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ABSTRACT

Software vulnerabilities are the fundamental cause of many
attacks. Even with rapid vulnerability patching, the prob-
lem is more complicated than it looks. One reason is that
instances of the same vulnerability may exist in multiple
software copies that are difficult to track in real life (e.g.,
different versions of libraries and applications). This calls
for tools that can automatically search for vulnerable soft-
ware with respect to a given vulnerability. In this paper, we
move a step forward in this direction by presenting Vulnera-
bility Pecker (VulPecker), a system for automatically detect-
ing whether a piece of software source code contains a given
vulnerability or not. The key insight underlying VulPecker
is to leverage (i) a set of features that we define to charac-
terize patches, and (ii) code-similarity algorithms that have
been proposed for various purposes, while noting that no
single code-similarity algorithm is effective for all kinds of
vulnerabilities. Experiments show that VulPecker detects 40
vulnerabilities that are not published in the National Vulner-
ability Database (NVD). Among these vulnerabilities, 18 are
not known for their existence and have yet to be confirmed
by vendors at the time of writing (these vulnerabilities are
“anonymized” in the present paper for ethical reasons), and
the other 22 vulnerabilities have been “silently” patched by
the vendors in the later releases of the vulnerable products.
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1. INTRODUCTION

It is difficult to patch all vulnerabilities in software sys-
tems because of code reuse, namely that a vulnerability may
exist silently in multiple software programs without being
adequately tracked. This is a manifestation of what may
be called the wvulnerability prevalence problem. Examples
are abundant: the same webpage rendering engine is used
by Safari and Chrome, the same Flash libraries are used by
Adobe Reader and Adobe Air, and Adobe Reader may be
included in printer drivers [22]. It is also not surprising to
see unpatched code clones in operating systems [13].

The vulnerability prevalence problem cannot be solved
simply by using multiple patch management mechanisms,
because they often do not cover all vulnerability instances.
While it may sound simple to track code reuse, it is actu-
ally unmanageable because of the large number of programs.
This can be witnessed by the fact that despite the presence
of 13 automated patching mechanisms, at least 86% median
fraction of computers are not patched at the time exploits
are available [22].

One solution to the vulnerability prevalence problem is to
automatically identify all vulnerable executables in a com-
puter. This turns out to be difficult. In this paper, we
address an alternate problem:

Source code vulnerability detection problem: Given
a vulnerability and the source code of a target
program, how can we automatically detect whether
the program contains the vulnerability or not? If
it does, what is the location of the piece of vul-
nerable code?

Our contributions. We address the source code vulner-
ability detection problem by presenting Vulnerability Pecker
(VulPecker), a system for automatically detecting whether
a program contains a given vulnerability or not. Such a
solution needs to deal with two challenges. First, there is
no readily available dataset for this kind of research. This
is so despite that vulnerability-related databases, such as
the National Vulnerability Database (NVD) [2] and Open
Sourced Vulnerability Database (OSVDB) [3], have become
publicly available. Though several studies [21, 24] have built
databases for mapping Common Vulnerabilities and Expo-
sures number or identifiers (CVE-IDs) to commits in soft-
ware revision, where each commit contains a diff between
the source code prior to the commit and the source code af-
ter the commit, these databases are also insufficient for our



purpose. Second, there is no single code-similarity algorithm
that is effective for all kinds of vulnerabilities. For example,
ReDeBug [13] can quickly find unpatched code clones at
the OS-distribution scale of code bases, but can hardly be
applied to code clones that involve variable name modifica-
tions, line additions or deletions, etc. Moreover, each vul-
nerability has its own characteristics that should be taken
into consideration. For example, if the code representation
of a code-similarity algorithm cannot distinguish a piece of
vulnerable code from the patched piece of the corresponding
code, the algorithm is not appropriate for dealing with this
vulnerability because it can cause a false-positive. However,
it is not known which code-similarity algorithms would be
effective for which vulnerabilities.

We address the first challenge by building a Vulnerability
Patch Database (VPD) and a Vulnerability Code Instance
Database (VCID), which correspond to the C/C++ open
source products that have some vulnerabilities according to
the NVD. The VPD contains 19 products with 1,761 vul-
nerabilities related to 3,454 diff hunks, and the VCID con-
tains 455 code reuse instances of vulnerability diff hunks.
We have made the VPD and the VCID publicly available at
https://github.com/vulpecker /Vulpecker. We plan to main-
tain the two databases to accommodate the new vulnerabil-
ities published in the future. When used together with the
NVD, a query with a CVE-ID allows one to get information
about the patch and a number of code reuse instances.

We address the second challenge by designing algorithms
to automatically select the code-similarity algorithm(s) that
is effective for one specific vulnerability. Our contribution
lies in the definition and use of vulnerability diff hunk fea-
tures, especially the ones that are derived from vulnerability
patches. These features allow us to systematically evaluate
which code-similarity algorithms are effective for which vul-
nerabilities. We consider a number of code-similarity algo-
rithms proposed in the literature, as well as the variants that
we devise for the purpose of the present study.

We conduct experiments to systematically evaluate the ef-
fectiveness of VulPecker. Experiments show that it detects
40 vulnerabilities that are not published in the NVD. Among
these vulnerabilities, 18 are not known for their existence
and have yet to be confirmed by vendors at the time of writ-
ing', while the other 22 vulnerabilities have been “silently”
patched by vendors in later releases of the affected products.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 presents the de-
sign of VulPecker. Section 4 discusses the implementation
of VulPecker. Section 5 describes our experimental results.
Section 6 discusses the limitation of the present study. Sec-
tion 7 concludes the present paper with a discussion on fu-
ture research directions.

2. RELATED WORK

There are two approaches for vulnerability detection: us-
ing vulnerability patterns or using code similarity. The
pattern-based detection approach typically requires multi-
ple instances of the same or similar vulnerability before a
pattern can be identified [9, 28]. Its usefulness is therefore
limited. The code-similarity based detection approach only

'For ethical reasons, we do not give the detailed information
about these vulnerabilities, but we can release the informa-
tion to academic researchers for experimental repeatability.
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requires a single instance of vulnerability. It is based on the
intuition that similar programs may contain the same vul-
nerability [23], which explains why it has been used for de-
tecting software cloning/plagiarism [5, 26]. In what follows,
we review the code-similarity based detection approach.

Code-similarity comparison algorithms can be character-
ized by three attributes: code-fragment level, code represen-
tation, and comparison method. The first two attributes
describe the representation of a piece of code in an abstract
way, while the third attribute describes how to compare the
similarity between two pieces of code according to their rep-
resentations. However, it is not known what code-fragment
level and/or code representation would be effective for vul-
nerability detection.

Code-fragment level. A code fragment is the unit at
which programs are compared. This means that for code-
similarity comparison, code needs to be abstracted at a
certain level of granularity. Five levels of code fragments
have been proposed: patch-without-context, slice, patch-
with-context, function, and file/component. At the patch-
without-context fragment level, a fragment is obtained from
the diff file by extracting the continuous lines prefixed by
the “-” symbol (indicating the lines that should be patched).
This granularity has been used for bug detection [18]. At
the slice fragment level, a program is sliced based on its
Program Dependence Graphs (PDG). Since slicing typically
preserves the structure of PDG, the isomorphism between
subgraphs indicates code similarity. This granularity has
been used for clone detection [15]. At the patch-with-context
fragment level, a fragment is obtained from the diff file by
extracting the lines prefixed by the “-” symbol and the lines
with no prefix. This granularity has been used for bug de-
tection [19] and vulnerability detection [13, 17, 25]. At the
function fragment level, a function is treated as an inde-
pendent unit. This granularity has been used for vulner-
ability extrapolation [29, 30] and clone detection [12]. At
the file/component fragment level, each file/component is
treated as a unit. This coarse-grained granularity has been
mainly used for vulnerability prediction [8, 23].

