
70 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

review articles

F U Z Z I N G , OR FUZZ TESTING, is the process of finding
security vulnerabilities in input-parsing code by
repeatedly testing the parser with modified, or fuzzed,
inputs.35 Since the early 2000s, fuzzing has become a
mainstream practice in assessing software security.
Thousands of security vulnerabilities have been
found while fuzzing all kinds of software applications
for processing documents, images, sounds, videos,
network packets, Web pages, among others.
These applications must deal with untrusted inputs

encoded in complex data formats. For
example, the Microsoft Windows oper-
ating system supports over 360 file for-
mats and includes millions of lines of
code just to handle all of these.

Most of the code to process such
files and packets evolved over the last
20+ years. It is large, complex, and
written in C/C++ for performance
reasons. If an attacker could trigger
a buffer-overflow bug in one of these
applications, s/he could corrupt the
memory of the application and pos-
sibly hijack its execution to run ma-
licious code (elevation-of-privilege
attack), or steal internal information
(information-disclosure attack), or
simply crash the application (denial-
of-service attack).9 Such attacks might
be launched by tricking the victim
into opening a single malicious docu-
ment, image, or Web page. If you are
reading this article on an electronic
device, you are using a PDF and JPEG
parser in order to see Figure 1.

Buffer-overflows are examples of
security vulnerabilities: they are pro-
gramming errors, or bugs, and typi-
cally triggered only in specific hard-
to-find corner cases. In contrast, an
exploit is a piece of code which triggers
a security vulnerability and then takes
advantage of it for malicious purposes.
When exploitable, a security vulner-
ability is like an unintended backdoor
in a software application that lets an
attacker enter the victim’s device.

There are approximately three main
ways to detect security vulnerabilities
in software.

Static program analyzers are tools
that automatically inspect code and

Fuzzing:
Hack,
Art, and
Science

DOI:10.1145/3363824

Reviewing software testing techniques for
finding security vulnerabilities.

BY PATRICE GODEFROID

 key insights
 ˽ Fuzzing means automatic test generation

and execution with the goal of finding
security vulnerabilities.

 ˽ Over the last two decades, fuzzing has
become a mainstay in software security.
Thousands of security vulnerabilities in
all kinds of software have been found
using fuzzing.

 ˽ If you develop software that may process
untrusted inputs and have never used
fuzzing, you probably should.

http://dx.doi.org/10.1145/3363824

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 71

I
M

A
G

E
 B

Y
 I

R
I

N
A

 V
I

N
N

I
K

O
V

A

flag unexpected code patterns. These
tools are a good first line of defense
against security vulnerabilities: they
are fast and can flag many shallow
bugs. Unfortunately, they are also
prone to report false alarms and they
do not catch every bug. Indeed, static
analysis tools are typically unsound
and incomplete in practice in order to
be fast and automatic.

Manual code inspection consists in
peer-reviewing code before releasing
it. It is part of most software-develop-
ment processes and can detect seri-
ous bugs. Penetration testing, or pen
testing for short, is a form of manual
code inspection where security experts
review code (as well as design and ar-
chitecture) with a specific focus on

security. Pen testing is flexible, appli-
cable to any software, easy to start (not
much tooling required), and can reveal
design flaws and coding errors that are
beyond the reach of automated tools.
But pen testing is labor-intensive, ex-
pensive, and does not scale well since
(good) pen testers are specialized and
in high demand.

Fuzzing is the third main approach
for hunting software security vulnera-
bilities. Fuzzing repeatedly executes an
application with all kinds of input vari-
ants with the goal of finding security
bugs, like buffer-overflows or crashes.
Fuzzing requires test automation, that
is, the ability to execute tests automati-
cally. It also requires each test to run
fast (typically in a few seconds at most)

and the application state to be reset af-
ter each iteration. Fuzzing is therefore
more difficult to set up when testing
complex distributed applications, like
cloud or server applications running
on multiple machines. In practice,
fuzzing is usually most effective when
applied to standalone applications
with large complex data parsers. For
each bug found, fuzzing provides one
or several concrete inputs that can be
used to reproduce and examine the
bug. Compared to static analysis, fuzz-
ing does not generate false alarms, but
it is more computationally expensive
(running for days or weeks) and it can
also miss bugs.

