supports emulating the Linux Kernel).

Special Purpose Embedded System (SPES): Type 2 devices from Reference [113] use oper-
ating systems specifically developed for embedded systems. They are often commercial products
and closed source. Examples include μClinux, ZephyrOS, and VxWorks. These systems are usually
single-purpose electronics or control systems. Some of the features that distinguish these systems
are that the OS and applications may be compiled separately and the system is not derived from a
desktop operating system. Thus, many emulation techniques from the desktop space do not work,
and emulation must start from scratch. Re-hosting these systems requires re-hosting both the ker-
nel and user space. Also adding to the challenge of emulating these systems is the fact that the
separation between the Kernel and user space is often blurred.

Bare-metal Embedded Systems (BMES): Type 3 devices are embedded systems without a
true OS abstraction that we refer to as bare-metal embedded systems (BMES). They often do not
have an OS or may include a light-weight OS-Library. An example is an Arduino system. In both
cases, the application will directly access hardware and the OS (if present) and applications are
statically linked into a single binary. Recent work [35, 57, 72] focuses on re-hosting these systems.

We find this axis of comparison useful as it helps to determine what emulation techniques an
analyst should consider for a given firmware. However, in practice, classifying a system is not nec-
essarily cut and dry. Rather the classification is a continuum on the embedded space. For example,
an embedded system that started out using UNIX OS 30 years ago may have originally been clas-
sified as a GPES, but as the system morphed over time, the same system currently may now be
better classified as a SPES.

4.3 Fidelity

Introduced in Section 2, fidelity is perhaps the most important comparison axis but also the most
difficult to quantify. The difficulty comes from limited ability to inspect the internal state of hard-
ware, and is further complicated by the ability to compare states. In an effort to enable better un-
derstanding of fidelity, we classify fidelity along the conceptual axis of execution fidelity and data or
memory fidelity. This enables comparison of the conceptual limits of fidelity on a two-dimensiona
(2D) plane. Work by Costin [44] has a general classification of emulators that have kernels and
applications. The classification we present here is more general, applies to both re-hosting and
emulators, has more classification points, and is applicable to all types of systems—GPES, SPES,
and BMES. The fidelity classifications are from the perspective of the firmware (software), and
whether the emulation “looks” and “acts” like real hardware. This implies that we do not need
to differentiate between memory (whether DRAM, SRAM, Flash, etc.) that looks the same to the
firmware, we just refer to this as internal memory. If there is another driver required to use specific
memory (such as an SD card), then we consider this external memory.

Execution fidelity describes how closely execution in the emulator can match that of the physical
system. We bin techniques into the categories BlackBox, Module, Function, Basic Block, Instruction,
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Fig. 1. Categories of fidelity.

Cycle, and Perfect, with execution fidelity increasing from BlackBox to Perfect. A system emu-
lated with BlackBox fidelity exhibits the same (or sufficiently similar) external behavior as the real
system, but internally may or may not execute any of the same instructions a real system would
execute. Module fidelity provides fidelity at the module level. For example, Firmadyne replaces
the original firmware’s kernel with its own to enable re-hosting the original firmware. Thus some
modules of the firmware are executed unmodified, and others completely replaced. Function level
fidelity accurately models the system at the function level (e.g., HALucinator replaces entire func-
tions to enable emulation). Similarly, basic block and instruction level fidelity accurately emulate
at the basic block and instruction level layers. Beyond instruction level is cycle level, which faith-
fully emulates to cpu instruction cycle (e.g., the gem5 [12] simulator). Perfect emulation means
that emulation is exactly the same as it would be on the actual hardware, which to our knowledge
no current emulator achieves.

We categorize data/memory fidelity increasing from the coarsest granularity to finest granu-
larity as BlackBox, Internal Memory, Register, and Perfect. BlackBox fidelity means that the data
externally visible to the system or external memory (e.g., HDD or SDD) is the same (e.g., for a given
input we get the same output). Internal Memory means that the internal memory (e.g., RAM) is
consistent with hardware for a given point in execution. Register level fidelity means that both
internal memory and registers are correct at the given execution fidelity and perfect means that
all memory components work the exact same as the given system at the level of execution fi-
delity needed. In Blackbox, Internal Memory, and Register Memory levels, these classifications are
usually for specific areas of interest in the firmware. This means that there is a blur between the
classification points, as some sections of the firmware may be at the Blackbox level where the user
does not care much about the internals, but in a few sections of high interest the firmware emu-
lation may be at the Internal or Register Level fidelity. The Perfect Emulation level is on the scale
but currently is virtually unobtainable. Depending on the practitioner, Perfect Emulation level can
mean Register level throughout the entire firmware, or it could mean everything is exact, down
to the cache for every execution cycle. In Figure 1 we show how the most prevalent firmware
emulation techniques fit into this classification framework.
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4.4 Purpose of Emulator

Of the surveyed research works in firmware re-hosting, the main focus points have been Creating

Emulators, Dynamic Analysis, Static Analysis, and Fuzzing. Each of these focus points enables the
emulator to answer specific questions. The purpose of emulators include vulnerability detection,
enabling running legacy code, hardware replacement, development assistance, and system behav-
ioral analysis. The purpose of the emulator directly influences the techniques employed, types of
systems the emulator will work on and for, and determine the fidelity of the system.

4.5 Level of Control

Another axis for comparison related to the purpose of the emulator is the ability to control the
exploration in firmware and what the tool can/should be used for. Control may perhaps be thought
of as another axis in fidelity, quantifying whether you can control emulation and what is actually
executed during emulation. It also refers to the level of interaction available to the practitioner.
For example, HALucinator enables interactive emulation making it suitable for building virtual
testbeds, whereas P2IM enables fuzzing and would not be a feasible tool for testbeds.

For visualization ease we do not combine fidelity and exploration, but it is important to note that
some tools and emulators do not allow for controlled exploration. For example, if your emulator is
just fuzzing everything from memory to inputs, then it may have very high execution fidelity and
low memory fidelity, but it has almost no exploration customization to specify what to execute, it
solely relies on a random generator. Randomization and fuzzing enable high coverage fuzzing and
vulnerability discovery, but it does not give a clear picture of actual real possibilities of execution.

5 CLASSIFICATION OF SURVEYED WORKS

Now that we have discussed different axes of fidelity, we further categorize and compare surveyed
works in firmware re-hosting and emulation. Figure 1 shows a 2D space of fidelity categorization.
On the horizontal axis is execution fidelity and on the vertical axis is data fidelity. As can be seen
in the figure, there is not a single point for each category but rather a blurry bubble, emphasizing
that fidelity categorizations are conceptual and a continuum from Blackbox to Perfect fidelity. As
can be seen in Figure 1, the points on the plot range from dark to light shading. The darker the
circle indicates that the tools is more automated, requiring less user interaction and requirements
for setting up the tool. The lighter the circle in the plot indicates that the default tool requires
more user interaction to get the tool setup. We purposefully do not give concrete numbers to
the automation or the fidelity levels, rather we visually categorize automation and place fidelity in
regions to re-emphasize that these categorizations are not concrete and may slightly move/change
depending on tool use and the practitioner’s opinions.

5.1 Hardware in the Loop

As various works modify a core emulator, the fidelity can be improved or reduced. When the
fidelity is improved there is often a tradeoff made in performance or complexity. SURROGATES
uses QEMU as a base emulator but adds specialized hardware to enable faster communication with
real hardware. Specialized hardware allows for higher execution fidelity as the peripheral access is
then perfect. HITL also increases the data fidelity, as there is no generalization for the peripheral
model as is the case for PROSPECT. However, specialized hardware and HITL in general increases
the complexity and cost of performing emulation while reducing scalability, as dedicated hardware
is needed for each emulated system.
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5.2 Instruction Level Execution Fidelity

We categorize Simics and Ghidra Emulator as instruction level execution fidelity while also having
register level data fidelity because of their sub-instruction execution. While the coloring of the
automation is the lightest of the works surveyed, there are ready made implementations of both
of these emulators that can be copied or used out of the box to make the automation much closer
to no interaction required. Yet, we color the automation at this level because of the tools defaults
and to show the open ended-ness of using one of these emulators.

