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F U Z Z I N G ,  OR FUZZ TESTING,  is the process of finding 
security vulnerabilities in input-parsing code by 
repeatedly testing the parser with modified, or fuzzed, 
inputs.35 Since the early 2000s, fuzzing has become a 
mainstream practice in assessing software security. 
Thousands of security vulnerabilities have been 
found while fuzzing all kinds of software applications 
for processing documents, images, sounds, videos, 
network packets, Web pages, among others.  
These applications must deal with untrusted inputs 

encoded in complex data formats. For 
example, the Microsoft Windows oper-
ating system supports over 360 file for-
mats and includes millions of lines of 
code just to handle all of these.

Most of the code to process such 
files and packets evolved over the last 
20+ years. It is large, complex, and 
written in C/C++ for performance 
reasons. If an attacker could trigger 
a buffer-overflow bug in one of these 
applications, s/he could corrupt the 
memory of the application and pos-
sibly hijack its execution to run ma-
licious code (elevation-of-privilege 
attack), or steal internal information 
(information-disclosure attack), or 
simply crash the application (denial-
of-service attack).9 Such attacks might 
be launched by tricking the victim 
into opening a single malicious docu-
ment, image, or Web page. If you are 
reading this article on an electronic 
device, you are using a PDF and JPEG 
parser in order to see Figure 1.

Buffer-overflows are examples of 
security vulnerabilities: they are pro-
gramming errors, or bugs, and typi-
cally triggered only in specific hard-
to-find corner cases. In contrast, an 
exploit is a piece of code which triggers 
a security vulnerability and then takes 
advantage of it for malicious purposes. 
When exploitable, a security vulner-
ability is like an unintended backdoor 
in a software application that lets an 
attacker enter the victim’s device.

There are approximately three main 
ways to detect security vulnerabilities 
in software.

Static program analyzers are tools 
that automatically inspect code and 
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 key insights
 ˽ Fuzzing means automatic test generation 

and execution with the goal of finding 
security vulnerabilities.

 ˽ Over the last two decades, fuzzing has 
become a mainstay in software security. 
Thousands of security vulnerabilities in 
all kinds of software have been found 
using fuzzing.

 ˽ If you develop software that may process 
untrusted inputs and have never used 
fuzzing, you probably should. 
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flag unexpected code patterns. These 
tools are a good first line of defense 
against security vulnerabilities: they 
are fast and can flag many shallow 
bugs. Unfortunately, they are also 
prone to report false alarms and they 
do not catch every bug. Indeed, static 
analysis tools are typically unsound 
and incomplete in practice in order to 
be fast and automatic.

Manual code inspection consists in 
peer-reviewing code before releasing 
it. It is part of most software-develop-
ment processes and can detect seri-
ous bugs. Penetration testing, or pen 
testing for short, is a form of manual 
code inspection where security experts 
review code (as well as design and ar-
chitecture) with a specific focus on 

security. Pen testing is flexible, appli-
cable to any software, easy to start (not 
much tooling required), and can reveal 
design flaws and coding errors that are 
beyond the reach of automated tools. 
But pen testing is labor-intensive, ex-
pensive, and does not scale well since 
(good) pen testers are specialized and 
in high demand.

Fuzzing is the third main approach 
for hunting software security vulnera-
bilities. Fuzzing repeatedly executes an 
application with all kinds of input vari-
ants with the goal of finding security 
bugs, like buffer-overflows or crashes. 
Fuzzing requires test automation, that 
is, the ability to execute tests automati-
cally. It also requires each test to run 
fast (typically in a few seconds at most) 

and the application state to be reset af-
ter each iteration. Fuzzing is therefore 
more difficult to set up when testing 
complex distributed applications, like 
cloud or server applications running 
on multiple machines. In practice, 
fuzzing is usually most effective when 
applied to standalone applications 
with large complex data parsers. For 
each bug found, fuzzing provides one 
or several concrete inputs that can be 
used to reproduce and examine the 
bug. Compared to static analysis, fuzz-
ing does not generate false alarms, but 
it is more computationally expensive 
(running for days or weeks) and it can 
also miss bugs.