Over the last two decades, fuzzing
has been shown to be remarkably ef-

72 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

review articles

plications, especially if they have never
been fuzzed before and if they process
binary input formats. Indeed, binary
formats, like the JPEG image format
used for Figure 1, typically use raw
byte values to encode key input prop-
erties, like image sizes, dimensions,
and input-file data pointers; fuzzing
these key byte values (whose locations
vary from image to image) in otherwise
well-formed inputs may already reveal
buffer-overflow bugs due to incom-
plete input validation.

In practice, the effectiveness of
blackbox random fuzzing crucially de-
pends on a diverse set of well-formed
seed inputs to start the fuzzing pro-
cess. Indeed, well-formed seed inputs
will exercise more code more quickly
in the application to be fuzzed, cov-
ering various options and encodings
supported by the input format. In
contrast, fuzzing without well-formed
seed inputs will very likely generate
pure garbage, which the application
under test will quickly detect and dis-
card. This is why the program of Fig-
ure 2 defines the constant 1,000 in
line 2 as its fuzzing density: if every
byte in a seed input was fuzzed, the
new input generated would be com-
pletely garbled and random; but if
at most one byte every 1,000 bytes is
fuzzed on average, fuzzing adds only
limited noise to the original seed in-
put, and testing with this slightly cor-
rupted new input is more likely to
exercise more error-handling code
in more diverse parts of the applica-
tion under test, hence increasing the
chances of finding bugs.

Grammar-Based Fuzzing
Blackbox random fuzzing provides a
simple fuzzing baseline, but its effec-
tiveness is limited: the probability of
generating new interesting inputs is
low.35 This is especially true when fuzz-
ing applications with structured input
formats, like XML or JSON dialects:
randomly fuzzing inputs in these for-
mats is likely to break key structural
properties of the input, which the ap-
plication will quickly detect in a first
lexical analysis and then discard,
hence exercising little of the applica-
tion code.

Grammar-based fuzzing is a pow-
erful alternative for fuzzing complex
formats. With this approach, the user

fective in finding security vulnerabili-
ties, often missed by static program
analysis and manual code inspection.
In fact, fuzzing is so effective that it is
now becoming standard in commer-
cial software development processes.
For instance, the Microsoft Security
Development Lifecycle21 requires fuzz-
ing at every untrusted interface of every
product. To satisfy this requirement,
much expertise and tools have been
developed since around 2000.

This article presents an overview of
these techniques, starting with simple
techniques used in the early fuzzing
days, and then progressively moving
on to more sophisticated techniques.
I also discuss the strengths and limita-
tions of each technique.

Note this article is not an overview
of the broader areas of automatic test
generation, search-based software
testing, program verification, or oth-
er applications of fuzzing techniques
beyond security testing. When it was
first introduced,8 the term fuzz test-
ing simply meant feeding random in-
puts to applications, without a specif-
ic focus on security. However, today,
fuzzing is commonly used as a short-
hand for security testing because the
vast majority of its applications is for
finding security vulnerabilities. In-
deed, fuzzed inputs are often improb-
able or rather harmless unless they
can be triggered and controlled by
an attacker who can exploit them to
deliberately break into a system and
cause significant damage.

Blackbox Fuzzing
The first and simplest form of fuzzing
is blackbox random fuzzing, which ran-
domly mutates well-formed applica-
tion inputs, and then tests the applica-
tion with these modified inputs.8

Figure 2 shows a simple program
for blackbox random fuzzing. The pro-
gram takes as input a well-formed input
seed (line 1). It then chooses a random
number of bytes that will be fuzzed in
that input (line 2). That number num-
Writes varies from 1 to the length of
the seed input divided by 1,000. This
arbitrary 1,000 value is optional, but it
prevents fuzzing too many bytes in the
original seed. Next, the loop of lines
4–8 repeatedly selects a random loca-
tion loc in the input (line 5) and a new
random byte value (line 6) that is then
written at that location (line 7), un-
til the selected number numWrites of
bytes have been fuzzed. The program
then executes the application under
test with that newInput (line 9), and
reports an error if a bug is detected
(line 10). In practice, the application
is being run under the monitoring of
a runtime checking tool (like Purify,
Valgrind, AppVerifier or AddressSani-
tizer) in order to increase the chances
of finding non-crashing security vul-
nerabilities (like buffer overflows).