5.3 Basic Block Level Execution Fidelity

As mentioned previously, QEMU has basic block execution fidelity and RAM fidelity as a default
on the data fidelity axis. These are the default categorizations, and they can be affected by other
tools. Muench2018, angr, Panda, and HALucinator use QEMU as a base emulator without HITL,
so in general their fidelity will be less than or equal to that of QEMU.

For any memory interaction, P2IM will do random fuzzing, meaning there is not even Blackbox
fidelity for the data axis. Pretender uses machine learning to attempt to provide peripheral soft-
ware replacement modules, reducing the data fidelity but still has some internal memory correct
and at least Blackbox fidelity on the data axis. As these works reduce fidelity (on either axis) they
also decrease the amount of effort needed for their emulation. Muench2018 and PANDA perform
tracking/recording as mentioned in Section 3. While replaying and replication is enabled, the fi-
delity is still maxed out at the Basic Block and Internal Memory/Register fidelity because of the
QEMU base emulator fidelity.

angr also uses QEMU for the emulation part of the tool, while also using symbolic execution.
Symbolic execution is difficult to put on the emulation fidelity grid, because it has multiple states
as it executes, but by using QEMU for concolic and concrete execution, angr receives the same fi-
delity as the QEMU base. In contrast, Avatar2 enables the interaction between virtually any of the
tools, allowing the fidelity to be at any of the tools fidelity categorization depending on what is pro-
grammed by the analyst, but we show its fidelity point defaulting around QEMU, angr, PANDA, and
HALucinator, because they are default tools that are easy to get running in the Avatar2 framework.

5.4 Module Level Execution Fidelity

Firmadyne and CostinFA lose both execution and data fidelity from their base QEMU emulator as
they only extract the filesystem and run the code through their own kernel. However, by doing
this they drastically increase the automation of their tools, making mass analysis of firmware more
scalable.

6 QUESTIONS AND CHALLENGES

The remainder of the article focuses on you, the analyst, wanting to re-host a firmware and dis-
cusses the challenges that are encountered, along with techniques and tools that can be used to
address them. The challenges and tools surveyed provides a reference for the average practitioner
or a starting point for new researchers in the area of firmware re-hosting and system emulation.

6.1 Questions of Purpose and Value

Each emulation tool has requirements that must be met before being able to re-host firmware. Some
tools will bypass common emulation challenges with the technique they use. Ideally, the tool will
overcome challenges automatically; otherwise, the practitioner must do so manually. Common
preconditions are discussed in Section 7; however, this discussion covers the challenges faced and
not necessarily why they are encountered.
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Before deciding to emulate a system or re-host a firmware, an analyst has a question they want
answered. The idea of why to emulate a system is key to building emulators and is often not
emphasized in emulation papers. When an analyst wants to find vulnerabilities, there are vul-
nerabilities that may be discovered at each fidelity level. It is therefore important to know what
types of vulnerabilities you are looking for, e.g., is it a firmware logic error that can be detected
by just correctly emulating the memory, or is it an instruction or hardware bug that needs higher
execution fidelity?

Before emulating a system it is also important to do an analysis on the estimated cost and value-
for-money evaluation of getting the emulation to work correctly and the tools to be used to perform
emulation. To emulate some systems it may take a small team of engineers 6 months to a year to
build and test for the desired system. This may be a bargain or may be too expensive. Analyzing
the tools available and how to use them can speed up or even change the traditional approach
of building an emulator (manually reverse-engineering the hardware, re-hosting firmware until
failure and incrementally adding functionality).

6.2 Key Research Questions

We wish we could say that you should research one specific area, but for every solution/tool that
currently exists, there are shortcomings. To understand what is key to your research, it is neces-
sary to understand what you would like to solve with emulation. The key area we see that needs
addressed is speeding up the time to emulate a system—this includes tools from all the subsequent
sections to overcome the challenges. A script written for one tool may work to address a specific
challenge, but that script needs to be ported if using another tool, e.g., a script for Ghidra to help
find the entry point will not necessarily work with angr or Simics.

This key research area of speeding up emulation really encompasses research across all types of
embedded systems (GPES, SPES, and BMES) and includes new ways of overcoming problems pre-
sented in Section 7, Section 8, and Section 9. Any tool or technique that more efficiently addresses
the challenges is a useful area of research.

6.3 Challenges

Now that we have introduced surveyed works and classification criteria, we present some of the
core challenges faced during firmware re-hosting and system emulation. During the emulation
pipeline, various challenges are encountered and we split these challenges into:

• Pre-Emulation
• Emulation
• Post Emulation

Pre-Emulation are challenges that are pre-requisites to emulation execution and overcoming these
challenges enables executing the first instruction in the emulator. These challenges include obtain-
ing firmware, unpacking the firmware, and gaining and understanding how to configure the emu-
lator to re-host the firmware. Once the first instruction is executed in the emulator, we consider the
Emulation stage to have been started; however, as execution progresses, greater understanding of
the firmware is obtained, which leads to refinement of the emulator configuration and implemen-
tation. Thus, we break Emulation into Emulator Setup (challenges that enable further refinement
of the emulator and more complete execution) and Emulation Execution (challenges fundamental
to emulation itself). Finally, after emulation there is the Post Emulation stage where the execution
is analyzed and validated. The challenges presented here have been mentioned in part and used as
the foundation for multiple industrial and academic works, but we present them in entirety here
for completeness.
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Fig. 2. Categorization and flow of some of the steps required for system emulation during Pre-Emulation.

Fig. 3. Categorization and flow of some of the steps required for system emulation during Emulation Setup

and Execution.

In the tables throughout the rest of the article, we survey different techniques that attempt to
overcome the various challenges faced during emulation and binary analysis. If there is a check-
mark, then the tool attempts to address the issue; but, it does not necessarily solve the problem
and some tools work better than others, though we do not specify our opinions on the matter. If
there is a dash, then that means the tool bypasses the challenge by the technique they employ. If
there is no mark or dash, then the tool does not address the challenge. In some cases the tools have
prerequisites to work correctly. The emulator may require the analyst/user to figure out some of
the challenges manually and pass the solution to the emulator to get past the challenge.

We provide some of the flow and common challenges faced during emulation in Figure 2, and
Figure 3 though the figures do not encompass all the challenges that may be faced, with some chal-
lenges left off the figures all together for brevity. These figures are general flows and each bubble
represents one or more challenges encountered through the process. The different challenges are
further addressed in detail in Section 7, Section 8, and Section 9.

7 PRE-EMULATION

In Figure 2, we show the flow that a practitioner will usually explore during the Pre-Emulation
stage of re-hosting a firmware. With each step indicating challenges that need addressed before
continuing to address the next. The challenges presented here are similar to those presented
by Costin [43]. Here we focus on the challenges of emulating and analyzing a single firmware,
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whereas Costin focuses on challenges for acquiring and analyzing thousands of firmwares avail-
able to download from the Internet automatically.

Before re-hosting a firmware, an analyst or practitioner will usually have a system they want to
emulate or a firmware they want re-hosted. In some cases, the system architecture is unknown or
the analyst may not even have the firmware (e.g., when working on a bug bounty or proprietary
hardware). Even after obtaining the system or firmware in mind, key information must be identi-
fied prior to re-hosting a firmware. Steps and challenges prior to setting up the emulator is what
we refer to as the Pre-Emulation stage. This stage may also include verification of information
and understanding gained prior to actual emulation (i.e., Disassembly, Initial Analysis, and CFG
Recovery), though verification is not strictly necessary. We note that verification of correctness
(which can include formal verification and/or behavioral verification) is useful when challenges in
subsequent phases are encountered, as it narrows down where certain problems stem from.