Code representation. Each code fragment can be rep-
resented via text, metric, token, tree, and graph. The text-
based representation accommodates little syntactic or se-
mantic information, and therefore is not appropriate for vul-
nerability detection. In the metric-based representation, a
fragment is represented by a vector of features, which are
then compared with each other [8, 23]. This representation
is often used at the file/component fragment level. In the
token-based representation, the source code is transformed
into a sequence of “tokens” via compiler-style lexical analy-
sis, and then the sequence is scanned for certain tokens. A
token may correspond to a line of code [13, 17] or a compo-
nent in a line [19]. This representation is often used for clone
detection [12, 14], bug detection [19], vulnerability detection
[13, 17], and vulnerability extrapolation [29, 30]. In the tree-
based representation, a tree represents the syntactic struc-
ture of variables, constants, function calls, and other tokens
in source code. This syntactic representation has been used
for clone detection [16], vulnerability detection [25], and vul-
nerability extrapolation [30]. In the graph-based represen-
tation, a function is represented as a graph, where a node
represents an expression or statement, and an edge repre-
sents control flow, control dependency or data dependency.
This semantic representation has been used for clone detec-



tion [15, 20], bug detection [18], and vulnerability detection
[25].

Comparison method. There are two kinds of compar-
ison methods: vector comparison and approximate/exact
matching. The vector comparison method first converts the
representation of a vulnerability and the representation of a
target program into vectors, and then compares these vec-
tors for detecting vulnerabilities [12, 25, 29, 30]. The ap-
prozimate/exact matching method searches the representa-
tion of a vulnerability in the code representation of a target
program via containment [13, 17, 19], substring matching
[16], full subgraph isomorphism matching [18], or approxi-
mate 7y-isomorphism matching [20].

Finally, it is worth mentioning that exploit signatures are
sometimes called vulnerability signatures, although they are
actually used to recognize exploits [4, 6]. These signatures
characterize the inputs that can be used to exploit vulnera-
bilities [6]. Exploit signatures are orthogonal to the vulner-
ability signatures we study in the present paper.

3. DESIGN

3.1 Overview
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Figure 1: Overview of VulPecker: The learning

phase selects code-similarity algorithm(s) that is ef-
fective for a vulnerability. The select algorithms in
turn guide the generation of vulnerability signatures
and the detection of vulnerabilities.

Figure 1 gives an overview of VulPecker. It has two phases:
a learning phase and a detection phase. Before we elaborate
on the modules described in Figure 1, let us discuss two
high-level issues. First, which code-similarity algorithm(s) is
effective for detecting which vulnerability? In answering this
question, we analyze a set of candidate code-similarity algo-
rithms by taking advantage of features describing vulnerabil-
ities and patches. This analysis leads to a CVE-to-algorithm
mapping, which maps a CVE-ID to the select code-similarity
algorithm(s) that is effective for detecting the vulnerability.

Second, how should we generate and use vulnerability sig-
natures? Recall that a code-similarity algorithm can be
characterized by three attributes: code-fragment level, code
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representation, and comparison method. We observe that
code-fragment level and code representation offer guidance
for generating signatures of vulnerabilities as well as signa-
tures of target programs. These signatures are then com-
pared with each other for determining whether or not a tar-
get program has a vulnerability. If a vulnerability is found,
the location of the vulnerable code fragment(s) is reported.

3.2 Defining vulnerability and code-reuse fea-
tures

Since our focus is to use code similarity analysis to detect
vulnerabilities, we need to define features to characterize
vulnerabilities and code reuses.

Features for describing vulnerability diff hunks.
Given a vulnerability and its patch, the vulnerability can be
characterized by the vulnerability diff, which is composed
of one or multiple diff hunks. Each diff hunk contains a
sequence of lines of code, where each line is prefixed by a
“4+” symbol (addition), “-” symbol (deletion), or nothing. In
order to define features to describe a vulnerability, it is suf-
ficient to define features that describe these diff hunks. For
a diff hunk, we define two sets of features: basic features and
patch features. Table 1 summarizes these features. Basic fea-
tures are the Type 1 features described in Table 1, including
the unique CVE-ID, the Common Weakness Enumeration
Identifier (CWE-ID) that represents the vulnerability type,
product vendor, product affected, and vulnerability severity.
Patch features are the Type 2-Type 6 features described in
Table 1 and describe the code changes from the unpatched
piece of code to the patched one. The five types of patch
features are elaborated as follows.

e Non-substantive features: These features describe chan-
ges in whitespace, format or comment which have no
impact on useful code.

e Component features: These features describe the chan-
ges of components in statements such as variables, op-
erators, constants, and functions.

e Expression features: These features describe the chan-
ges of expressions in statements such as assignment
expression, if condition, and for condition.

e Statement features: These features describe the chan-
ges of statements involving addition, deletion, and mo-
vement.

e Function-level features: These features describe the
changes of functions or changes outside a function,
such as macros and global variable definitions.

Features for describing code reuses. The term “code
reuse” often means code cloning [5, 26], including exact clones,
renamed clones, near miss clones, and semantic clones. For
vulnerability detection, we are given a piece of code con-
taining a vulnerability and a target piece of code that may
or may not contain the same vulnerability, where the latter
may or may not be an exact clone of the former. Note that
we have already defined five types of patch features for de-
scribing vulnerabilities, namely Type 2-Type 6 described in
Table 1. Since these features can already describe the “trans-
formation” from an unpatched piece of vulnerable code to a
patched piece of code, which may be seen as a sort of code
reuse in a sense, we can naturally use these patch features
to describe code reuses.

3.3 Preparing the input



Table 1: Vulnerability diff hunk features = basic
features (Type 1) + patch features (Type 2—Type
6). The patch features are also used as code-reuse
features.

Type | Description

1 Basic features

1-1 CVE-ID

1-2 CWE-ID

1-3 Product vendor

1-4 Product affected

1-5 Vulnerability severity

2 Non-substantive features

2-1 Changes in whitespace, format or comment
3 Component features

3-1 Variable name modification

3-2 Constant modification

3-3 Variable type modification

3-4 Function name modification

3-5 Function argument addition

3-6 Function argument deletion

3-7 Function argument modification
3-8 Variable declaration addition
3-9 Variable declaration deletion
3-10 Operator modification

4 Expression features

4-1 Assignment expression modification
4-2 if condition modification

4-3 for condition modification

4-4 while condition modification
4-5 do while condition modification
4-6 switch condition modification

5 Statement features

5-1 Line addition

5-2 Line deletion

5-3 Line movement

6 Function-level features

6-1 Entire function addition

6-2 Entire function deletion

6-3 Modification beyond the function

In the learning phase, there are three inputs: the NVD,
VPD, and VCID. The NVD is a public database containing
the basic information of vulnerabilities that can be uniquely
identified by CVE-IDs. However, we need to build the VPD
and VCID by ourselves. The VPD contains the mappings
from CVE-IDs to diffs. Any vulnerability described in the
NVD with an explicit vulnerability diff description is incor-
porated into the VPD. However, the NVD contains vulnera-
bilities that are caused by code reuse, but does not give any
explicit diff description. For example, CVE-2015-0239 in
the NVD states that a Linux kernel prior to version 3.18.5
contains a vulnerability in the em_sysenter function, and
the NVD further gives a diff description of the vulnerability.
However, the vulnerable pieces of code in these vulnerable
kernels are not identical. More specifically, the vulnerable
piece of code in kernel 3.18.1 indeed matches the vulner-
able piece of code corresponding to the diff, but the vul-
nerable pieces of code in kernels 3.16.3 and 3.10.3 are not
the exact clones of the vulnerable piece of code correspond-
ing to the diff, where the latter two are actually different
from each other as well. In this case, the vulnerable pieces
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of code in kernels 3.16.3 and 3.10.3 are treated as different
code reuse instances, and are incorporated into the VCID
with each described by its respective code-reuse features.
These databases collectively allow us to achieve the follow-
ing. Given a CVE-ID, we can extract the basic features of
a vulnerability from the NVD, the patch features from the
VPD, and the code reuse instances of the vulnerability from
the VCID.