The program of Figure 2 can be
repeatedly executed to generate as
many new fuzzed inputs as the user
wants. Despite its simplicity, this fuzz-
ing strategy can already be effective in
finding security vulnerabilities in ap-

Figure 1. How secure is your JPEG parser?

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 73

review articles

provides an input grammar specifying
the input format of the application un-
der test. Often, the user also specifies
what input parts are to be fuzzed and
how. From such an input grammar, a
grammar-based fuzzer then generates
many new inputs, each satisfying the
constraints encoded by the grammar.
Examples of grammar-based fuzz-
ers are Peach,29 SPIKE,32 and Sulley,34
among others.35

Figure 3 shows a code fragment
representing input constraints which
a grammar-based fuzzer like SPIKE
uses to generate new inputs. The input
grammar is represented here directly
using code, which can be interpreted,
for example, in Python. In line 2, the
user specifies with a call to s_string
that a constant string with the fixed
value POST /api/blog/ HTTP/1.2 should
be generated first. Then another con-
stant string Content-Length: should be
appended (line 3). The call to s_block-
size_string in line 4 adds a string of
length 2 (second argument) with the
size of the block named blockA (first
argument) as value. A call to s_block_
start defines the start of a block (line
5), while s_block_end denotes the end
of a block (line 9), whose name is speci-
fied in the argument. In line 7, the user
specifies with a call to s_string_variable
that a fuzzed string is to be appended
at this location; this string can be the
constant XXX specified in the call or any
other string value taken out of a user-
defined dictionary of other values (not
shown here). Tools like SPIKE support
several ways of defining such fuzzing
dictionaries as well as custom fuzzing
rules (for example,for numeric values).
By executing the code shown in Figure
3, SPIKE might generate this string se-
quence (shown here on 2 lines):

POST /api/blog/ HTTP/1.2
Content-Length:10{body:XXX}

This approach is very general: the
user can specify how to generate input
strings using nearly arbitrary code, in-
cluding function recursion to generate
hierarchies of well-balanced delimit-
ers, like { and } in the example here,
and strings of various sizes.

Grammar-based fuzzing is very pow-
erful: the user expertise is used to fo-
cus and guide fuzzing toward specific
input corner cases of interest, which

would never be covered with blackbox
random fuzzing in practice. Sophisti-
cated grammar-based fuzzers exist for
finding security vulnerabilities in Web
browsers,19 which must take as untrust-
ed inputs Web pages including com-
plex HTML documents and JavaScript
code, as well as for finding complex
bugs in compilers.38 Grammar-based
fuzzing also works well for network-
protocol fuzzing where sequences of
structured messages need to be fed to
the application under test in order to
get good code coverage and find bugs.31

Work on grammar-based test in-
put generation can be traced back to
the 1970s.17 Test generation from a
grammar is usually either done using
random traversals of the production
rules of a grammar,26 or is exhaustive
and covers all its production rules.24
Imperative generation6 is a related ap-
proach in which a custom-made pro-
gram generates the inputs (in effect,
the program encodes the grammar), as
shown in Figure 3.

Grammar-based fuzzing is also re-
lated to model-based testing.36 Given
an abstract representation of a pro-
gram—called a model—model-based
testing consists in generating tests by
analyzing the model in order to check
the conformance of the program with
respect to the model. Test generation
algorithms used in model-based test-

ing often try to generate a minimum
number of tests covering, say, every
state and transition of a finite-state
machine model in order to generate
test suites that are as small as possible.
Similar algorithms can be used to cover
all production rules of a grammar with-
out exhaustively enumerating all pos-
sible combinations.