The information required to begin emulation varies by emulation technique but includes ob-
taining firmware, determining memory layout, figuring out the ISA, identifying the processor,
analyzing the binary, lifting/disassembly of firmware, and an initial firmware analysis. As a quick
reference to the practitioner, different techniques that attempt to address the challenges present
in Pre-Emulation are summarized in Table 1.

One of the main tools used to address these challenges is binwalk [139]. Binwalk is mostly used
for extraction of the content from firmware images, but has other features that are useful. It can
try to determine ISA (not necessarily the processor), extract files from a blob, do a string search,
find signatures such as common encryption formats, disassemble using capstone [22], calculate
entropy, and perform binary diffing. Some of the other tools are mentioned in the subsequent
subsections. A simple example of reverse engineering from a blob that mentions some of the
challenges below was presented at BlackHat 2013 [41]. They present an end-to-end unpacking of
firmware with some of their formats that may be helpful to reference for a newcomer in the field.
Another helpful reference for IoT firmware based on OpenWrt is maintained by OWASP. They
provide a platform to educate software developers and security professionals on vulnerabilities
in IoT devices [121].

7.1 Obtaining Firmware

The first challenge to re-hosting firmware is obtaining the firmware. In the simplest case it can be
downloaded from the vendor’s website. If not directly available from the vendor, then third-party
sites, such as Github, have firmware available that has been used for academic research. Other
ways to get firmwares include obtaining example firmwares from development boards that can be
compiled with various operating systems and toolchains.

Downloading the firmware is not always possible, and even when possible, the firmware can
have embedded proprietary file formats that are not easily extracted. For example, files can be
compressed or contain firmware for multiple architecture files with final compilation of the
firmware being done on the hardware during boot-loading. In some cases, firmware is combined
with the operating system, such as the case of BMES or SPES types of systems, whereas for others
downloaded firmware is only the user level application and the operating system kernel also must
be obtained separately to perform full-system emulation as is sometimes the case for GPES. To
overcome embedded unpacking issues, sometimes a network capture tool (e.g., References [31,
53, 55, 88, 106, 116, 117, 125, 130, 163, 165, 179]) connected to the actual hardware may be used
to capture network traffic during a firmware update. The firmware is then extracted from the
captured packet payloads.

In addition to downloading, firmware can sometimes be extracted from hardware. Vasile et al.
[170] in their survey of hardware-based firmware extraction techniques showed a high percentage
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Table 1. Pre-Emulation Challenges

Obtaining Determine Finding Finding Determine Identify Disassembly/
Paper/Technique Firmware ISA Base Address Entry Point Memory Layout Processor Recover CFG

angr [151] ✓ ✓ ✓ ✓ ✓

Avatar2 [112] ✓

CostinFA [43, 44] ✓ — — — — ✓

Firmadyne [25] ✓ ✓ — — — — —

Ghidra [119] ✓ ✓ ✓ ✓ ✓ ✓

HALucinator [35] — ✓

Muench2018 [113] ✓

P2IM [57] ✓

PANDA [50] ✓

Pretender [72] ✓

PROSPECT [84] ✓

QEMU [11] ✓

Simics [105] ✓

SURROGATES [90] ✓

ARMX [146] — — — — — —

BANG [75] ✓ ✓ ✓ ✓ ✓ ✓

BAT [74] ✓ ✓ ✓ ✓ ✓

Binwalk [139] ✓ ✓ ✓ ✓ ✓

CLIK on PLCs [82] ✓

Datasheets ✓ ✓ ✓

Dtaint [26] ✓

Dytan [33] ✓

FIE [48] — ✓

Firmalice [150] ✓ ✓ ✓ ✓

firminsight [59] ✓ ✓ ✓

firmware-mod-kit [60] ✓ ✓ ✓ ✓ ✓

firmwaredb [172] ✓

FirmUSB [76] — ✓

HumIDIFy [167] ✓ ✓ ✓ ✓ ✓

ICSREF [86] ✓ ✓ ✓ ✓ ✓ ✓

IDA-PRO [136] ✓ ✓ ✓ ✓ ✓ ✓

Inception [40] ✓

KLEE [19] ✓

OFFDTAN [177] ✓

PIE: Parser [36] ✓

Radare2 [164] ✓ ✓ ✓ ✓ ✓ ✓

Scraper (python) ✓

subzero ✓ ✓

Spedi [87] ✓ ✓ ✓ ✓ ✓ ✓

strings (linux command) ✓ ✓

✓means the tool attempts to address the given challenge. “—” means the tool bypasses this challenge, usually by the
emulation technique used. A blank means the tool does not address the challenge. The first 14 entries in the table are
bolded and are the main tools profiled in detail throughout.
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of systems expose UART interfaces that are sufficient to obtain firmware dumps. In addition to
UART ports, debug ports (e.g., JTAG), and USB ports can be used to dump firmware [56, 186]. On
some devices, a physical acquisition my be achieved by using the flash memory read command
after reverse engineering the firmware update protocol in the bootloader [182]. If these ports are
locked and secured, then another option is to remove the memory from the circuit board and
connect to another system to dump the firmware. Removing memories from the printed circuit
boards comes at considerable risk of damaging or destroying the hardware. Using debug ports
requires the debug port be present, and unlocked, both of which are increasingly considered poor
security design.

Of the tools we surveyed, Firmadyne and CostinFA obtained firmware from vendor websites,
whereas P2IM, angr, and Pretender used firmware available from a third-party vendor (Github).
HALucinator and Pretender also used development examples from real embedded boards in their
evaluation. For the case of Simics, QEMU, and Ghidra they are base emulator tools and not aca-
demic papers, hence they do not specify how to obtain firmware, expecting the user to have a
firmware before using the tool. The other surveyed works did not specify how their firmware sam-
ples were obtained, just what the firmware was, or what the system was that they did emulation for.

The authors of Firmadyne developed and released a scraper that crawls embedded system
vendors websites and downloads any firmware that they can identify. They then unpacked the
firmwares in a generic way and if the firmware unpacked correctly, Firmadyne would continue
with emulation, otherwise it would crash. Of the 23,035 firmwares Firmadyne scraped, they ex-
tracted 9,486 of them. Of those extracted, 1,971 were successful in naive emulation. The large
percentage of failure (90%) shows obtaining and extracting firmware is a real challenge and is
difficult to overcome in many circumstances. CostinFA posted URL publicly that would try to un-
pack and analyze a firmware [42]. CostinFA collected an initial set of 759,273 files scraped from
publicly accessible firmware update sites, and filtered that down to 172,751 potential firmware im-
ages. A sampled set of 32,356 images were then analyzed and 38 vulnerabilities were discovered
[43], though it is unclear the level of emulation or re-hosting involved. Other resources that may
be helpful in obtaining firmware include Python scraper tools and other open source repositories
[59, 131, 142, 172].

7.2 Instruction Set Architecture

After obtaining the firmware, it is necessary to determine what the ISA the firmware uses so that
the emulator can disassemble the firmware into the correct machine instructions, endianness (e.g.,
little- or big-endian), and word-size. In addition to determining the ISA family (e.g., ARM, Pow-
erPC, X86, MIPS, ARM64, AVR, etc.), sometimes the ISA version is needed to correctly disassemble
instructions, e.g., is it ARM with Thumb support and floating point instructions or not?