Over the last two decades, fuzzing 
has been shown to be remarkably ef-
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plications, especially if they have never 
been fuzzed before and if they process 
binary input formats. Indeed, binary 
formats, like the JPEG image format 
used for Figure 1, typically use raw 
byte values to encode key input prop-
erties, like image sizes, dimensions, 
and input-file data pointers; fuzzing 
these key byte values (whose locations 
vary from image to image) in otherwise 
well-formed inputs may already reveal 
buffer-overflow bugs due to incom-
plete input validation.

In practice, the effectiveness of 
blackbox random fuzzing crucially de-
pends on a diverse set of well-formed 
seed inputs to start the fuzzing pro-
cess. Indeed, well-formed seed inputs 
will exercise more code more quickly 
in the application to be fuzzed, cov-
ering various options and encodings 
supported by the input format. In 
contrast, fuzzing without well-formed 
seed inputs will very likely generate 
pure garbage, which the application 
under test will quickly detect and dis-
card. This is why the program of Fig-
ure 2 defines the constant 1,000 in 
line 2 as its fuzzing density: if every 
byte in a seed input was fuzzed, the 
new input generated would be com-
pletely garbled and random; but if 
at most one byte every 1,000 bytes is 
fuzzed on average, fuzzing adds only 
limited noise to the original seed in-
put, and testing with this slightly cor-
rupted new input is more likely to 
exercise more error-handling code 
in more diverse parts of the applica-
tion under test, hence increasing the 
chances of finding bugs.

Grammar-Based Fuzzing
Blackbox random fuzzing provides a 
simple fuzzing baseline, but its effec-
tiveness is limited: the probability of 
generating new interesting inputs is 
low.35 This is especially true when fuzz-
ing applications with structured input 
formats, like XML or JSON dialects: 
randomly fuzzing inputs in these for-
mats is likely to break key structural 
properties of the input, which the ap-
plication will quickly detect in a first 
lexical analysis and then discard, 
hence exercising little of the applica-
tion code.

Grammar-based fuzzing is a pow-
erful alternative for fuzzing complex 
formats. With this approach, the user 

fective in finding security vulnerabili-
ties, often missed by static program 
analysis and manual code inspection. 
In fact, fuzzing is so effective that it is 
now becoming standard in commer-
cial software development processes. 
For instance, the Microsoft Security 
Development Lifecycle21 requires fuzz-
ing at every untrusted interface of every 
product. To satisfy this requirement, 
much expertise and tools have been 
developed since around 2000.

This article presents an overview of 
these techniques, starting with simple 
techniques used in the early fuzzing 
days, and then progressively moving 
on to more sophisticated techniques. 
I also discuss the strengths and limita-
tions of each technique.

Note this article is not an overview 
of the broader areas of automatic test 
generation, search-based software 
testing, program verification, or oth-
er applications of fuzzing techniques 
beyond security testing. When it was 
first introduced,8 the term fuzz test-
ing simply meant feeding random in-
puts to applications, without a specif-
ic focus on security. However, today, 
fuzzing is commonly used as a short-
hand for security testing because the 
vast majority of its applications is for 
finding security vulnerabilities. In-
deed, fuzzed inputs are often improb-
able or rather harmless unless they 
can be triggered and controlled by 
an attacker who can exploit them to 
deliberately break into a system and 
cause significant damage.

Blackbox Fuzzing
The first and simplest form of fuzzing 
is blackbox random fuzzing, which ran-
domly mutates well-formed applica-
tion inputs, and then tests the applica-
tion with these modified inputs.8

Figure 2 shows a simple program 
for blackbox random fuzzing. The pro-
gram takes as input a well-formed input 
seed (line 1). It then chooses a random 
number of bytes that will be fuzzed in 
that input (line 2). That number num-
Writes varies from 1 to the length of 
the seed input divided by 1,000. This 
arbitrary 1,000 value is optional, but it 
prevents fuzzing too many bytes in the 
original seed. Next, the loop of lines 
4–8 repeatedly selects a random loca-
tion loc in the input (line 5) and a new 
random byte value (line 6) that is then 
written at that location (line 7), un-
til the selected number numWrites of 
bytes have been fuzzed. The program 
then executes the application under 
test with that newInput (line 9), and 
reports an error if a bug is detected 
(line 10). In practice, the application 
is being run under the monitoring of 
a runtime checking tool (like Purify, 
Valgrind, AppVerifier or AddressSani-
tizer) in order to increase the chances 
of finding non-crashing security vul-
nerabilities (like buffer overflows).