How to automatically learn input
grammars from input samples for
fuzzing purposes is another recent
line of research. For instance, con-
text-free grammars can be learned
from input examples using custom
generalization steps,1 or using a dy-
namic taint analysis of the program
under test in order to determine how
the program processes its inputs.20
Statistical machine-learning tech-
niques based on neural networks can
also be used to learn probabilistic
input grammars.16 While promising,
the use of machine learning for gram-
mar-based fuzzing is still preliminary
and not widely used today.

In summary, grammar-based fuzz-
ing is a powerful approach to fuzzing
that leverages the user’s expertise and
creativity. Unfortunately, grammar-
based fuzzing is only as good as the in-
put grammar being used, and writing
input grammars by hand is laborious,
time consuming, and error-prone.
Because the process of writing gram-

Figure 2. Sample blackbox fuzzing code.

1 RandomFuzzing(input seed) {
2 int numWrites = random(len(seed)/1000)+1;
3 input newInput = seed;
4 for (int i=1; i<=numWrites; i++) {
5 int loc = random(len(seed));
6 byte value = (byte)random(255);
7 newInput[loc] = value;
8 }
9 result = ExecuteAppWith(newInput);
10 if (result == crash) print(“bug found!”);
11 }

Figure 3. Sample SPIKE fuzzing code.

1 ...
2 s_string(“POST /api/blog/ HTTP/1.2 “);
3 s_string(“Content-Length: “);
4 s_blocksize_string(“blockA”, 2);
5 s_block_start(“blockA”);
6 s_string(“{body:”);
7 s_string_variable(“XXX”);
8 s_string(“}”);
9 s_block_end(“blockA”);
10 ...

74 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

review articles

approaches because it is more pre-
cise.11 It can therefore find bugs missed
by other fuzzing techniques, even with-
out specific knowledge of the input
format. Furthermore, this approach
automatically discovers and tests code
corner cases where programmers may
fail to properly allocate memory or ma-
nipulate buffers, leading to security
vulnerabilities. Note that full program
statement coverage is a necessary but
not sufficient condition to find all the
bugs in a program.

In theory, exhaustive whitebox fuzz-
ing provides full program path cover-
age, that is, program verification (for
any input up to a given size). The sim-
ple program foo has two feasible execu-
tion paths, which can be exhaustively
enumerated and explored in order to
prove that that this program does not
contain any buffer overflow. In prac-
tice, however, the search is typically
incomplete because the number of
execution paths in the program under
test is huge, and because symbolic ex-
ecution, constraint generation, and
constraint solving may be imprecise
due to complex program statements
(pointer manipulations, floating-point
operations, among others), calls to
external operating system and library
functions, and large numbers of con-
straints which cannot all be solved per-
fectly in a reasonable amount of time.
Because of these limitations, whitebox
fuzzing, like blackbox fuzzing, still re-
lies on a diverse set of seed inputs to be
effective in practice.

Whitebox fuzzing was first imple-
mented in the tool SAGE,14 and ex-
tends the scope of prior work on dy-
namic test generation,4,13 also called
execution-generated tests or concolic
testing, from unit testing to security
testing of large programs. SAGE per-
forms dynamic symbolic execution at
the x86 binary level, and implements
several optimizations that are crucial
for dealing with huge execution traces
with hundreds of millions of machine
instructions, in order to scale to large
file parsers embedded in applications
with millions of lines of code, like Mi-
crosoft Excel or PowerPoint. SAGE also
uses search heuristics based on code
coverage when exploring large state
spaces: instruction coverage is mea-
sured for every test executed, and tests
that discover many new instructions

mars is so open-ended and there are
so many possibilities for fuzzing rules
(what and how to fuzz), when to stop
editing a grammar further is another
practical issue.