The ISA can most commonly be determined from a datasheet of the processor being emulated.
If the hardware is unknown and a datasheet cannot be identified, static analysis techniques can
be used. These techniques first try to determine if the file format is of a known file format (e.g.,
ELF, PE2, Mach-O) using the file utility, then looking at other signatures in the firmware (e.g.„
encryption, compression, etc.), or analyzing strings in the binary to guess the ISA. One well known
tool that may help determine the ISA is binwalk [139]. Binwalk will use the capstone disassembler
and try disassembling the binary for various types of ISA. If there are more than a specified number
of instructions in a row (default 500) of a given architecture, then that is a strong candidate for the
ISA. Of the tools surveyed, Firmadyne and CostinFA use binwalk and existing extraction tools to
determine the ISA and then extract the filesystem, or extract the filesystem first and then determine
the ISA—with the order of these two steps being highly specific to the firmware and analysis
process at hand. Ghidra has headless scripts that can be run to try and determine the ISA (including
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one using binwalk), whereas angr provides the boyscout [5] tool that will try to determine the
architecture and the endianess of the firmware. The other surveyed tools expect the ISA to be
given to work correctly.

There is also recent research on using machine learning to classify ISA and endianness. These
techniques usually rely on doing a binary similarity detection. They will use known architectures
for training binaries, decomposing the binaries into smaller comparable fragments and transform-
ing them to vectors to work with machine learning and stochastic gradient descent optimization
methods. One such work by Clemens et al. [34] experiments on 16,785 different firmwares from 20
different architectures, and was accurate in classifying 17 of the architectures over 99% of the time,
and the remaining third architectures (mips, mipsel, cuda) 50% of the time. De Nicolao et al. [49]
leverages supervised sequential learning techniques to locate code section boundaries of binary
files to help ease difficulty in analysis using a similar sized database for learning. Kairajärvi et al.
[81] uses the ideas from both Clemens [34] and Nicolao [49] with improvements while using and
publicly releasing a much larger and more balanced database for learning and testing. Other ma-
chine learning techniques that could be modified to determine the ISA are mentioned in Reference
[181] along with other machine learning techniques for binary analysis. These techniques require
large datasets for training to be accurate and will only work as well as their training data.

If the above automated methods fail, then the practitioner can attempt to manually identify
the ISA by looking at signatures and strings in the firmware (certain compressions, signatures,
copyrights, etc.) and/or brute force decompilation and performing an “eye” test on what looks
promising.

7.3 Determine Base Address

In order for the firmware to execute in an emulator, it must be loaded at the correct address(es).
Determining the base address is difficult if the firmware being re-hosted is a binary-blob (e.g., just
a binary with no symbols or metadata). The base address where the firmware should be loaded
can sometimes be found by hardware datasheets (for firmware executing from internal memory).
If source and compilation tools are available, then base address information can be found in linker
scripts.

Finding the base address is fundamental to many binary analysis techniques, and thus tech-
niques to (try to) automatically determine it have been researched. Zhu et al. use strings and LDR
instructions, comparing them and matching the offsets to determine the image base of the firmware
[187, 188]. This is similar to the technique of listing the dwords occurring in a file with the list of
strings in a file and lining up the distances between occurrences if possible. If there is a match,
then subtracting the offsets will give you the image base address.

Firmalice [150] leverages jump tables in the binary by analyzing the jump table positions and the
memory access pattern of indirect jump instructions. In a jump table there are a set of absolute code
addresses that can give a better idea of where the firmware needs to be located at for the absolute
addresses to work correctly. To find the jump tables, they scan through the binary for consecutive
values that differ in their least significant two bytes. Finding the jump table is successful in many
cases as jump tables are typically stored consecutively in memory. After finding the jump table,
they then analyze all the indirect jumps found in the disassembly phase and the memory locations
that they read their jump targets from. The binary is then relocated so that the maximum number
of these accesses are associated with a jump table.

angr also attempts to determine the base address with their analysis script called girlscout [6].
This script will try to decide the base address by looking at functions and doing a statistical analysis
to vote on the most likely base address. If automatic techniques do not work, then the base address
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may be discovered by brute force guessing and checking, as most base addresses are multiples of
powers of two.

In the case of Firmadyne and and CostinFA, the filesystem from the firmware is extracted after
determining the ISA, and then the filesystem is used in a custom kernel given to QEMU. By using
their own kernel, these tools bypass the need to determine the base address, but it also reduces
the execution fidelity, as it does not execute the original kernel. For the other surveyed tools it is
assumed the base address is provided by the practitioner.

7.4 Finding Entry Point

After determining the base address of the firmware, the practitioner needs to determine the entry
point (i.e., address from where to start execution). Entry point information can be encoded in
the binary (e.g., Executable Linker Format (ELF) defines the entry point in metadata), or different
analysis can be run to help give the practitioner entry point options.

For binary-blob firmware, angr, Ghidra, and IDA [136] have scripts that scan through the binary
attempting to find function prologue instructions and function returns. From function information
a directed function call graph can be generated and analyzed. Any root node of a weakly connected
component in the call graph can be treated as a potential entry point. Function call graph creation
and analysis requires that you already know the ISA (so the function prologue, function epilogue,
and call instructions can be analyzed). The call graph technique often returns multiple entry points,
from which the correct entry point for emulation must be identified. Additionally, firmware will
often have multiple valid entry points (e.g., bootloader and interrupt service routines).

Instead of looking at the firmware to identify the entry point, some techniques rely on knowl-
edge of the hardware they support to determine the entry point. For example, HALucinator targets
ARM Cortex-M devices. The Cortex-M architecture defines that the initial program counter’s value
be stored at address 0x4 on reset. Thus, HALucinator finds the entry point by looking at address
0x4. If the hardware is known, then the datasheet will likely provide information about how the
system begins execution.

For techniques that use a replacement kernel, as is the case for CostinFA and Firmadyne, finding
the entry point challenge is essentially bypassed, as the entry point of the kernel is known, because
they built the kernel themselves. If the practitioner is dealing with a known operating system or
compiler toolchain, then the entry point function name may be specified (such as _start or _init).
There are then techniques that can do function matching giving you the actual entry point. One
such example is VxHunter [122] that will work for many firmwares with the VxWorks OS and
compilation toolchain.

7.5 Determine Memory Layout

Determining the memory layout enables configuring where in the processors layout different types
of memory are located. It sets the address for RAM, Flash, and MMIO. If the system is available
with specifications, then usually the memory layout can be determined from datasheets. For ARM
systems, there may be a CMSIS-SVD file that also defines the memory layout. These files are in
a specified format that can be loaded into a reverse engineering (RE) tool such as Ghidra or IDA
and an automatic analysis can be run to update the memory layout [97]. Other types of files that
sometimes specify memory layout include EDC files and hwconf files.

If no documentation exists and RE tools fail, then physical examination of the components on
the device that is being emulated may help to determine memory layout. Often markings and man-
ufacture printing on the parts can be used to identify datasheets for the parts. If the memory layout
is still unknown, then the emulator can be over provisioned with memory (e.g., giving significantly
more memory than the physical system) and trial and error must be used to determine where code
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is located and where external peripherals are, then these interactions are usually mapped into
memory mapped IO. Of the surveyed tools, memory layout must be specified by the practitioner,
though in some cases tools make it easier, e.g., Ghidra when CMSIS-SVD file is present.

7.6 Identify Processor and/or Board Support Package

Depending on the fidelity the practitioner is targeting, often times identifying the exact processor
is not necessary. As the case is with QEMU, the emulator only works off the ISA level features.
For fidelity at the cycle level of emulation, tools such as gem5 [12] require knowing the exact
processor as the same ISA instruction can be implemented differently at the cycle level for various
processors. In QEMU, if a versatile machine is not used, there can also be errors, even if the ISA
specified is correct.