The program of Figure 2 can be 
repeatedly executed to generate as 
many new fuzzed inputs as the user 
wants. Despite its simplicity, this fuzz-
ing strategy can already be effective in 
finding security vulnerabilities in ap-

Figure 1. How secure is your JPEG parser?    
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provides an input grammar specifying 
the input format of the application un-
der test. Often, the user also specifies 
what input parts are to be fuzzed and 
how. From such an input grammar, a 
grammar-based fuzzer then generates 
many new inputs, each satisfying the 
constraints encoded by the grammar. 
Examples of grammar-based fuzz-
ers are Peach,29 SPIKE,32 and Sulley,34 
among others.35

Figure 3 shows a code fragment 
representing input constraints which 
a grammar-based fuzzer like SPIKE 
uses to generate new inputs. The input 
grammar is represented here directly 
using code, which can be interpreted, 
for example, in Python. In line 2, the 
user specifies with a call to s_string 
that a constant string with the fixed 
value POST /api/blog/ HTTP/1.2 should 
be generated first. Then another con-
stant string Content-Length: should be 
appended (line 3). The call to s_block-
size_string in line 4 adds a string of 
length 2 (second argument) with the 
size of the block named blockA (first 
argument) as value. A call to s_block_ 
start defines the start of a block (line 
5), while s_block_end denotes the end 
of a block (line 9), whose name is speci-
fied in the argument. In line 7, the user 
specifies with a call to s_string_variable 
that a fuzzed string is to be appended 
at this location; this string can be the 
constant XXX specified in the call or any 
other string value taken out of a user-
defined dictionary of other values (not 
shown here). Tools like SPIKE support 
several ways of defining such fuzzing 
dictionaries as well as custom fuzzing 
rules (for example,for numeric values). 
By executing the code shown in Figure 
3, SPIKE might generate this string se-
quence (shown here on 2 lines):

POST /api/blog/ HTTP/1.2
Content-Length:10{body:XXX}

This approach is very general: the 
user can specify how to generate input 
strings using nearly arbitrary code, in-
cluding function recursion to generate 
hierarchies of well-balanced delimit-
ers, like { and } in the example here, 
and strings of various sizes.

Grammar-based fuzzing is very pow-
erful: the user expertise is used to fo-
cus and guide fuzzing toward specific 
input corner cases of interest, which 

would never be covered with blackbox 
random fuzzing in practice. Sophisti-
cated grammar-based fuzzers exist for 
finding security vulnerabilities in Web 
browsers,19 which must take as untrust-
ed inputs Web pages including com-
plex HTML documents and JavaScript 
code, as well as for finding complex 
bugs in compilers.38 Grammar-based 
fuzzing also works well for network-
protocol fuzzing where sequences of 
structured messages need to be fed to 
the application under test in order to 
get good code coverage and find bugs.31

Work on grammar-based test in-
put generation can be traced back to 
the 1970s.17 Test generation from a 
grammar is usually either done using 
random traversals of the production 
rules of a grammar,26 or is exhaustive 
and covers all its production rules.24 
Imperative generation6 is a related ap-
proach in which a custom-made pro-
gram generates the inputs (in effect, 
the program encodes the grammar), as 
shown in Figure 3.

Grammar-based fuzzing is also re-
lated to model-based testing.36 Given 
an abstract representation of a pro-
gram—called a model—model-based 
testing consists in generating tests by 
analyzing the model in order to check 
the conformance of the program with 
respect to the model. Test generation 
algorithms used in model-based test-

ing often try to generate a minimum 
number of tests covering, say, every 
state and transition of a finite-state 
machine model in order to generate 
test suites that are as small as possible. 
Similar algorithms can be used to cover 
all production rules of a grammar with-
out exhaustively enumerating all pos-
sible combinations.

How to automatically learn input 
grammars from input samples for 
fuzzing purposes is another recent 
line of research. For instance, con-
text-free grammars can be learned 
from input examples using custom 
generalization steps,1 or using a dy-
namic taint analysis of the program 
under test in order to determine how 
the program processes its inputs.20 
Statistical machine-learning tech-
niques based on neural networks can 
also be used to learn probabilistic 
input grammars.16 While promising, 
the use of machine learning for gram-
mar-based fuzzing is still preliminary 
and not widely used today.