Whitebox Fuzzing
Blackbox random fuzzing is practically
limited, and grammar-based fuzzing
is labor intensive. Moreover, when can
one safely stop fuzzing? Ideally, further
testing is not required when the pro-
gram is formally verified, that is, when
it is mathematically proved not to con-
tain any more bugs.

Cost-effective program verification
has remained elusive for most software
despite 40+ years of computer-science
research.18,22 However, significant ad-
vances in the theory and engineering of
program analysis, testing, verification,
model checking, and automated theo-
rem proving have been made over the
last two decades. These advances were
possible in part thanks to the increas-
ing computational power available on
modern computers, where sophisti-
cated analyses have now become more
affordable. Whitebox fuzzing is one of
these advances.

Starting with a well-formed input,
whitebox fuzzing14 consists of symboli-
cally executing the program under test
dynamically, gathering constraints on
inputs from conditional branches en-
countered along the execution. The
collected constraints are then system-
atically negated one-by-one and solved
with a constraint solver, whose solu-

tions are mapped to new inputs that
exercise different program execution
paths. This process is repeated using
systematic search techniques that at-
tempt to sweep through all (in practice,
many) feasible execution paths of the
program while checking simultane-
ously many properties (like buffer over-
flows) using a runtime checker.

For example, consider this simple
program:

int foo (int x) { // x is an input
 int y = x + 3;
 if (y == 13) abort (); // error
 return 0;
}

Dynamic symbolic execution of this
program with an initial concrete value
0 for the input variable x takes the else
branch of the conditional statement,
and generates the path constraint x +
3 ≠13. After negating this input con-
straint and solving it with a constraint
solver,7 the solver produces a solution
x = 10. Running the program with this
new input causes the program to fol-
low the then branch of the conditional
statement and finds the error. Note
that blackbox random fuzzing has only
1 in 232 chances of exercising the then
branch if the input variable x has a ran-
domly-chosen 32-bit value, and it will
never find the error in practice. This in-
tuitively explains why whitebox fuzzing
usually provides higher code coverage.

Whitebox fuzzing can generate in-
puts that exercise more code than other

Figure 4. Most constraints are easy to solve.

Solving time (in seconds)

0.001

31.88%

62.89%
67.46%

84.84%
90.18%

98.21% 99.18% 100.00% 100.00% 100.00%

0.010.005 0.05 0.1 0.5 1 30 60 >60

Frequency Cumulative

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 75

review articles

are symbolically executed with higher
priority so that their unexplored neigh-
borhoods are explored next. Tests and
symbolic executions can be run in par-
allel, on multiple cores or machines.
Like blackbox fuzzing, whitebox fuzz-
ing starts with a small diverse set of
seed inputs, whenever possible, in or-
der to give its search a head start. Such
seed inputs can also be generated us-
ing grammar-based fuzzing when an
input grammar is available.25

Since 2008, SAGE has been run-
ning in production for over 1,000
machine-years, automatically fuzz-
ing hundreds of applications.2 This
is the “largest computational usage
ever for any Satisfiability-Modulo-
Theories (SMT) solver” according to
the authors of the Z3 SMT solver,7
with around 10 billion constraints
processed to date. On a sample set of
130 million constraints generated by
SAGE while fuzzing 300 Windows ap-
plications, Figure 4 shows that about
99% of all constraints are solved by Z3
in one second or less.2

During all this fuzzing, SAGE found
many new security vulnerabilities (buf-
fer overflows) in hundreds of Win-
dows parsers and Office applications,
including image processors, media
players, file decoders, and document
parsers. Notably, SAGE found roughly
one third of all the bugs discovered by
file fuzzing during the development of
Microsoft’s Windows 7,15 saving mil-
lions of dollars by avoiding expensive
security patches for nearly a billion PCs
worldwide. Because SAGE was typically
run last, these bugs were missed by ev-
erything else, including static program
analysis and blackbox fuzzing.