In the detection phase, the inputs are CVE-IDs, the target
programs of interest, the CVE-to-algorithm mapping, and
vulnerability signatures, where the last two are the output
of the learning phase.

3.4 Code-similarity algorithm selection

Extracting vulnerability diff hunk features. For
each vulnerability diff hunk, we extract the basic features
of a vulnerability from the NVD. From the VPD, we obtain
the diff corresponding to the vulnerability in question. Af-
ter splitting the diff into possibly multiple diff hunks, we can
extract the patch features as follows. First, non-substantive
features and function level features can be extracted directly
from the diff hunks. Second, the three other types of patch
features (i.e., Types 3-Type 5 in Table 1), can be extracted
via a sequence of edit actions from the unpatched piece of
code to the patched one using, for example, the gumtree
algorithm [11]. Finally, the feature vector of a vulnerabil-
ity diff hunk is composed from the basic features and patch
features.

Code-similarity algorithm selection engine. This
module is to determine which code-similarity algorithm(s)
is effective with respect to which vulnerability, where “effec-
tive” means that the higher the similarity between a piece
of a target program and a piece of vulnerability code, the
higher the chance the target program contains the vulnera-
bility in question. For this purpose, we propose Algorithm
1, which has three steps as highlighted in Figure 2 and is
elaborated below.

Candidate code- Vulnerability diff

Input similarity algorithms| | hunk feature vectors Threshold | VCIb |
| Establish the ground truth |
v y
Learn classifiers and filter them with accuracy
Step 1 threshold
Select the algorithms which can distinguish the
unpatched piece of code from the patched one
Step 2 Identify code-similarity algorithms with the most
suitable code-fragment level
Step 3 Select the algorithm with the lowest false-negative
P rate w.r.t. VCID
Output | CVE-to-algorithm mapping |

Figure 2: Illustration of Algorithm 1

First, we observe that a good algorithm should be able
to distinguish the unpatched piece of code from the patched
one. In order to evaluate whether or not a candidate al-
gorithm can achieve this goal, we use the vulnerability diff
hunks in the VPD to establish the ground truth. For each
vulnerability diff hunk described by a feature vector Fy € F
as described in Table 1 and each candidate code-similarity



Algorithm 1 Code-similarity algorithm selection

Input: A set of candidate code-similarity algorithms S =
{s1,...,sn}; a set of wvulnerability diff hunk
feature vectors F = {Fy},, where F} =
(Fe,1s o5 freoms feymt1s - o fo,man) and m is the

number of features described in Table 1; the VCID;
threshold 7

Output: CVE-to-algorithm mapping M = {(Fj,s)}r where
s € S is the most suitable code-similarity algorithm
for diff hunk Fy

1: 8"« 0

2: for each Fj, € F do

3: S/ (Fy) < 0

4: for each s; € S do

5: set fr,m+i < 1 if s; treats the patched piece of code cor-

responding to Fj as invulnerable (i.e., mot similar to the
unpatched piece of code) and fi, m4i +— 0 otherwise
6 end for
7: end for
8: partition F' horizontally into FO) and F®
9: for each s; € S do
0 consider FM (3) = {(fr,1, .-
tion of F w.rt. s;
11: use machine learning to learn a classifier from F™) (i) and de-
note the classifier’s accuracy by a;
12: if a; > 7 then

s fi,ms fk,m+i) & as the projec-

13: S« S" U {si}
14: end if
15: end for

16: for each Fi, = (fr,1,. .-
17: S/(F)C) — 8’
18: for each s; € S’ do

s frems Freomss) € F) do

19: if fi,m+: =0 then
20: S'(Fy) < S'(Fy) \ {s:}
21: end if

22: end for

23: end for {a pair (Fy, S’(F}))) for each Fj, € F(®}
24: for each F) € F® do

25: for each s; € S’(Fy) do

26: determine the most suitable code-fragment level for Fj, as
the one that leads to the smallest doa as described in text

27: if the fragment level used by s; does not match the most
suitable code-fragment level for Fj then

28: S'(Fi) < S'(Fo) \ {s:}

29: end if

30: end for

31: end for {a pair (F), S’ (F))) for each F, € F(?}

32: M« 0

33: for each s; € S'(F)) do

34: use the code reuse instances in VCID that are suitable for s;
(see text for details) to evaluate the false-negative rate of s;,
denoted by fn(s;)

35: end for

36: for cach each Fy, € F®) with associated (Fy,S’(Fy)) do

370 s+ {si:s; € S (Fx) Afn(s) = ming cgr (g, {fn(s’)}}

38: M — MU {(Fg,s)}

39: end for

40: return M

algorithm s;, we obtain the result on whether or not s; treats
the patched code as vulnerable (i.e., treating the vulnerable
piece of code and the corresponding patched piece of code
as similar or not). The code-similarity algorithm result is
recorded as a class label fi m+: (Lines 2-7). We partition
horizontally F' = {Fy}r into F® and F® so that FV
will be used to learn a classifier and F® will be further
used to select code-similarity algorithms. For each s;, we
use the projection of F® on the diff hunk features and the
label of s;, namely F<1)(i) = {(fr1,---y fo,m, fl,m+i) e tO
learn a classifier. For a learned classifier with respect to
code-similarity algorithm s;, its accuracy, denoted by a;, is
defined as a; = v/u, where u is the total number of test-
ing samples and v is the number of testing samples that are

correctly classified by the classifier. For a given threshold
7, if a; > 7, namely that the classifier is accurate enough,
then s; is added to the set S’ of code-similarity algorithms
that will be considered further (Lines 9-15). For a candidate
code-similarity algorithm s; € S’, if the classifier treats the
patched piece of code corresponding to Fj € F® as invul-
nerable, then s; will be considered further. Otherwise, s;
is eliminated because it cannot detect the vulnerability cor-
rectly or it is unsuitable for Fj (e.g., a classifier using the
code-fragment level of patch-without-context cannot be ap-
plied to a diff hunk involving no line deletion). This screen-
ing of candidate code-similarity algorithms corresponds to
Lines 16-23.

Second, we identify the most suitable code-fragment level
for a diff hunk Fj. This corresponds to Lines 24-31 in Algo-
rithm 1. For this purpose, we introduce the concept of core
code fragment, which is the piece of code that is directly
related to the vulnerability in question. For example, con-
sider strepy(dest, src), which is used to copy a string from
one address to another. If the boundaries of src and dest are
not checked, one can encounter a buffer overflow. In this ex-
ample, the core code fragment only contains the statement
strepy(dest, src) and the preceding statements that involve
the operation of the arguments dest and src.