In summary, grammar-based fuzz-
ing is a powerful approach to fuzzing 
that leverages the user’s expertise and 
creativity. Unfortunately, grammar-
based fuzzing is only as good as the in-
put grammar being used, and writing 
input grammars by hand is laborious, 
time consuming, and error-prone. 
Because the process of writing gram-

Figure 2. Sample blackbox fuzzing code.

1 RandomFuzzing(input seed) {
2   int numWrites = random(len(seed)/1000)+1;
3   input newInput = seed;
4   for (int i=1; i<=numWrites; i++) {
5  int loc = random(len(seed));
6  byte value = (byte)random(255);
7  newInput[loc] = value;
8   }
9   result = ExecuteAppWith(newInput);
10  if (result == crash) print(“bug found!”);
11  }

Figure 3. Sample SPIKE fuzzing code.

1  ...
2  s_string(“POST /api/blog/ HTTP/1.2 “);
3  s_string(“Content-Length: “);
4  s_blocksize_string(“blockA”, 2);
5  s_block_start(“blockA”);
6  s_string(“{body:”);
7  s_string_variable(“XXX”);
8  s_string(“}”);
9  s_block_end(“blockA”);
10 ...



74    COMMUNICATIONS OF THE ACM   |   FEBRUARY 2020  |   VOL.  63  |   NO.  2

review articles

approaches because it is more pre-
cise.11 It can therefore find bugs missed 
by other fuzzing techniques, even with-
out specific knowledge of the input 
format. Furthermore, this approach 
automatically discovers and tests code 
corner cases where programmers may 
fail to properly allocate memory or ma-
nipulate buffers, leading to security 
vulnerabilities. Note that full program 
statement coverage is a necessary but 
not sufficient condition to find all the 
bugs in a program.

In theory, exhaustive whitebox fuzz-
ing provides full program path cover-
age, that is, program verification (for 
any input up to a given size). The sim-
ple program foo has two feasible execu-
tion paths, which can be exhaustively 
enumerated and explored in order to 
prove that that this program does not 
contain any buffer overflow. In prac-
tice, however, the search is typically 
incomplete because the number of 
execution paths in the program under 
test is huge, and because symbolic ex-
ecution, constraint generation, and 
constraint solving may be imprecise 
due to complex program statements 
(pointer manipulations, floating-point 
operations, among others), calls to 
external operating system and library 
functions, and large numbers of con-
straints which cannot all be solved per-
fectly in a reasonable amount of time. 
Because of these limitations, whitebox 
fuzzing, like blackbox fuzzing, still re-
lies on a diverse set of seed inputs to be 
effective in practice.

Whitebox fuzzing was first imple-
mented in the tool SAGE,14 and ex-
tends the scope of prior work on dy-
namic test generation,4,13 also called 
execution-generated tests or concolic 
testing, from unit testing to security 
testing of large programs. SAGE per-
forms dynamic symbolic execution at 
the x86 binary level, and implements 
several optimizations that are crucial 
for dealing with huge execution traces 
with hundreds of millions of machine 
instructions, in order to scale to large 
file parsers embedded in applications 
with millions of lines of code, like Mi-
crosoft Excel or PowerPoint. SAGE also 
uses search heuristics based on code 
coverage when exploring large state 
spaces: instruction coverage is mea-
sured for every test executed, and tests 
that discover many new instructions 

mars is so open-ended and there are 
so many possibilities for fuzzing rules 
(what and how to fuzz), when to stop 
editing a grammar further is another 
practical issue.

Whitebox Fuzzing
Blackbox random fuzzing is practically 
limited, and grammar-based fuzzing 
is labor intensive. Moreover, when can 
one safely stop fuzzing? Ideally, further 
testing is not required when the pro-
gram is formally verified, that is, when 
it is mathematically proved not to con-
tain any more bugs.

Cost-effective program verification 
has remained elusive for most software 
despite 40+ years of computer-science 
research.18,22 However, significant ad-
vances in the theory and engineering of 
program analysis, testing, verification, 
model checking, and automated theo-
rem proving have been made over the 
last two decades. These  advances were 
possible in part thanks to the increas-
ing computational power available on 
modern computers, where sophisti-
cated analyses have now become more 
affordable. Whitebox fuzzing is one of 
these advances.