In the case that the practitioner needs to solve the challenge of identifying the processor, solving
memory layout may help. However, if the processor is known, then often the documentation for
the processor will specify the memory layout. If you have access to the hardware, then most likely
the processor will be labeled, solving the challenge.

If you do not have access to the hardware, the practitioner could do an aggressive instruction
finding, followed by an analysis on how the instructions interact with memory. This analysis can
then be compared against analysis on known processors to narrow down the processor candidates.
This is still a manual process for the practitioner to then select and test different processors. If the
vendor is known, projects that leverage known information from other reversed firmware may
be used [138]. If the previous analysis are unsuccessful, the practitioner could run a brute force
script to test all available processors in the base emulator. If still not successful, access to labeled
hardware is required. For surveyed works based off QEMU, identifying the processor is not strictly
necessary in all cases, though if the QEMU target is not versatile it may be required.

7.7 Disassembly, Initial Analysis, and CFG Recovery

As mentioned at the beginning of Pre-Emulation, disassembly, initial analysis, and recovering the
Control Flow Graph (CFG) are not strictly Pre-Emulation challenges. However, it is important to
verify that the work the practitioner has performed and challenges addressed to this point in time
are correct. Verification of previous work is perhaps skipped in some pipelines, but we have found
that verification before continuing on to the next stages will save time and reduce headaches in
the Emulation phase, e.g., when multiple possible entry points (which may occur when there is a
bootloader in addition to the main firmware under analysis), doing a validation and verification
that you have the right entry point is worth the extra time to save the practitioner from wasting
time re-hosting the bootloader that may not answer the emulation question at hand.

In the case that the practitioner has an idea of what the firmware is doing, such as is usually
the case when the hardware is known, analyzing the CFG can help determine if the previous
challenges such as base address, ISA, entry point are correct. When the CFG is recovered, it also
conveys how well the disassembler and decompiler performed. This will give an idea of how suc-
cessful emulation execution will be and/or the fidelity of emulation moving forward. Of the works
surveyed, there are relatively few core disassemblers. angr uses capstone for parts of its disassem-
bler, whereas QEMU and Ghidra use C/C++ to implement their disassembly. The other surveyed
tools use a base emulator that will reuse one of these disassembly implementations. If the disas-
sembler works perfectly, then the instructions have been disassembled correctly and the CFG can
be recovered trivially if the control flow does not leave the main processor.

If the control flow leaves the main processor and goes to a co-processor (e.g., GPU or DSP)
chip for initialization, then it is near impossible to recover the CFG for what occurs in the co-
processor. The practitioner at this point can try to determine what state and memory changes
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occur by comparing the state of memory before and after control is passed to the co-processor. If
control flow leaves the emulated processor, then fidelity of emulation is limited for that portion of
the re-hosting, but in most cases is not a limiting factor in emulation.

If the hardware is not known and the practitioner does not have any idea of the control logic
the firmware is trying to perform, then disassembly and analysis can still be of use for validation.
Disassembly will ensure the correct ISA is known and possibly help validate the processor. A
control flow graph can still be created and analyzed to determine if there are valid flows throughout
the graph, giving at least a weak reassurance that the base address and entry point are correct.

Disassembly and analysis are iterative, meaning the practitioner will perform the disassembly,
then analyze the results in iterations. Between iterations, they will then modify the inputs and
parameters to the disassembly slightly depending on the analysis results. This process will con-
tinue until the analysis results match what is expected from the practitioner. During this iteration
process, there will be tweaks to the ISA, processor, base address, entry point, memory layout, and
so on. To solidify the ISA, processor and memory layout, the practitioner may analyze multiple
firmwares for the same system concurrently, aggregating the analysis results to solidify results.

8 EMULATION

In Figure 3, we show the flow that a practitioner will usually explore during Emulation setup and
execution stages of re-hosting a firmware. The stages will usually be interspersed during iterations
of emulator development. These challenges generally are not linear, but rather occur in different
orders depending on the firmware being re-hosted.

After the practitioner has determined the processor, memory layout, entry point and base ad-
dress of the firmware, verifying support in the base emulator is performed. Ideally the base emula-
tor has support for the processor, if not, the practitioner will have to create a new specification for
the base emulator. QEMU and Ghidra have instructions on how to add support for a new processor
[114, 171]. After a base emulator is available, the next challenges can be addressed.

Overcoming the challenges in pre-emulation enables loading the firmware into the emulator
and beginning execution. For the execution to be faithful to the real system, additional challenges
must be overcome. We break these challenges into sub-categories: setup and execution. Setup
challenges are usually done statically when the emulator is either paused or stopped whereas
execution challenges are when the emulator is actually running. As a reference to the practitioner,
we provide Table 2, but do not provide a reference table for the execution, as all the surveyed
works attempt to overcome the given challenges.

8.1 Emulation Setup

After you have overcome the challenges in Pre-Emulation, now you need to determine how to han-
dle configuration, external interactions and memory. Emulation setup encompasses these problems
and is closely tied with the actual emulation execution. Setup is often iterative between execution
stages, and with each iteration more knowledge is gained about the firmware and its dependencies
on the emulator and peripherals. The emulator is improved and execution of the firmware is also
iteratively performed. This continues until the question the analyst was trying to address has been
answered.

As mentioned in Section 4.1, the scope of emulation may vary from a single chip or micro-
controller to a subsystem or a large distributed system. The scope of emulation that is targeted
will affect the challenges faced during emulation. The problems we discuss here are not all en-
compassing, though we believe it is a sufficient basis to demonstrate major challenges currently
faced during the Emulation Setup phase.
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Table 2. Emulation Setup Challenges

External Hardware Mem Interactions/ Configure Missing Function Identification

Paper/Technique and Peripherals Setup Hardware Code and Labeling

angr [151] ✓ ✓ ✓

Avatar2 [112] ✓ ✓ ✓ ✓ ✓

CostinFA [43, 44] ✓ ✓ ✓ ✓ ✓

Firmadyne [25] — ✓ ✓ — ✓

Ghidra [119] ✓ ✓ ✓

HALucinator [35] ✓ ✓ ✓ ✓ ✓

Muench2018 [113] ✓ ✓ ✓ ✓ ✓

P2IM [57] ✓ ✓ ✓ ✓

PANDA [50] ✓ ✓ ✓ ✓

Pretender [72] ✓ ✓ ✓ ✓ ✓

PROSPECT [84] ✓ ✓ ✓ ✓

QEMU [11] ✓ ✓ ✓ ✓

Simics [105] ✓ ✓ ✓ ✓

SURROGATES [90] ✓ ✓ ✓ ✓

ARMX [146] ✓ ✓ ✓ ✓ ✓

Datasheets ✓ ✓

Firmalice [150] ✓ ✓ ✓

ICSREF [86] ✓

IDA-PRO [136] ✓ ✓ ✓

Inception [40] ✓ ✓ ✓

KLEE [19] ✓ ✓ ✓

OFFDTAN [177] ✓

PIE: Parser [36] ✓ ✓ ✓

Radare2 [164] ✓ ✓ ✓

Spedi [87] ✓ ✓ ✓

✓means the tool attempts to address the given challenge. “—” means the tool bypasses this challenge, usually by the
emulation technique used. A blank means the tool does not address the challenge. The first 14 entries in the table are
bolded and are the main tools profiled in detail throughout.