In order to search for the most suitable code-fragment
level, we represent an unpatched piece of code via all of
the code-fragment levels mentioned above, namely patch-
without-context, slice, patch-with-context, function, and file/
component with increasingly coarse granularity. Among these
code-fragment levels, we observe that the slice code-fragment
level can be naturally used to represent the core code frag-
ment of a vulnerability. It would be ideal to ask a human
expert to localize the precise position of a vulnerability seg-
ment, but this approach is too costly. As an alternative, we
automatically treat the lines that are deleted by the patch
as the location of the vulnerability; this approximation is
also used by [24]. Having approximated the location of a
vulnerability, we treat a slice as an approximation of a core
code fragment.

Since an unpatched code fragment at a finer code-fragment
level is contained in an unpatched code fragment at a coarser
code-fragment level, we use the difference between the num-
bers of lines of code at two different code-fragment levels to
indicate the difference between the two representations of
the same vulnerable piece of code at the two different code-
fragment levels. This leads to the degree of approrimation
metric, or doa for short, which measures the degree of ap-
proximation between the core code fragment cc correspond-
ing to the representation of an unpatched piece of code at
the slice code-fragment level and the unpatched code frag-
ment cf corresponding to the representation of the same
unpatched piece of code at one of the five code-fragment
levels mentioned above. In principle, we have

doa(cc, cf) = Woy = Lecl (1)
éCC

where /.. and f.; denote the number of lines of core code
fragment cc and code fragment cf, respectively. The closer
the doa(ce,cf) is to 0, then the smaller the difference is
between cc and cf, and the better the cf is at representing
the vulnerability. Note that as we elaborate below, we can
identify the minimum doa(cc,cf) without computing £cc,
whose actual value cannot be calculated precisely because



of the use of approximate code slice.

Since we use the slice code fragment to represent the core
code fragment, the code-fragment level of the core code is
finer than the code-fragment level of patch-with-context (pc)
but coarser than the fragment level of patch-without-context
(pwc). The code-fragment level of slice sc can be little finer
or coarser than the code-fragment level of the core code be-
cause the lines of code deleted by the patch are considered as
lines of vulnerable code. The code-fragment level of slice sc
is finer than the code-fragment level of patch-with-context
(pc), and coarser than the code-fragment level of patch-
without-context (pwe). Therefore, doa(ce, sc) < doa(cc, pc)
and doa(cc, sc) < doa(ce, pwe). For a diff hunk Fj, if the
slice code fragment can be extracted (i.e., the diff hunk hav-
ing lines of code that are prefixed by the “-” symbol), the
slice code-fragment level has the smallest doa. Otherwise,
the code-fragment level of patch-with-context has the small-
est doa because the representation at the code-fragment
level of patch-without-context cannot be extracted from the
unpatched piece of code corresponding to the diff hunk in
question. The code-fragment level with the smallest doa
is the most suitable because the unpatched piece of code is
represented best at this code-fragment level.

Third, we use the VCID to further evaluate the false-
negative rate of s; that passes the previous rounds of screen-
ing, where s; € S’(F})) at the end of executing line 31 in
Algorithm 1. For each candidate code-similarity algorithm
si, we exclude the code reuse instances from the VCID ac-
cording to the following two conditions. First, a code reuse
instance in the VCID cannot be applied to s;. For example,
for a diff hunk with no “-” prefix symbol, a code-similarity al-
gorithm that uses the code-fragment level of patch-without-
context cannot be used to recognize the code reuse instances
for this diff hunk [18]. This means that the code reuse in-
stance cannot be applied to s; and therefore should be elim-
inated. Second, if two code reuse instances have the same
code-reuse features and are both detected by s; as either
vulnerable or invulnerable at the same time (i.e., s; cannot
tell them apart), one of them is eliminated. After filtering
the code reuse instances that are unsuitable for s;, we use
the suitable code reuse instances in the VCID to evaluate
the false-negative rate of s;. If a code reuse instance of a
vulnerable piece of code in the VCID is not detected as vul-
nerable, a false-negative occurs. The false-negative rate is
defined fn = r/t, where t is the the total number of code
reuse instances that are suitable for s;, and r is the num-
ber of code reuse instances that caused false-negatives. For
a specific Fy, the code-similarity algorithm with the lowest
false-negative rate is selected. This corresponds to Lines
33-39 in Algorithm 1.

3.5 Vulnerability signature generation

The vulnerability signature can be generated in two steps.
First, we extract the patched/unpatched diff code and the
unpatched code fragment corresponding to a vulnerability.
The patched/unpatched diff code can be directly extracted
from the diffs according to the VPD. Specifically, we can ob-
tain the unpatched diff code by extracting the lines prefixed
by a “-” symbol and the lines with no prefix, and the patched
diff code by extracting the lines prefixed by a “+” symbol
and the lines with no prefix. We can extract the unpatched
code fragment from the source code of the vulnerable soft-
ware according to each diff hunk and the code-fragment level
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used by the code-similarity algorithm that has been selected
for the diff hunk.

Second, for each diff hunk, we preprocess and represent
the patched/unpatched diff code and unpatched code frag-
ments obtained at the previous step. The preprocessing
usually involves whitespace, format, and comment process-
ing. Note that it is possible that the code statements given
in the diff hunk may be incomplete (e.g., missing the “}”
at the end of an for structure), the missing part needs
to be extracted from the unpatched piece of code. This
operation is necessary for tree-based or graph-based code-
similarity algorithms. Then, the preprocessed version of the
patched /unpatched diff code and the unpatched code frag-
ment are represented according to the code representation
used by the code-similarity algorithm selected for the diff
hunk in question. The results are the vulnerability signa-
tures which will be used in the vulnerability detection stage.

3.6 Vulnerability detection

For a given diff hunk, the CVE-to-algorithm mapping al-
ready gives information on the code-similarity algorithm as
well as its code-fragment level, code representation, and
comparison method. Given a diff hunk and a target pro-
gram, after the preprocessing of target programs involving
whitespace, format, and comment processing, the target pro-
gram signature can be generated by the code representation
used by the code-similarity algorithm selected for the diff
hunk. The vulnerability detection engine uses the compari-
son method of the code-similarity algorithm selected for the
diff hunk to search for the vulnerability signature from the
target program signatures. If the vulnerability signature is
found, the location of the vulnerability in the target program
is reported.

4. IMPLEMENTATION
4.1 Creating the VPD and VCID

Selecting product vulnerabilities. For the purpose
of the present study, we need to select product vulnerabil-
ities according to the following three constraints. First, a
product should be open source because VulPecker analyzes
source code. Second, a product should be programmed in
C/C++ because most code-similarity algorithms we adopt
or adapt deal with products written in C/C++. Third, a
product should have a series of versions and contain many
publicly disclosed vulnerabilities (e.g. at least 10 vulnera-
bilities) with the corresponding diffs. This constraint eases
the process of selecting diffs according to the regularity of
patches.

The NVD was collected in Dec. 2015, containing 73,510
vulnerabilities for 30,432 products. A screening based on the
constraints mentioned above leads to 19 products: Linux
kernel, Firefox, Thunderbird, Seamonkey, Fixfox esr, Th-
underbird_esr, Wireshark, Ffmpeg, Apache Http Server, Xen,
OpenSSL, Qemu, Libav, Asterisk, Cups, Freetype, Gnutls,
Libvirt, and VLC media player. Table 2 shows how the con-
straints screen the 30,432 products into 19, from which we
build a VPD of 1,761 vulnerabilities with 3,454 diff hunks
and a VCID of 455 code reuse instances. This means that
many diff hunks do not have code reuse instances. The cre-
ation of the VPD and VCID is elaborated below.