Starting with a well-formed input, 
whitebox fuzzing14 consists of symboli-
cally executing the program under test 
dynamically, gathering constraints on 
inputs from conditional branches en-
countered along the execution. The 
collected constraints are then system-
atically negated one-by-one and solved 
with a constraint solver, whose solu-

tions are mapped to new inputs that 
exercise different program execution 
paths. This process is repeated using 
systematic search techniques that at-
tempt to sweep through all (in practice, 
many) feasible execution paths of the 
program while checking simultane-
ously many properties (like buffer over-
flows) using a runtime checker.

For example, consider this simple 
program:

int foo (int x) { // x is an input
 int y = x + 3;
 if (y == 13) abort (); // error
 return 0;
}

Dynamic symbolic execution of this 
program with an initial concrete value 
0 for the input variable x takes the else 
branch of the conditional statement, 
and generates the path constraint x + 
3 ≠13. After negating this input con-
straint and solving it with a constraint 
solver,7 the solver produces a solution 
x = 10. Running the program with this 
new input causes the program to fol-
low the then branch of the conditional 
statement and finds the error. Note 
that blackbox random fuzzing has only 
1 in 232 chances of exercising the then 
branch if the input variable x has a ran-
domly-chosen 32-bit value, and it will 
never find the error in practice. This in-
tuitively explains why whitebox fuzzing 
usually provides higher code coverage.

Whitebox fuzzing can generate in-
puts that exercise more code than other 

Figure 4. Most constraints are easy to solve.
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are symbolically executed with higher 
priority so that their unexplored neigh-
borhoods are explored next. Tests and 
symbolic executions can be run in par-
allel, on multiple cores or machines. 
Like blackbox fuzzing, whitebox fuzz-
ing starts with a small diverse set of 
seed inputs, whenever possible, in or-
der to give its search a head start. Such 
seed inputs can also be generated us-
ing grammar-based fuzzing when an 
input grammar is available.25

Since 2008, SAGE has been run-
ning in production for over 1,000 
machine-years, automatically fuzz-
ing hundreds of applications.2 This 
is the “largest computational usage 
ever for any Satisfiability-Modulo-
Theories (SMT) solver” according to 
the authors of the Z3 SMT solver,7 
with around 10 billion constraints 
processed to date. On a sample set of 
130 million constraints generated by 
SAGE while fuzzing 300 Windows ap-
plications, Figure 4 shows that about 
99% of all constraints are solved by Z3 
in one second or less.2

During all this fuzzing, SAGE found 
many new security vulnerabilities (buf-
fer overflows) in hundreds of Win-
dows parsers and Office applications, 
including image processors, media 
players, file decoders, and document 
parsers. Notably, SAGE found roughly 
one third of all the bugs discovered by 
file fuzzing during the development of 
Microsoft’s Windows 7,15 saving mil-
lions of dollars by avoiding expensive 
security patches for nearly a billion PCs 
worldwide. Because SAGE was typically 
run last, these bugs were missed by ev-
erything else, including static program 
analysis and blackbox fuzzing.

Today, whitebox fuzzing has been 
adopted in many other tools. For in-
stance, the top finalists of the DARPA 
Cyber Grand Challenge,37 a competi-
tion for automatic security vulnerabil-
ity detection, exploitation and repair, 
all included some form of whitebox 
fuzzing with symbolic execution and 
constraint solving in their solution. 
Other influential tools in this space 
include the open-source tools KLEE,3 
S2E,5 and Symbolic PathFinder.28

Other Approaches
Blackbox random fuzzing, grammar-
based fuzzing and whitebox fuzzing 
are the three main approaches to fuzz-

ing in use today. These approaches can 
also be combined in various ways.

Greybox fuzzing extends blackbox 
fuzzing with whitebox fuzzing tech-
niques. It approximates whitebox 
fuzzing by eliminating some of its 
components with the goal of reduc-
ing engineering cost and complex-
ity while retaining some of its intelli-
gence. AFL40 is a popular open source 
fuzzer which extends random fuzzing 
with code-coverage-based search heu-
ristics as used in SAGE, but without 
any symbolic execution, constraint 
generation or solving. Despite (or 
because) of its simplicity, AFL was 
shown to find many bugs missed by 
pure blackbox random fuzzing. AFL is 
related to work on search-based soft-
ware testing27 where various search 
techniques and heuristics (such as ge-
netic algorithms or simulated anneal-
ing) are implemented and evaluated 
for various testing scenarios. Another 
form of greybox fuzzing is taint-based 
fuzzing,10 where an input-taint analy-
sis is performed to identify which in-
put bytes influence the application’s 
control flow, and these bytes are then 
randomly fuzzed, hence approximat-
ing symbolic execution with taint 
analysis, and approximating con-
straint generation and solving with 
random testing.