8.1.1 Peripherals, External Hardware, and Modeling. Handling peripheral accesses is where a
large amount of research is currently focused. Because of the variety of peripherals and vendors,
it is likely the peripheral that is being accessed by the firmware is not implemented in the base
emulator. Handling External Hardware and Peripheral interactions encompasses how to handle
or represent interactions between the emulator and the peripherals. As mentioned in Section 7.5,
statically determining the memory map will specify where the peripherals are located, not if they
are used or when they are used. Dynamic analysis and execution can provide some of this informa-
tion, discovering what peripherals are used when valid inputs for the given subset of peripherals
analyzed. Depending on the fidelity of the peripheral model, i.e., the extent to which the periph-
erals are modeled, will constrain the dynamic execution to specific paths. Providing more realistic
peripheral models will increase the amount of code executed and result in valid accesses to more
peripherals that may not otherwise be accessed. During dynamic execution, if the emulator has an
exception or crashes due to trying to access peripherals that are not mapped, then this usually oc-
curs when there is an aliasing problem. Solving the alias problem is sometimes feasible statically,
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but may have to be solved dynamically during execution by keeping track of various addresses
and using this information to update peripheral models for the emulator.

Handling peripheral interactions can be done by emulating the external device, by using the
actual hardware (HITL), or by patching the firmware to bypass the interaction. The firmware
modification may ignore some of these accesses (such as setting CPU clock rates), always give an
increasing value, or read from a file of expected inputs. The necessary operation will partially be
determined by the firmware being re-hosted. Using HITL will give the highest fidelity for execution
and memory, but will prohibit the parallelization of emulation as it is constrained to availability of
the connected hardware. HITL emulation also has significant challenges in synchronizing states
between the emulator and hardware. For example, a timer may generate an interrupt on the hard-
ware, causing it to be stuck continuously processing the timer’s ISR, while the emulator has no
timer and thus is not processing any interrupts, or another example is when the watchdog timer
interrupt kicks in while the analyst is slowly emulating or using a debugger (such as GDB).

Providing abstractions requires manual effort and a thorough understanding of what the periph-
eral is performing, but it does provide high fidelity. Tools that use this approach include QEMU,
HALucinator, PANDA, and Muench2018. Using a fuzzer, however, does not require device spe-
cific knowledge but may not give sufficient fidelity for many questions you want answered and is
usually only useful to help find bugs and vulnerabilities. P2IM uses the fuzzer approach and is suc-
cessful with finding some vulnerabilities. Using machine learning, as Pretender does, is appealing
as fidelity is perhaps slightly affected but could still give valuable insights beyond simple software
bugs. The results of current machine learning approaches only show proof of concept on simple
peripherals (e.g., serial/UART port being the most complicated) at this point, and it is still unclear
if the approach will work for arbitrary hardware peripherals.

Of the other surveyed tools, Firmadyne and CostinFA assume the peripherals are part of
their core kernel, otherwise the emulator will crash. They do not provide techniques around
such challenges. SURROGATES and PROSPECT will forward peripheral accesses to the actual
hardware, bypassing the modeling, but it introduces the state synchronization and delay of
emulation challenges.

8.1.2 Memory Interactions and Setup. Most emulators allow the practitioner to specify where
data, code, and peripherals are located. Doing so allows the emulator to set restrictions on emu-
lation, such as crashing or notifying the practitioner if data are trying to be executed. Emulation
setup will usually allow specifying different memory regions and types of interactions such as
where RAM, Flash, and Memory Mapped peripherals are located. This emulation setup can also be
described as configuring the emulator, which is necessary to start the emulator. Setup will include
providing the information discovered during Pre-Emulation, including specifying the base address
and entry point along with the memory layout and amount of memory available.

If a tool does not have built in support for memory, then reusing the base emulator support or
providing the interaction through software are feasible options for the practitioner. In specialized
cases such as SURROGATES and PROSPECT, interactions can be forwarded to the actual hardware.
For HALucinator, Ghidra, PANDA, PROSPECT, and Muench2018 it is expected the practitioner
will either use the built-in memory handlers or provide modules to allow memory interactions
to perform correctly. For Firmadyne and CostinFA the memory and handling of memory is built
directly into the kernel, so if there is an error with the memory or interactions that is not a firmware
bug, their kernels will need to be modified.

8.1.3 Configuring Hardware. Setting up hardware is a challenge for emulation using HITL. This
requires initializing it state such that its can be used, and then bringing it into the loop. To do this
the practitioner will need to specify in the emulator how and when to forward interactions to the
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hardware. This may also require delays or using specialized hardware execute fast enough to be
usable, as is the case for SURROGATES or Aveksha [161]. Aveksha is a system for nonintrusive
tracing of execution at a high spatial and temporal granularity suitable for an embedded wireless
node. Avatar2 is a powerful tool when configuring hardware, and the provided framework is closest
thing to allowing plug and play integration for HITL.

8.1.4 Missing Code. In some cases, as you recover the CFG you may notice you have missing
code. Missing code usually occurs when the wrong entry point has been specified, there is patched
out functionality that may write code (such as a bootloader), the firmware is not complete (e.g.,
either a partial firmware-update or unpacking was only partially successful), or if there is code on
ROM chips in the device. Missing code is more common if the firmware is ripped off the actual
hardware device. In some cases it is possible to patch out the missing code and still obtain the level
of emulation fidelity the practitioner cares about, otherwise, missing code may make emulation
infeasible.

If the emulator tries to execute missing code, then usually the system will throw an exception or
crash altogether. The only technique we are aware of to overcome this challenge is replacing the
code with models or skipping the code altogether. HALucinator replaces the code by using func-
tion intercept techniques that then allow for replacing such functionality with manually written
models. For other surveyed tools, missing code will require some sort of manual intervention to
overcome, perhaps manually providing the same functionality as HALucinator.

8.1.5 Function Identification and Labeling. Function Identification is necessary for some em-
ulation techniques but not all. If emulation fidelity is at the module or function level, then the
practitioner may want to determine certain functions, such as HAL calls, and provide abstractions
for these functions. Function identification is not an easy problem and is the basis of a plethora
of papers and is still a very active area of research [4, 8, 21, 29, 78, 93, 100, 109, 110, 132, 133, 149,
180].

Of the surveyed works, angr, Ghidra, and HALucinator have library matching built in to their
frameworks. The other works either do not need to overcome such problems or they do not address
function identification. angr, Ghidra and HALucinator will use existing techniques to try to identify
some functions, such as using IDA FLIRT signatures, loading libraries and trying to match, and
compiling existing HALs and comparing the re-hosted firmware to a database. Other techniques
include identifying functions from their side effects such as is the case with Sibyl [152].

8.2 Emulation Execution

Execution deals with the classical problems of emulation as mentioned in Reference [11], expand-
ing to include problems that are arising with the increasing uses of emulation. The different fi-
delities of execution will also use different techniques for emulation. Tools that are cycle accurate,
such as gem5 [12], will decode the instruction depending on the processor and use the same depth
and stages of the CPU pipeline as the original processor when emulating the instructions. Simics
[105] has instruction level fidelity and will thus decode the instructions and update state after each
instruction. QEMU uses basic block fidelity and does a translation from the basic block instructions
of the target architecture to machine host instructions using QEMU’s Tiny Code Generator (TCG).
Ghidra Emulator will translate instructions to P-code, with each machine instruction translated
generating up to 30 P-code instructions. Others will use various other intermediate representa-
tions including LLVM IR [95], VEX [115], REIL [54], BAP’s BIL [18], Binary Ninja LLIL [173], and
more. Of the surveyed tools, angr will translate to VEX. Each of these techniques have their own
challenges and tradeoffs, which is why there is still research in this area.
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For each of the surveyed tools there is a base emulator. angr, Avatar2, CostinFA, Firma-
dyne, HALucinator, P2IM, PANDA, Pretender, PROSPECT, SURROGATES and Muench2018 all use
QEMU as their base emulator. angr also uses CLE loader to allow Avatar2 targets to run concretely
in their framework through what they term angr_symbion that combines symbolic execution and
concrete execution. Cross tool integration essentially opens the door for any emulator to work
with any other analysis tool, symbolic engine, or fuzzer. For traditional execution challenges (the
different subsections below), the base emulator will usually address and overcome the challenge.
Because the base emulator solves the challenges throughout execution challenges, we do not spec-
ify what each tool does for overcoming the given challenge, rather we address more generally what
QEMU, Simics and Ghidra Emulator do.