Today, whitebox fuzzing has been
adopted in many other tools. For in-
stance, the top finalists of the DARPA
Cyber Grand Challenge,37 a competi-
tion for automatic security vulnerabil-
ity detection, exploitation and repair,
all included some form of whitebox
fuzzing with symbolic execution and
constraint solving in their solution.
Other influential tools in this space
include the open-source tools KLEE,3
S2E,5 and Symbolic PathFinder.28

Other Approaches
Blackbox random fuzzing, grammar-
based fuzzing and whitebox fuzzing
are the three main approaches to fuzz-

ing in use today. These approaches can
also be combined in various ways.

Greybox fuzzing extends blackbox
fuzzing with whitebox fuzzing tech-
niques. It approximates whitebox
fuzzing by eliminating some of its
components with the goal of reduc-
ing engineering cost and complex-
ity while retaining some of its intelli-
gence. AFL40 is a popular open source
fuzzer which extends random fuzzing
with code-coverage-based search heu-
ristics as used in SAGE, but without
any symbolic execution, constraint
generation or solving. Despite (or
because) of its simplicity, AFL was
shown to find many bugs missed by
pure blackbox random fuzzing. AFL is
related to work on search-based soft-
ware testing27 where various search
techniques and heuristics (such as ge-
netic algorithms or simulated anneal-
ing) are implemented and evaluated
for various testing scenarios. Another
form of greybox fuzzing is taint-based
fuzzing,10 where an input-taint analy-
sis is performed to identify which in-
put bytes influence the application’s
control flow, and these bytes are then
randomly fuzzed, hence approximat-
ing symbolic execution with taint
analysis, and approximating con-
straint generation and solving with
random testing.

Hybrid fuzzing33,39 combines black-
box (or greybox) fuzzing techniques
with whitebox fuzzing. The goal is to
explore trade-offs to determine when
and where simpler techniques are suf-
ficient to obtain good code coverage,
and use more complex techniques, like
symbolic execution and constraint solv-
ing, only when the simpler techniques
are stuck. Obviously, many trade-offs
and heuristics are possible, but repro-
ducible statistically-significant results
are hard to get.23 Grammar-based fuzz-
ing can also be combined with white-
box fuzzing.12,25

Portfolio approaches run multiple
fuzzers in parallel and collect their
results, hence combining their com-
plementary strengths. Project Spring-
field30 is the first commercial cloud
fuzzing service (renamed Microsoft Se-
curity Risk Detection in 2017), and uses
a portfolio approach. Customers who
subscribe to this service can submit
fuzzing jobs targeting their own soft-
ware. Fuzzing jobs are processed by

Fuzzing is
commonly used
as a shorthand
for security testing
because the vast
majority of its
applications is
for finding security
vulnerabilities.

76 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

review articles

13. Godefroid, P., Klarlund, N., and Sen, K. DART: Directed
automated random testing. In Proceedings of ACM
SIGPLAN 2005 Conf. Programming Language Design
and Implementation (Chicago, IL, June 2005). 213–223.

14. Godefroid, P., Levin, M.Y., and Molnar, D. Automated
whitebox fuzz testing. In Proceedings of Network and
Distributed Systems Security (San Diego, Feb. 2008),
151–166.

15. Godefroid, P., Levin, M.Y., and Molnar, D. SAGE:
Whitebox fuzzing for security testing. Commun. ACM
55, 3 (Mar. 2012), 40–44.

16. Godefroid, P., Peleg, H., and Singh, R. Learn&Fuzz:
Machine Learning for Input Fuzzing. In Proceedings of
the 32nd IEEE/ACM Intern. Conf. Automated Software
Engineering, Nov. 2017.

17. Hanford, K.V. Automatic generation of test cases. IBM
Systems J. 9, 4 (1970).

18. Hoare, C.A.R. An axiomatic approach to computer
programming. Commun. ACM 12, 10 (1969), 576–580.

19. Holler, C., Herzig, K., and Zeller, A. Fuzzing with code
fragments. In Proceedings of the 21st USENIX
Security Symp., 2012.