Hybrid fuzzing33,39 combines black-
box (or greybox) fuzzing techniques 
with whitebox fuzzing. The goal is to 
explore trade-offs to determine when 
and where simpler techniques are suf-
ficient to obtain good code coverage, 
and use more complex techniques, like 
symbolic execution and constraint solv-
ing, only when the simpler techniques 
are stuck. Obviously, many trade-offs 
and heuristics are possible, but repro-
ducible statistically-significant results 
are hard to get.23 Grammar-based fuzz-
ing can also be combined with white-
box fuzzing.12,25

Portfolio approaches run multiple 
fuzzers in parallel and collect their 
results, hence combining their com-
plementary strengths. Project Spring-
field30 is the first commercial cloud 
fuzzing service (renamed Microsoft Se-
curity Risk Detection in 2017), and uses 
a portfolio approach. Customers who 
subscribe to this service can submit 
fuzzing jobs targeting their own soft-
ware. Fuzzing jobs are processed by 

Fuzzing is 
commonly used  
as a shorthand  
for security testing 
because the vast 
majority of its 
applications is  
for finding security 
vulnerabilities.
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creating many virtual machines in the 
cloud and by running different fuzz-
ing tools and configurations on each of 
these machines. Fuzzing results (bugs) 
are continually collected by the service 
and post-processed for analysis, triage 
and prioritization, with final results 
available directly to customers on a se-
cured website.

Conclusion
Is fuzzing a hack, an art, or a science? 
It is a bit of all three. Blackbox fuzzing 
is a simple hack but can be remark-
ably effective in finding bugs in appli-
cations that have never been fuzzed. 
Grammar-based fuzzing extends it 
to an arta form by allowing the user’s 
creativity and expertise to guide fuzz-
ing. Whitebox fuzzing leverages ad-
vances in computer science research 
on program verification, and explores 
how and when fuzzing can be math-
ematically “sound and complete” in a 
proof-theoretic sense.

The effectiveness of these three 
main fuzzing techniques depends on 
the type of application being fuzzed. 
For binary input formats (like JPEG 
or PNG), fully-automatic blackbox 
and whitebox fuzzing techniques 
work well, provided a diverse set of 
seed inputs is available. For complex 
structured non-binary formats (like 
JavaScript or C), the effectiveness of 
blackbox and whitebox fuzzing is un-
fortunately limited, and grammar-
based fuzzing with manually-written 
grammars are usually the most effec-
tive approach. For specific classes of 
structured input formats like XML or 
JSON dialects, domain-specific fuzz-
ers for XML or JSON can also be used: 
these fuzzers parse the high-level tree 
structure of an input and include 
custom fuzzing rules (like reordering 
child nodes, increasing their number, 
inversing parent-child relationships, 
and so on) that will challenge the ap-
plication logic while still generating 
syntactically correct XML or JSON 
data. Of course, it is worth emphasiz-
ing that no fuzzing technique is guar-
anteed to find all bugs in practice.

What applications should be fuzzed 
also depends on a number of parame-
ters. In principle, any application that 

a Art is “the expression or application of human 
creative skill and imagination.”

may process untrusted data should 
be fuzzed. If the application runs in 
a critical environment, it should defi-
nitely be fuzzed. If the application is 
written in low-level code like C or C++, 
the danger is even higher, since secu-
rity vulnerabilities are then typically 
easier to exploit. If the application is 
written in higher-level managed code 
like Java or C#, fuzzing might reveal 
unhandled exceptions which may or 
may not be security critical depend-
ing on the context (service-side code is 
usually more critical).

Despite significant progress in the 
art and science of fuzzing over the last 
two decades, important challenges re-
main open. How to engineer exhaus-
tive symbolic testing (that is, a form of 
verification) in a cost-effective manner 
is still an open problem for large ap-
plications. How to automate the gen-
eration of input grammars for com-
plex formats, perhaps using machine 
learning, is another challenge. Finally, 
how to effectively fuzz large distrib-
uted applications like entire cloud ser-
vices is yet another open challenge. 
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