8.2.1 Register Allocation. Each architecture will have different registers and different conven-
tions. For example, the program counter (PC) on different architectures will be different registers
such as R15 for ARM, PC for x86/x86-64/PowerPC, R0 for TI-MSP430. Most emulators will map
each register to a concrete fixed host memory address or register. Mapping the registers to fixed
host memory is versatile and probably the most portable solution and is done for QEMU, Simics,
and Ghidra Emulator.

8.2.2 Direct Block Chaining. Block Chaining is directly related to QEMU, as Simics does a sub-
instruction level emulation and execution, leaving the chaining to occur naturally with fall through
if the instruction does not modify control flow. Ghidra will allow natural fall through, but allows
for flow modification in their UI.

If the emulator does a translation, such as QEMU and the translation of entire basic blocks, then
the emulator has a simulated program counter that is used to find the next blocks of code to be
executed. These blocks are usually cached in memory to speed up execution, so there is a lookup
in a hash table to retrieve the correct block. For some emulators, they will add instructions at the
end of blocks to directly chain to the next block of instructions to execute.

8.2.3 Self-modifying Code and Translated Code Invalidation. On some CPUs self modifying code
is not a problem, as there is a specific code cache invalidation instruction executed when code is
modified. On other CPUs though, there may not be an invalidation instruction, so this becomes
more difficult. In Reference [11], they handle self modifying code by keeping track of translated
code and the corresponding host page as read only. If a write is performed to the code, then they
invalidate the translated code allowing for the code to be rewritten. They do some more clever
things when using a software MMU, as they do not always have to invalidate the code when only
data is changed. Ghidra Emulator has permissions for writing and code is read only. Therefore if
code is written the emulator will throw an error and exit. It is not clear how or if Simics supports
self-modifying code.

8.2.4 Non-Volatile Memory. Non-Volatile Memory (NVM) are becoming more popular because
of the improved latency and power efficiency compared to flash and other hard drives. Tradition-
ally NVM has not been a challenge faced as it is now becoming more prevalent. Because NVM is
relatively new, on boards that have NVM, most current system emulators are probably lacking in
support. Some vendors give instructions on how to enable an emulated environment where you
can build persistent memory (PMEM) applications without having the actual hardware. To over-
come the NVM or PMEM challenges in system emulation, you need to determine how the memory
interacts and provide a handler for it, much like QEMU does for normal memory. The instructions
given by different PMEM hardware vendors on how to emulate their hardware will be crucial dur-
ing implementation. QEMU, Simics and Ghidra Emulator handle NVM by allocating memory in
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the host system and having hardware interactions modeled by the analyst [46]. For QEMU, some
tools provide some interactions such as NVRAM [58].

8.2.5 Direct Memory Accesses. In some cases co-processors may use direct memory access
(DMA) for initialization, or peripherals may write directly to memory. DMA can be addressed by
emulating co-processors, using HITL emulation, or if the firmware uses known function calls for
DMA, the functionality can be replaced by intercepting and replacing the functionality. QEMU has
been expanded by Avatar2 in software, and SURROGATES using hardware, to allow for forwarding
peripheral acesses to the actual hardware. Simics is usually a more custom solution and also allows
for HITL with given modifications. HALucinator will handle DMA by intercepting HAL calls that
perform DMA and will implement the needed memory modifications with manually implemented
functionality.

8.2.6 Handling Interrupts. There are various ways to handle interrupts. Handling interrupts is
another active research area as there are multiple ways to accomplish the interrupt handling. The
emulator may or may not check at each instruction or translated block for interrupts, with trade-
offs for different implementations. In some cases the emulator may require that the user trigger
interrupts, call the interrupt handler, or patch an automatic call at certain parts in the firmware.
There are pros an cons to each of these techniques. For the case of QEMU, they do not check at
each translated block whether there is a hardware interrupt pending, rather it relies on the user
to asynchronously call a specific function and specify that an interrupt is pending. At that point
the function resets the chaining of the current executing translated block, ensuring that execution
goes to the main loop of the CPU emulation. In this main loop, it looks to see if there is a hardware
interrupt pending. By requiring user asynchronous interrupt calls and checking after basic blocks
for interrupts, it allows the emulator to be much faster with less overhead while still supporting
interrupts. Simics will allow for interrupts between each instruction by contrast, allowing for a
higher execution fidelity at the cost of speed. Ghidra Emulator can also have interrupts at the
sub-instruction level between different P-code operations.

In both cases, if you are testing something such as an interrupt storm (sending multiple in-
terrupts with various orders and frequencies), then you will most likely have to asynchronously
specify interrupts to the base emulator. When those interrupts are handled will affect the fidelity
of the system.

8.2.7 Multi-Threading. In some systems, multi-threading is enabled. Applications that use mul-
tiple threads may use locks/semaphores for inter-thread communication, but this requires that
your system emulator allow multiple threads to “run” at the same time as well. If the system al-
lows multiple applications to be run, then they will employ a scheduler and use either pre-emptive
or co-operative scheduling. With co-operative scheduling the emulator essentially just needs to al-
low the multiple threads to execute, and those threads will manage themselves during interaction.
For pre-emptive, this will require trigging an interrupt to cause the scheduler to run and perform
context switching between the threads. During emulation, usually the practitioner will start with
single threaded applications, running one at a time and gradually increase the complexity and
number of threads as the system gains more functionality and fidelity.

As mentioned throughout, with the ability to have fidelity at the instruction level, Simics is
known for being more useful when debugging multi-threaded firmwares or systems. QEMU is able
to emulate such systems, but in some cases it will give a false sense of correctness, because threads
can only interact at the end of basic blocks for QEMU, whereas Simics and Ghidra Emulator allow
thread interaction between any pair of instructions, even in the middle of a basic block. QEMU can
attempt to overcome this limitation by setting break-points at every instruction, which essentially
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makes each instruction a basic block, but this dramatically slows down the system to the point
that the emulation is not useful.

8.2.8 Debugging. During system emulation, undoubtedly you will run into some errors,
whether they are errors in the actual firmware and/or system, or your emulator has errors and
bugs. In either case, you need to be able to integrate some debugging. GNU GDB is a popular
option to integrate into tools, having plugins for some of the major softwares including Avatar2,
angr, Ghidra, QEMU, and so on. Another option we have found useful is first emulating a serial
port or other form of printing messages, enabling “printf” style debugging. In addition to printing,
directly inserting function calls into the firmware can be useful for debugging purposes.

QEMU works as well as the debuggers that connect to it, with logging and setting some break
points that should be familiar for those who have used GDB. Ghidra Emulator also allows for a
GDB bridge to be connected for debugging. Simics employs integrated debugger support with both
forward and reverse direction debugging available.

8.2.9 Timing Constraints. If the purpose of your emulation is to answer questions regarding
timing, then you may be limited by the emulation approach and tools you use. In some cases
you may be able to use a hardware integration solution such as SURROGATES, with specialized
hardware to forward memory or peripheral accesses to an actual device. If you need to parallelize
your emulation, then HITL may not be feasible. In such circumstances, the practitioner may have
to implement their own timing. Implemented timing can be cycles, instructions, basic blocks or
something similar. Timing is in many cases closely related to enabling interrupts, as some inter-
rupts are timing or watchdog interrupts and in those cases require some sort of triggering or timing
implementation in your emulator.

If the base emulator is Simics, then the emulator has a better idea of the number of cycles re-
quired for emulation, even if the emulator is slower to perform the operations. QEMU, in contrast,
will be faster, but non-deterministic in execution time, which may be unsuitable if timing guaran-
tees are needed.