20. Höschele, M. and Zeller, A. Mining input grammars with
AUTOGRAM. In Proceedings of ICSE-C’2017, 31–34.

21. Howard, M. and Lipner, S. The Security Development
Lifecycle. Microsoft Press, 2006.

22. King, J.C. Symbolic execution and program Ttesting.
J. ACM 19, 7 (1976), 385–394.

23. Klees, G.T., Ruef, A., Cooper, B., Wei, S., and Hicks, M.
Evaluating fuzz testing. In Proceedings of the ACM
Conf. Computer and Communications Security, 2018.

24. Lämmel, R. and Schulte, W. Controllable combinatorial
coverage in grammar-based testing. In Proceedings of
TestCom, 2006.

25. Majumdar, R. and Xu, R. Directed test generation using
symbolic grammars. In Proceedings of ASE, 2007.

26. Maurer, P.M. Generating test data with enhanced
context-free grammars. IEEE Software 7, 4 (1990).

27. McMinn, P. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability 14, 2 (2004).

28. Pasareanu, C. S., Visser, W., Bushnell, D., Geldenhuys,
J., Mehlitz, P., and Rungta, N. Symbolic pathFinder:
Integrating symbolic execution with model checking
for Java bytecode analysis. Automated Software
Engineering, 2013, 20:391–425.

29. Peach Fuzzer; http://www.peachfuzzer.com/.
30. Project Springfield; https://www.microsoft.com/

springfield/, 2015.
31. Protos; http://www.ee.oulu.fi/research/ouspg/protos/.
32. SPIKE Fuzzer; http://resources.infosecinstitute.com/

fuzzer-automation-with-spike/.
33. Stephens, N. et al. Driller: Augmenting fuzzing through

selective symbolic execution. In Proceedings of
Network and Distributed Systems Security, 2016.

34. Sulley; https://github.com/OpenRCE/sulley.
35. Sutton, M., Greene, A., and Amini, P. Fuzzing: Brute

Force Vulnerability Discovery. Addison-Wesley, 2007.
36. Utting, M., Pretschner, A., and Legeard, B. A Taxonomy

of model-based testing approaches. Intl. J. Software
Testing, Verification and Reliability 22, 5 (2012).

37. Walker, M. et al. DARPA Cyber Grand Challenge, 2016;
http://archive.darpa.mil/cybergrandchallenge/.

38. Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and
understanding bugs in C compilers. In Proceedings of
PLDI’2011.

39. Yun, I., Lee, S., Xu, M., Jang, Y., and Kim, T. Qsym: A
practical concolic execution engine tailored for hybrid
fuzzing. In Proceedings of the 27th USENIX Security
Symp., 2018.

40. Zalewski, M. AFL (American Fuzzy Lop), 2015; http://
lcamtuf.coredump.cx/afl/

Patrice Godefroid (pg@microsoft.com) is a partner
researcher at Microsoft Research, Redmond, WA, USA.

Copyright held by author/owner.
Publication rights licensed to ACM.

Watch the author discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
fuzzing

creating many virtual machines in the
cloud and by running different fuzz-
ing tools and configurations on each of
these machines. Fuzzing results (bugs)
are continually collected by the service
and post-processed for analysis, triage
and prioritization, with final results
available directly to customers on a se-
cured website.

Conclusion
Is fuzzing a hack, an art, or a science?
It is a bit of all three. Blackbox fuzzing
is a simple hack but can be remark-
ably effective in finding bugs in appli-
cations that have never been fuzzed.
Grammar-based fuzzing extends it
to an arta form by allowing the user’s
creativity and expertise to guide fuzz-
ing. Whitebox fuzzing leverages ad-
vances in computer science research
on program verification, and explores
how and when fuzzing can be math-
ematically “sound and complete” in a
proof-theoretic sense.