Creating the VPD. For each select product, we search
for CVE-IDs. For each CVE-ID, an important step is to



Table 2: Screening of vulnerable products

Step Filter condition #Products # Vulnerabilities

1 NVD (Dec. 2015) 30,432 73,510

2 # Vulnerabilities > 10 1,046 40,604

3 C/C++ Open source w/ ver- 62 7,168
sioning

4 Diff availability 19 1,761

identify the correct patch link from many reference links
given in the NVD. The vulnerabilities of a product that
has its patch submission and release platform (e.g., a defect
tracking system or version control system) are often well
documented in the NVD. For these products, we create a
crawler to automatically identify the patch link correspond-
ing to a CVE-ID. However, we find that multiple patch links
may correspond to a single vulnerability, in which case we
need to determine whether or not the diff from a patch link
is specifically for the CVE-ID in question. To resolve this
issue, we use the following two heuristics. First, a diff is
incorporated if the names of the vulnerable files and func-
tions from the text summary corresponding to the CVE-ID
in question are the same as the names of the patched files
and functions. This is because the vulnerable file and func-
tion are exactly the ones that should be patched in most
cases. Second, a diff is incorporated if the corresponding
webpage of the patch link mentions the CVE-ID in a place
such as the title or commit message.

In order to check the accuracy of the heuristics we use,
we take 10% of the select diffs as a random sample and
manually examine them. We find that every instance in
the sample is correct. However, the preceding heuristics
may miss some mappings from the CVE-IDs to the diffs. In
order to obtain more comprehensive mappings, we manually
check the CVE-IDs that do not have diffs according to the
heuristics mentioned above. This manual analysis is tedious,
but we have no alternatives. A manual analysis is often
encountered in a scenario that violates both of the heuristics
mentioned above.

Creating the VCID. For the vulnerabilities incorpo-
rated into the VPD, we collect their code reuse instances
at the function level from the different releases of the same
product or from different product. Note that the vulnerable
product releases listed in the text summary of CVE-ID are
usually described as a scope. However, it can happen that
some releases within the scope are actually patched already.
For example, CVE-2011-1170 states that “Linux kernels be-
fore 2.6.39” are vulnerable, but Linux kernel 2.6.38.3 is al-
ready patched. We use the following heuristics to exclude
the releases that have been patched. Let a and [ respec-
tively be the number of lines of the unpatched code and the
number of lines of the patched code according to the diff
hunk in question, and v be the number of matched lines of
code in a product release. If v/a > v/8 > 0.8, where 0.8 is
the given threshold of code similarity, a function is treated
as a code reuse instance.

After obtaining the code reuse instances, we add the code-
reuse features to the VCID. Since code reuse instances in the
VCID focus on code reuses within functions, the code-reuse
features are Type 2-Type 5 described in Table 1. We use the
gumtree algorithm [11] to obtain the sequence of edit actions
from an unpatched piece of code to its corresponding piece
of code in the code reuse instance. We derive code-reuse
features from the sequence of edit actions.

207

4.2 Code-similarity algorithm selection

We now discuss the instantiations of Algorithm 1 from
two aspects.

Candidate code-similarity algorithms. Table 3 lists
the candidate code-similarity algorithms, some of which are
variants of the algorithms reviewed in Section 2. Here we
highlight the following issues. First, we exclude the algo-
rithms that operate at the file/component fragment level,
because they are usually used for vulnerability prediction
and may not be applicable when vulnerabilities do not ap-
pear in a high frequency. Second, for the code-similarity
algorithms that do not utilize the concept of code-fragment
level, we select the code-fragment level with the smallest
doa. Third, we consider the code representation of the
CP-Miner algorithm [19] with different mappings of vari-
able name and constants for the sake of comprehensiveness.
The CP-Miner algorithm maps variables with different data
types to the same token, and maps all constants to an-
other token (Token-component-1). The following three vari-
ants are also considered: variables of different data types
are always mapped to the same token, and constants are
not mapped (Token-component-2); variables of the same
data type are mapped to the same token, and all constants
are mapped to another token (Token-component-3); vari-
ables of the same data type are mapped to the same to-
ken, and constants are not mapped (Token-component-4).
In Table 3, “Token-component-{1, 2, 3, 4}” respectively in-
dicates the four mappings mentioned above. Fourth, ex-
isting tree-based or graph-based code-similarity algorithms
usually do not deal with the mapping of statement compo-
nents, and therefore cannot cope with code reuses with iden-
tifier renaming. To resolve this issue, we add six hybrid al-
gorithms that incorporate tree/graph-based code-similarity
algorithms and four Token-component mappings mentioned
above. For some graph-based code-similarity algorithms, the
Abstract Syntaz Tree (AST) is also extracted to attain the
token-component mapping.

Using Support Vector Machines (SVM) for classi-
fier learning. SVM is a popular supervised machine learn-
ing method. We use the open-source tool LibSVM [7] for
our purpose. We first convert the vulnerability diff hunk
features into numeric data and normalize each attribute to
the range [0, 1] while treating all attribute values as non-
negative. We take 70% vulnerabilities in each product ac-
cording to the VPD (i.e. F®)) to learn classifiers. The
classifier aims to distinguish the patched piece of code from
the unpatched piece of code with respect to a same diff hunk.
We use the RBF kernel, which maps the feature vectors to
a high-dimensional space for handling the nonlinear relation
between the class labels and the attributes. We perform a
10-fold cross-validation on F™" to pick the best values cor-
responding to the penalty and kernel parameters.

To explain the decision of the classifier, we adopt the
leave-one-out method to discover the important features.
That is to say, each time we choose one of the vulnera-
bility diff hunk features, set the value of the feature across
the entire testing data to be the same, and obtain the ac-
curacy of the classifier when apply to the modified test set.
After repeating this process for each feature, we compare
the resulting accuracies corresponding to the modified test
data with the accuracies corresponding to the original test
set. This allows us to determine which features make bigger
contributions to the classifier.



Table 3: Candidate code-similarity algorithms

No. | Code-fragment level | Code representation Comparison method Application References
T Token-frequency Range-queries of metric tree Vulnerability detection 12
2 Function Token-API node PCA and cosine similarity Vulnerability extrapolation 29
3 API-subtree of vectors Vulnerability extrapolation 30
4 Token-line Vulnerability detection 13, 17]
5 Token-component-1 Containment Bug detection 19]
6 Token-component-{2,3,4} Bug detection ariants of [19]
7 AST-suffix Substring matching Clone detection [16]
B Patehwith contoxt AST-suffixt Token-component-{1,2,3,4} Clone detection Variants of [16]
9 xAST Vulnerability detection [25]
10 xAST+Token-component-{1,2,3,4 . Vulnerability detection Variants of [25
11 xGRUM - - Manhattan distance of vectors Vulnerabilitz detection [25] -
132 *GRUM ¥ Token-component-{1,2,3,47} Vulnerability detection Variants of [25]
3 GPLAG - - Clone detection 20]
11 GPLAG T AST+Token-component-{1,2,3,4} 7-isomorphic Clone detection Variants of [20]
15 . PDG Bug detection 18
16 Patch-without-context PDG+AST+Token-component-{1,2,3,4} Suberaph-is hic Bui detection [\/ar]iants of [18]
17 Stice PDG-slicing ubgraph-isomorphie Clone detection [15]
s PDG-slicingt AST+ Token-component-{1,2,3,4] Clone detection Variants of [15]
oy . .
4.3 Vulnerability signature generation

In this subsection, we use CVE-2015-0834, which is a
vulnerability in Mozilla Firefox prior to version 36.0, as
an example to illustrate the implementation details of vul-
nerability signature generation. Figure 3 shows one diff
hunk of CVE-2015-0834 obtained from the VPD. After run-
ning Algorithm 1, code-similarity algorithm No.9 is selected.
Correspondingly, the code-fragment level, code representa-
tion, and comparison method are respectively the patch-
with-context, tAST, and vector comparison using Manhattan
distance.