9 POST EMULATION

Post Emulation challenges are usually directly related to the purpose of emulation. Some of the
challenges include determining/patching vulnerable code, comparing actual vs. wanted behavior,
finding vulnerabilities, visualizing emulation results, and automating the previous steps overcom-
ing challenges.

9.1 Finding Vulnerabilities

Finding vulnerabilities is arguably the most popular reason for system emulation. There are many
techniques to find vulnerabilities, with fuzzing being one of the most popular techniques.

There are many other techniques used to find vulnerabilities, including data flow analysis, taint
analysis, control flow analysis, record and replay execution analysis, dynamic and symbolic ex-
ecution. Some tools use supervised machine learning for vulnerability assessment, e.g., Costin
et al. [45] use ML to classify firmware to help both address firmware vulnerability discovery and
vulnerable device discovery. With the vast amount of work in vulnerability discovery, in depth
discussion and scope is not feasible in this article, so we suffice to say these methods exists, and
refer the readers to existing evaluation articles, including [7, 89, 143].

9.2 Verification

Once you have a system emulator, whether your first version emulator or a polished version, the
problem of verifying that the emulator does what it is supposed to do arises. While verification
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Fig. 4. Flow chart to choose emulator.

of SoC chip functionality before taping and production of a whole circuit system is well studied
[102], verification of emulated systems and re-hosted firmwares seems to be lacking. None of the
current tools verify whether they are correctly emulating the re-hosted firmware, beyond Blackbox
behavior comparisons. In addition, there are no real benchmarks or verification techniques that
are standard to test emulators. With the expansion of firmware emulation as an area of research,
verification of the emulators and of re-hosted firmware execution is a critical need.

9.3 Analysis

As with normal hardware/software systems, emulated systems also are tested and analyzed after
“completion.” The firmware used during emulation may be analyzed and tested for bugs. The
emulator itself may be analyzed to help with hardening firmwares that run on actual hardware.
Analysis and post emulation includes vast amounts of effort in binary hardening, vulnerability
detection and other cyber security efforts. All of the surveyed tools do some sort of post emulation
analysis.

10 CONSIDERATIONS

When determining what base emulator or the different techniques/tools to use, there are pros
and cons to each solution. Some of the main considerations we contemplate before choosing
specific tools include hardware support, fidelity, performance, debug support/availability, and
usability/control. These considerations are subject to the practitioner’s opinion, though we have
tried to objectively classify the tools fidelity and automation as shown in Figure 1.

In Figure 4, we provide an overview for giving a decision flowchart on choosing a tool, though
we leave out a definitive path when trying to narrow tool use based on debug support, usability
and control, as we have found opinions vary greatly for the various tools. On the left of the figure
in a big box are all the surveyed tools. Following the arrows from there gives the key difference
between the emulators. If the analyst is interested in machine learning, then Pretender will be a
good place to start looking. Likewise, if interested in finding bugs/vulnerabilities using symbolic
execution and fuzzing, then angr, Ghidra, HALucinator, and P2IM are a promising starting points.
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If you are interested in using actual hardware along with emulation, Avatar2, SURROGATES, and
PROSPECT are appropriate. Otherwise, general purpose emulators that have different strengths
and uses include Panda, Muench2018, Avatar2, HALucinator, QEMU, Firmadyne, CostinFA, Ghidra,
and Simics. Once you have narrowed down the potential tools to a group of tools the following
considerations should be evaluated.

Hardware support has perhaps been the most significant reason emulation has not been used in
the past. The effort to emulate a system or re-host a firmware has traditionally been difficult to
get working with systems (and some argue still is). This is slowly being remedied, with the core
emulators having support for a wide variety of hardware. In addition, there is an increased effort
to make adding new hardware and processors simpler and easier. One of the first considerations
will still be if the tool you want to use has existing support for the hardware you want to emulate.

Emulator fidelity, as mentioned in Section 4.3, will narrow down which tools can be used to
answer the question the practitioner is using emulation for. In some cases, symbolic execution is
a feasible option to answer the emulation question at hand. In such cases, angr is the best option
surveyed, being user friendly with a dedicated Slack [154] group with help and development chan-
nels. If symbolic execution will not work, then the practitioner can reference Figure 1 for help in
narrowing down which surveyed tools can be used for the needed fidelity.

After considering fidelity, performance and debugging support also need considered. Depending
on the emulation question, one of these attributes will be more important than the other. One
of the main reasons emulation has not been used extensively in the past is because of the over-
head and slow performance of emulators, but as software and hardware become more powerful,
performance issues are being overcome.

When the performance of the emulator is a hindrance, partial emulation or specialized hardware
are possible solutions. Ghidra Emulator allows for partial emulation, letting the practitioner start
emulation at specific functions given they specify necessary inputs. SURROGATES provides spe-
cialized hardware to interact with memory faster. HALucinator sets breakpoints on user specified
addresses provided in a YAML file. By analyzing only the necessary memory to answer a specific
emulation question emulation performance can improved.

Debugging support is also a key attribute to consider. If the practitioner is re-hosting a firmware
with limited knowledge of what the firmware is doing, then more debugging support will be es-
sential. As noted, one of the benefits of emulation is being able to examine memory at each point
during the firmware re-hosting. Examining memory requires the use of debugging tools or log-
ging. For base emulators, QEMU and Ghidra (through Reference [37]) have GDB integration. Using
GDB, break points can be used to step through emulation. Simics also has built-in debugging and
allows for break points, along with stepping forward and backward through emulation. It is impor-
tant to note that debugging support will affect performance, as the more break points and tracking
needed will slow down the emulator. Both performance and debugging support are active areas in
research, with base emulators trying to implement faster tools while monitoring and debugging.

Usability is a combination of exploration and control as referenced in Section 4.5 and tool au-
tomation. If a tool is automated, performs fast enough, and can answer the emulation question at
hand, then that tool is obviously the best option. However, at the moment, this is not a common
scenario, and thus how much control the practitioner has with exploring and executing re-hosted
firmware is also an attribute that must be considered. Tools with GDB integration allow for ex-
panded control. Tools that use fuzzing or randomization have less control and may or may not be
useful for the practitioner in some cases. In essentially all the tools surveyed, debugging is built in
to the base emulators and/or is available through plugins or default built in.
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11 SUMMARY AND CONCLUSION

As a practitioner is contemplating the correct tool to use for firmware re-hosting and system em-
ulation, we suggest using the provided emulation comparison techniques and considerations we
have presented here. We have discussed comparing emulation tools by the techniques they em-
ploy, the types of systems they work for, the purpose of the tool, how much exploration the tool
can achieve, and the most useful classification technique, fidelity.

Along with comparison techniques, we have shown classification of surveyed works including
angr, Avatar2, CostinFA, Firmadyne, Ghidra, HALucinator, P2IM, PANDA, Pretender, PROSPECT,
QEMU, Simics, SURROGATES, and Meunch2018. These techniques and their differences were dis-
cussed as we presented the core challenges faced during emulation and firmware re-hosting, giving
an overview for the new practitioner or researcher looking on where to begin and further research
in the firmware re-hosting and emulation field. Automation in current tools reduces the fidelity
of the system dramatically, but in many cases is still sufficient for some emulation questions to
be answered. The endeavor to automate current tools is difficult because of the wide coverage of
embedded systems, but we note the valiant effort the surveyed tools have made and recognize the
importance of making tools easier and automated for practitioners to use.

System emulation and firmware re-hosting has mutated and evolved dramatically since its in-
ception. The challenges faced when trying to emulate a system/re-host a firmware have grown
as emulation has improved. This article has highlighted the need for further research and tools
to address Pre-Emulation, Emulation, and Post Emulation challenges. As tools and solutions are
invented and released, we have provided classifications and criteria on how to evaluate such tools.
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