The effectiveness of these three
main fuzzing techniques depends on
the type of application being fuzzed.
For binary input formats (like JPEG
or PNG), fully-automatic blackbox
and whitebox fuzzing techniques
work well, provided a diverse set of
seed inputs is available. For complex
structured non-binary formats (like
JavaScript or C), the effectiveness of
blackbox and whitebox fuzzing is un-
fortunately limited, and grammar-
based fuzzing with manually-written
grammars are usually the most effec-
tive approach. For specific classes of
structured input formats like XML or
JSON dialects, domain-specific fuzz-
ers for XML or JSON can also be used:
these fuzzers parse the high-level tree
structure of an input and include
custom fuzzing rules (like reordering
child nodes, increasing their number,
inversing parent-child relationships,
and so on) that will challenge the ap-
plication logic while still generating
syntactically correct XML or JSON
data. Of course, it is worth emphasiz-
ing that no fuzzing technique is guar-
anteed to find all bugs in practice.

What applications should be fuzzed
also depends on a number of parame-
ters. In principle, any application that

a Art is “the expression or application of human
creative skill and imagination.”

may process untrusted data should
be fuzzed. If the application runs in
a critical environment, it should defi-
nitely be fuzzed. If the application is
written in low-level code like C or C++,
the danger is even higher, since secu-
rity vulnerabilities are then typically
easier to exploit. If the application is
written in higher-level managed code
like Java or C#, fuzzing might reveal
unhandled exceptions which may or
may not be security critical depend-
ing on the context (service-side code is
usually more critical).

Despite significant progress in the
art and science of fuzzing over the last
two decades, important challenges re-
main open. How to engineer exhaus-
tive symbolic testing (that is, a form of
verification) in a cost-effective manner
is still an open problem for large ap-
plications. How to automate the gen-
eration of input grammars for com-
plex formats, perhaps using machine
learning, is another challenge. Finally,
how to effectively fuzz large distrib-
uted applications like entire cloud ser-
vices is yet another open challenge.

References
1. Bastani, O., Sharma, R., Aiken, A. and Liang, P.

Synthesizing program input grammars. In Proceedings
of the 38th ACM SIGPLAN Conf. Programming
Language Design and Implementation, 2017, 95–110.

2. Bounimova, E., Godefroid, P., and Molnar, D. Billions
and billions of constraints: Whitebox fuzz testing in
production. In Proceedings of 35th Intern. Conf. Software
Engineering, (San Francisco, May 2013), 122–131.

3. Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted
and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of
OSDI’08 (Dec 2008).

4. Cadar, C. and Engler, D. Execution generated test cases:
How to make systems code crash itself. In Proceedings
of 12th Intern. SPIN Workshop on Model Checking of
Software 3639 (San Francisco, CA, Aug. 2005) Lecture
Notes in Computer Science, Springer-Verlag.

5. Chipounov, V., Kuznetsov, V. and Candea, G. S2E: A
platform for in-vivo multi-path analysis of software
systems. In Proceedings of ASPLOS’2011.

6. Claessen, K. and Hughes, J. QuickCheck: A lightweight
tool for random testing of Haskell programs. In
Proceedings of ICFP’2000.

7. de Moura, L. and Bjorner, N. Z3: An Efficient SMT
Solver. In Proceedings of 14th Intern. Conf. Tools
and Algorithms for the Construction and Analysis
of Systems 4963 (Budapest, April 2008), 337–340.
Lecture Notes in Computer Science, Springer-Verlag.

8. Forrester, J.E. and Miller, B.P. An empirical study of the
robustness of Windows NT applications using random
testing. In Proceedings of the 4th USENIX Windows
System Symp., Seattle, (Aug. 2000).

9. Gallagher, T., Jeffries, B., and Landauer, L. Hunting
Security Bugs. Microsoft Press, 2006.

10. Ganesh, V., Leek, T., and Rinard. M. Taint-based directed
whitebox fuzzing. In Proceedings of ICSE ’2009.

11. Godefroid, P. Higher-order test generation.
In Proceedings of ACM SIGPLAN 2011 Conf.
Programming Language, Design and Implementation
(San Jose, June 2011). 258–269.

12. Godefroid, P., Kiezun, A., and Levin, M.Y. Grammar-
based whitebox fuzzing. In Proceedings of ACM
SIGPLAN 2008 Conf. Programming Language
Design and Implementation, (Tucson, AZ, USA,
June 2008), 206–215.