The vulnerability signature corresponding to the diff hunk
described in Figure 3 is generated as follows. First, we ex-
tract the patched/unpatched diff code based on the prefix
symbols “-” and “4” in the diff. Then, we collect the un-
patched functions from the diff and source code of the vul-
nerable product versions as follows. We obtain the vulnera-
ble product versions from the text summary of CVE-2015-
0834 in the NVD (i.e., the versions prior to version 36.0), and
use a Web crawler to download the source code of these ver-
sions. From the latest vulnerable product version to the old-
est, we search for the first product version that contains ex-
actly the lines of code prefixed by the symbol “-” and the lines
of code with no prefix in the diff. We extract the unpatched
code fragments at the code-fragment level of patch-with-
context. Then we process the patched/unpatched diff code
and the unpatched code fragments involving the whites-
pace, format, commenting processing, and the completion
of the structures and statements of code fragments. Finally,
we represent the patched/unpatched diff code and the un-
patched code fragments by using xASTs, which are gener-
ated from the ASTs produced by the open source tool known
as Joern [28].

@@ -485,16 +485,19 @@ PeerConnectionlmpl::ConvertRTCConfigurat

if (!(isStun || isStuns || isTurn || isTurns)) {
return NS_ERROR_FAILURE;

if (isTurns || isStuns) {
continue; // TODO: Support TURNS and STUNS (Bug 1056934)

}
nsAutoCString spec;

1:
2:
3:
4: +
5+
6: +
7.
8:  rv=ur->GetSpec(spec);

Figure 3: A diff hunk corresponding to CVE-2015-
0834

4.4 Vulnerability detection
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We use Thunderbird 24.8.0 as an example of target pro-
gram to illustrate the vulnerability detection process with
respect to CVE-2015-0834, including its diff hunk described
in Figure 3. The target program signatures are generated as
follows. From the CVE-to-algorithm mapping, we obtain the
select code representation xAST for the diff hunk of CVE-
2015-0834 described in Figure 3. After the preprocessing
of target programs involving whitespace, format, and com-
ment processing, we generate the signatures of Thunderbird
24.8.0 in terms of representation xAST. Then, we use the
detection engine to detect whether Thunderbird 24.8.0 con-
tains the vulnerability. Since the select comparison method
is the vector comparison using the Manhattan distance, we
convert the vulnerability signature and target program sig-
natures into vectors. Moreover, a target program is deemed
vulnerable if it contains at least a signature that is closer
to the vulnerability signature than the patched code signa-
ture. The target program satisfying these two requirements,
namely passing the code-similarity detection and contain-
ing a signature that is closer to the vulnerability signature,
are considered vulnerable. In the case the target program is
found to be vulnerable, the locations of the vulnerable piece
of code in the target program are determined.

S. EXPERIMENTAL RESULTS

The effectiveness of code-similarity algorithms can be eval-
uated via standard metrics, such as precision, recall, and
F-measure metrics [27]. Let TP be the number of true vul-
nerabilities detected (true-positives), FP be the number of
false vulnerabilities detected (false-positives), and FN be the
number of true vulnerabilities undetected (false-negatives).
The metric precision = TP/(TP + FP) reflects the correct-
ness among the detected positives. The metric recall =
TP/(TP + FN) reflects the completeness of the detected pos-
itives. The overall detection effectiveness can be reflected by
F-measure = 2 - precision - recall /(precision + recall).

5.1 Learning the CVE-to-algorithm mapping
and vulnerability signatures

Distribution of patch features and code-reuse fea-
tures. Figure 4(a) depicts the distribution of the patch fea-
tures of diff hunks described in the VPD. We observe that
many diff hunks have patch feature Types 2-1, 4-1, 4-2, 5-1,
5-2, and 5-3, while few diff hunks have patch feature Types
3-8, 3-9, 3-10, 4-5, and 4-6. Moreover, nearly 25% of the
diff hunks have a single type of patch features, with Types



5-1, 4-2, and 5-2 being the top three types. For diff hunks
with a single type of patch features, the particular type is
probably the main factor in determining the classifier for se-
lecting a particular code-similarity algorithm. For diff hunks
with multiple types of patch features, one or multiple types
may have contributed to the determination of the classifier
for selecting a particular code-similarity algorithm. Deeper
characterization on the roles played by the types of patch
features is left to future investigation.

Figure 4(b) depicts the distribution of the code-reuse fea-
tures obtained from the VCID. We observe that the distri-
bution is similar to what is shown in Figure 4(a), with two
exceptions. One exception is that the number of code reuse
instances corresponding to code-reuse feature Types 4-1 and
5-3 is respectively smaller than its counterpart with respect
to the diff hunks. The other exception is that the number
of code reuse instances with a single type of code-reuse fea-
tures is greater than the number of diff hunks with a single
type of patch features. Since many vulnerability diff hunks
in the VPD do not have code reuse instances in the VCID,
we evaluate the precision and recall of code-similarity algo-
rithms using VPD and VCID separately.
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Figure 4: Distribution of patch features and code-
reuse features according to the VPD and VCID, re-
spectively

Comparison among code-similarity algorithms. We
took 70% of the vulnerabilities in each product according to
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the VPD to learn classifiers and the rest as the testing data
for selecting code-similarity algorithms. When we set the
accuracy threshold of classification model 7 to 0.85 or 0.9,
we found that the code-similarity algorithms achieving an
accuracy lower than 7 were algorithm No.13 as well as its
variants and algorithm No.15 as well as its variants. When
we set 7 to 0.95, nearly half of the algorithms were selected.
In order to select more algorithms with a high accuracy,
we set 7 to 0.9 in the following experiments. The accuracy
of select SVM classifiers, as described in Algorithm 1, for
existing code-similarity algorithms and their variants was
94.6% on average.

As described in Algorithm 1, if the code-similarity algo-
rithm treats a patched piece of code obtained from the VPD
as vulnerable, a false-positive occurs. If a code reuse in-
stance obtained from the VCID is not detected as vulnera-
ble, a false-negative occurs. Also as described in Algorithm
1, the VPD is used for evaluating false-positives, while the
VCID is used for evaluating false-negatives. Therefore, for
each code-similarity algorithm, we computed the precision
based on the VPD, the recall based on the VCID, and the
F-measure based on both the precision and the recall.

Since code-similarity algorithms typically use a similarity
threshold, we need to know how to determine its value. Fig-
ure 5 shows the F-measure of code-similarity algorithm No.9
and its variants with respect to various similarity thresh-
olds. We observe that 0.6 is a better choice than the default
threshold of 0.8 recommended by code-similarity algorithm
No.9 [25]. For algorithm No.9 with threshold 0.6, its vari-
ants do not achieve a higher F-measure. Indeed, thresh-
old 0.6 leads to the highest F-measure for the four variants
of algorithm No.9, namely algorithms No.10-{1, 2, 3, 4}.
Therefore, we set the threshold for algorithm No.9 and its
variants to 0.6. For other algorithms, we found that their
thresholds leading to the highest F-measure respectively co-
incided with their default threshold values. For example, for
code-similarity algorithm No.11 and its variants, threshold
0.8 led to the highest F-measure, which coincided with the
default threshold value of algorithm No.11.
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Figure 5: F-measures of code-similarity algorithm
No.9 and its variants (No.10-{1,2,3,4})

Figure 6 shows the precision, recall, and F-measure of
code-similarity algorithms with respect to the testing data.
For the candidate code-similarity algorithms, we computed
their precision and recall according to the testing data in the
VPD and the code reuse instances in the VCID. The data
unsuitable for a code-similarity algorithm were also included



when computing the precision and recall because the algo-
rithms dealt with all vulnerabilities. Figure 6(a) shows that
the F-measure of the algorithms adopted from the literature
is 0.24 on average and the best algorithm is code-similarity
algorithm No.17 with a F-measure of 0.58. For the vari-
ants of code-similarity algorithms that we propose in the
present paper, we consider three examples: code-similarity
algorithms No.5, No.9, and No.17. As shown in Figure 6(b),
algorithm No.9 and its variants (with threshold 0.6) lead
to similar F-measures, and the variants of algorithm No.5
and the variants of algorithm No.17 exhibit a similar pat-
tern in terms of their F-measures. This means that some
token mappings can improve the F-measure, because the re-
call measure plays a more important role than the precise
measure. Among all of the variants of algorithms No.5, No.9,
and No.17, algorithm No.18-2 leads to the highest F-measure
0.66.

For VulPecker, the precision depends on the accuracy of
the SVM classifier, and the recall is the average recall of
the select algorithm for each diff hunk. The recall of the
select code-similarity algorithm was calculated based on the
code reuse instances in the VCID, except the instances that
were ruled out by the code-similarity algorithm as described
in Algorithm 1. Figure 6 shows that VulPecker has a F-
measure that is 18% higher than the best existing code-
similarity algorithm (algorithm No.17) and 10% higher than
the best variant of the adopted code-similarity algorithms
(algorithm No.18-2). VulPecker tends to select the code-
similarity algorithm with a high F-measure, while no single
code-similarity algorithm is suitable for all vulnerabilities.

Explanation of the code-similarity algorithm selec-
tion results. We now explain the code-similarity algorithm
selection results of Algorithm 1. For step 1 of Algorithm 1,
VulPecker used learned SVM classifiers to select a set of
code-similarity algorithms that could distinguish unpatched
pieces of code from the patched ones. The result showed
that no single basic feature made a significant contribution
to the classifiers.

For diff hunks with a single type of patch feature, the sin-
gle type probably determined the code-similarity algorithm
that could distinguish between patched and unpatched pieces
of code. For diff hunks with patch feature Type 5-1 involving
only line addition, the set of code-similarity algorithms that
could distinguish unpatched piece of code from the patched
one consistently excluded the algorithms that used the code-
fragment level of patch-without-context or slice, such as al-
gorithms No.15-No.18. This was reasonable because these
algorithms were based on the deleted lines according to the
diff hunks. For diff hunks with patch feature Type 6-1 in-
volving whole function addition, the algorithms depending
on the AST or PDG (algorithm No.7-No.18) were all ex-
cluded because there were no unpatched functions. For diff
hunks with patch feature Types 3-5, 3-6, and 3-7 involving
only function argument addition, deletion, or modification,
the algorithms depending on the PDG (algorithm No.13-
No.18) were all excluded because they neglected the func-
tion arguments and generated false-positives. For diff hunks
with patch feature Type 6-3 involving only modification be-
yond the function, the algorithms depending on the AST or
PDG (algorithm No.7-No.18) were excluded because there
were no functions for the AST or PDG.

After running step 2 and step 3 in Algorithm 1, we ob-
tained the select code-similarity algorithms of VulPecker.
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(b) Variant of existing code-similarity algorithms

Figure 6: Comparing existing code-similarity al-
gorithms and their variants against VulPecker via
three metrics: precision, recall and F-measure

Among them, code-similarity algorithm No.5 and its vari-
ants, algorithm No.9, algorithm No.17 and its variants were
selected by most vulnerabilities. Vulnerabilities with diffs
that involved function addition or modifications going be-
yond the function were more likely to choose algorithm No.5
or its variants. Vulnerabilities with diffs that only involved
line addition in the function were more likely to choose
algorithm No.9. Vulnerabilities with diffs that contained
more than line addition were more likely to choose algo-
rithm No.17 or its variants. Whether to select their vari-
ants, and if so selecting which variant, largely depended on
the F-measure.

5.2 Detecting vulnerabilities in products

Now we report the results of using the learned vulnera-
bility signatures and CVE-to-algorithm mapping to detect
vulnerabilities in products. We selected 246 vulnerabilities
that were published between 2013 and 2015 for three prod-
ucts, namely Firefox, Ffmpeg, and Qemu. The task is to
determine whether a target product contains one or more
of these vulnerabilities. The 40 vulnerabilities that are de-
tected by VulPecker and are not published in the NVD are



listed in Appendix Table A.1. Among these vulnerabilities,
18 are not known for their existence and have yet to be
confirmed by the respective vendors at the time of writing.
For the 18 unpatched vulnerabilities, we anonymize their
CVE-ID, vulnerability publish time, and vulnerability loca-
tion for ethical reasons. The other 22 vulnerabilities have
been “silently” patched by product vendors after 7.3 months
on average since the vulnerabilities were published. We man-
ually checked and confirmed these 22 vulnerabilities.

We used a virtual machine with Intel Core 2.5GHz pro-
cessor and 3GB of RAM running CentOS 6.0-64bit for the
experiments. For the select code-similarity algorithms listed
in Table A.1, we take the code-similarity algorithms using
the subgraph-isomorphic comparison method as examples to
show the time overhead incurred by the vulnerability detec-
tion procedure, because these algorithms are usually consid-
ered more time-consuming than the others. In our evalua-
tion, we adopted several optimizations to reduce their time
overhead, such as the exclusion of a large number of irrele-
vant edges and nodes, and breaking a big graph into small
ones [18]. Take the target project Libav 10.1 (29.6MB) as
an example, our goal is to detect whether it contains vul-
nerabilities CVE-2014-8547 (via algorithm No.18-1), CVE-
2013-7011 (via algorithm No.18-1), CVE-2013-3674 (via al-
gorithm No.17), and CVE-2013-0851 (via algorithm No.18-
2). The detection time corresponding to these four vul-
nerabilities was respectively 508.11s, 128.14s, 81.77s, and
141.44s. It is clear that the detection time depends on the
size of target project, the selection of the code-similarity
algorithm, and the complexity of graphs for slice code frag-
ment.

In what follows, we elaborate two vulnerabilities that have
been silently patched.

CVE-2015-0834. Mozilla Firefox prior to version 36.0
contains an information leak/disclosure vulnerability in the
WebRTC subsystem, which “makes it easier for man-in-the-
middle attackers to discover credentials by spoofing a server
and completing a brute-force attack within a short time win-
dow” [1]. This vulnerability is originally reported for Mozilla
Firefox. However, our study shows that this vulnerability
also exists in Thunderbird 24.8.0 and the other versions prior
to Thunderbird 38.0.1. Figure 3 shows the diff hunk of CVE-
2015-0834. VulPecker selects code-similarity algorithm No.9
for this diff hunk, owing to the fact that the diff hunk only
involves line addition in the function.

CVE-2014-2894. Qemu prior to version 2.0 has a nu-
meric errors vulnerability, which “allows local users to have
unspecified impact via a SMART EXECUTE OFFLINE com-
mand that triggers a buffer underflow and memory corrup-
tion” [1]. However, this vulnerability is reported only for
Qemu. Our study shows that the very vulnerability also ex-
ists in Xen 4.4.0 and the other versions prior to Xen 4.4.3.
VulPecker selects code-similarity algorithm No.18-2 for de-
tecting this vulnerability (only one diff hunk), owing to the
fact that the diff hunk only involves constant modification
in the function.

6. LIMITATIONS

The present study has several limitations. First, our ex-
periments focus on C/C++ open source products. While the
methodology underlying VulPecker is language agnostic, ex-
periments need to be conducted to analyze target programs
written in other languages, such as Java and Python.
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Second, the VPD and VCID databases need to be im-
proved. For creating the VPD, we use heuristics to auto-
matically find the diffs for given CVE-IDs. Our manual
examination on a random sample of 10% of the vulnerabili-
ties shows that the heuristics lead to accurate results, which
however does not necessarily mean the heuristics are always
accurate. It is important to test a bigger sample to assure
their accuracy. For creating the VCID, the approach we use
to obtain code reuse instances may be unnecessarily restric-
tive. More experiments need to be conducted to accept or
reject this hypothesis.

Third, the ultimate goal of our research is the following:
Given a vulnerability, how can one determine whether or
not the vulnerability exists in any program of the entire
software stack of a computer (assuming source code is avail-
able)? This raises the scalability issue which needs to be
investigated.

Fourth, the methodology appears to be specific to the de-
tection of vulnerabilities at the source code level. It is an
important research problem to detect, automatically and ef-
fectively, whether a piece of binary code has a given vulner-
ability or not.

7. CONCLUSION

We have presented VulPecker, a system for automatically
detecting whether a program contains a given vulnerability
or not. VulPecker leverages features that we define to char-
acterize vulnerabilities and patches. Experimental results
show that VulPecker detects 40 vulnerabilities that are not
published in the NVD. Among these vulnerabilities, 18 are
not known for their existence and have yet to be confirmed
by vendors at the time of writing, while the other 22 vul-
nerabilities have been “silently” patched by vendors when
releasing a later version.

For future research, it is interesting to address the limita-
tions mentioned above. It is also interesting to test whether
VulPecker can detect the vulnerabilities that are intention-
ally inserted by systems like LAVA [10].
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APPENDIX

Table A.1 summarizes the 40 vulnerabilities that are de-
tected by VulPecker and are not published in the NVD,
where the vulnerability publish time is the time the vul-
nerability was first published and found in another product,
and the code-similarity algorithm is a sample of select code-
similarity algorithms when a vulnerability diff has multiple
diff hunks.



Table A.1: The 40 vulnerabilities detected by VulPecker in three target products, including 22 vulnerabilities
that have been “silently” patched. For the 18 vulnerabilities that have not been patched, we anonymize their
CVE-ID, vulnerability publish time, and locations in the target products.

Target CVE-ID Vulnerability Vulnerability location in tar- Code-similarity al- 1st patched version Date of 1st

product publish time get product gorithm (example) of target product patched version
CVE-2015-0834 2015/2/25 ../PeerConnectionImpl.cpp No.9 Thunderbird 38.0.1 2015/6/11

Thunderbird | CVE-2015-**%%* 2015 /%% /** ../src/*FE No.18-1 Unpatched -
CVE-2014-8643 2015/1/14 ../nsEmbedFunctions.cpp No.18-1 Thunderbird 38.3.0 2015/9/29

24.8.0 CVE-2014-1498 2014/3/19 ../src/nsCrypto.cpp No.18-1 Thunderbird 31.0 2014/7/22
CVE-2013-6167 | 2014/2/15 .. /nsCookieService.cpp No.9 Thunderbird 38.4.0 2015/11/24
CVE-2014-9604 | 2015/1/16 . /libavcodec/utvideodec.c No.9 Libav 10.6 2015/3/11
CVE-2014-**** 2014 /** /** ../libavcodec/*** No.9 Unpatched -
CVE-2014-8547 2014/11/5 ../libavcodec/gifdec.c No.18-1 Libav 10.6 2015/3/11
CVE-2014-%%%% | 2014/%% /%% ~/libavcodec/*** No.18-1 Unpatched B
CVE-2014-%%%% | 2014/%% /%% ~/libavcodec/*** No.18-1 Unpatched B
CVE-2014-8541 | 2014/11/5 ~/libavcodec/mjpegdec.c No.18-1 Libav 10.6 2015/3/11
CVE-2014-**** 2015 /%% /** ../libavcodec/*** No.18-3 Unpatched -
CVE-2014-2098 2014/3/1 ../libavcodec/wmalosslessdec.c No.5 Libav 10.4 2014/8/18
CVE-2013-**** 2013 /%% /** .../libavcodec/*** No.18-3 Unpatched -
CVE-2013-*%%% | 2013/%*/** . /libavcodec,/*** No.18-1 Unpatched B
CVE-2013-**** 2013 /%% /** ../libavfilter /*** No.18-1 Unpatched -
CVE_2013 %%%% | 2013/%%/** ~/libavcodec/*** No.9 Unpatched B

Libav 10.1 CVE-2013-%%%% | 2013/%%/** ~/libavcodec/*** No.18-1 Unpatched B
CVE-2013-%%%% | 2013/%% /%% ~/libavcodec/*** No.18-3 Unpatched B
CVE-2013-**%** 2013 /%% /** .../libavcodec/*** No.9 Unpatched -
CVE-2013-7011 | 2013/12/9 ~/libavcodec/ffvidec.c No.18-1 Libav 10.4 2014/8/18
CVE-2013-**** 2013 /%% /** .../libavcodec/*** No.9 Unpatched -
CVE-2013-7008 | 2013/12/9 ~/libavcodec/h264.c No.18-1 Libav 11.1 2014/12/2
CVE-2013-*%%% | 2013/%*/** ~/libavcodec,/*** No.18-3 Unpatched B
CVE-2013-3674 2013/6/9 ../libavcodec/cdgraphics.c No.17 Libav 10.4 2014/8/18
CVE-2013_%%%% | 2013/%%/** ~/libavcodec/*** No.18-1 Unpatched B
CVE-2013-%%%% | 2013/%% %% ~/libavcodec/*** No.9 Unpatched B
CVE-2013-%%%% | 2013/%%/** ~/libavcodec/*** No.18-1 Unpatched B
CVE-2013-0851 | 2013/12/7 ~/libavcodec/eamad.c No.18-2 Libav 10.3 2014/8/4
CVE-2013-**** 2013 /%% /** ../libavcodec/*** No.18-1 Unpatched -
CVE-2014-2894 | 2014/4/23 .../ide/core.c No.18-2 Xen 4.4.3 2015/8/25
CVE-2014-5263 | 2014/8/26 ~/usb/hcd-xhci.c No.5 Xen 4.4.3 2015/8/25
CVE-2013-6399 | 2014/11/4 ~/virtio/virtio.c No.9 Xen 4.4.3 2015/8/25
CVE-2013-4534 | 2014/11/4 ~/intc/openpic.c No.18-1 Xen 4.5.0 2015/1/14

Xen 4.4.0 CVE-2013-4533 | 2014/11/4 ./arm/pxa2xx.c No.18-1 Xen 4.5.0 2015/1/14
CVE-2013-4530 2014/11/4 .../ssi/pl022.c No.5 Xen 4.5.0 2015/1/14
CVE-2013-4527 | 2014/11/4 ~/timer /hpet.c No.5 Xen 4.5.0 2015/1/14
CVE-2013-4151 | 2014/11/4 . /virtio/virtio.c No.18-1 Xeon 4.4.3 2015/8/25
CVE-2013-4150 | 2014/11/4 . /net/virtio-net.c No.9 Xen 4.4.3 2015/8/25
CVE-2013-4149 2014/11/4 ../net/virtio-net.c No.18-1 Xen 4.4.3 2015/8/25

213




