
contributed articles

74 communications of the acm | february 2014 | vol. 57 | no. 2

Attackers commonly exploit buggy programs to
break into computers. Security-critical bugs pave the
way for attackers to install trojans, propagate worms,
and use victim computers to send spam and launch
denial-of-service attacks. A direct way, therefore,
to make computers more secure is to find security-
critical bugs before they are exploited by attackers.

Unfortunately, bugs are plentiful. For example, the
Ubuntu Linux bug-management database listed more
than 103,000 open bugs as of January 2013. Specific
widely used programs (such as the Firefox Web browser
and the Linux 3.x kernel) list 7,597 and 1,293 open
bugs in their public bug trackers, respectively.a Other
projects, including those that are closed-source, likely
involve similar statistics. These are just the bugs we
know; there is always the persistent threat of zero-day
exploits, or attacks against previously unknown bugs.

Among the thousands of known bugs, which should
software developers fix first? Which are exploitable?

a	 All bug counts exclude bugs tagged as “wishlist,” “unknown,” “undecided,” or “trivial.”

How would you go about finding the un-
known exploitable ones that still lurk?

Given a program, the automatic ex-
ploit generation (AEG) research chal-
lenge is to both automatically find
bugs and generate working exploits.
The generated exploits unambigu-
ously demonstrate a bug is security-
critical. Successful AEG solutions pro-
vide concrete, actionable information
to help developers decide which bugs
to fix first.

Our research team and others cast
AEG as a program-verification task
but with a twist (see the sidebar “His-
tory of AEG”). Traditional verification
takes a program and a specification of
safety as inputs and verifies the pro-
gram satisfies the safety specification.
The twist is we replace typical safety
properties with an “exploitability”
property, and the “verification” pro-
cess becomes one of finding a pro-
gram path where the exploitability
property holds. Casting AEG in a veri-
fication framework ensures AEG tech-
niques are based on a firm theoretic
foundation. The verification-based
approach guarantees sound analysis,
and automatically generating an ex-
ploit provides proof that the reported
bug is security-critical.

Verification involves many well-
known scalability challenges, several
of which are exacerbated in AEG. Each
new branch potentially doubles the
number of possible program paths,
possibly leading to an explosion of
paths to check for exploitability. Tra-
ditional verification takes advantage
of source code, models, and other ab-
stractions to help tackle the state ex-
plosion and scale. Unfortunately, ab-

Automatic
Exploit
Generation

doi:10.1145/2560217.2560219

The idea is to identify security-critical
software bugs so they can be fixed first.

By Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley

 key insights

 � �This research formalizes the notion of an
exploit, allowing for automated reasoning
about exploitation.

 � �The technology can be used to identify
and prioritize security-critical bugs.

 � �Improvements for verifying programs
safe may also lead to improvements for
automatically generating exploits. IIm

a
g

e
 c

o
ll

a

g
e

 b
y

 Iw

o
n

a
 U

s
a

k
i

e
w

i
cz

/A

n
d

r
i

j
 B

o
r

y
s

 Ass

o

c
i

a
t

e
s

february 2014 | vol. 57 | no. 2 | communications of the acm 75

contributed articles

76 communications of the acm | february 2014 | vol. 57 | no. 2

Exploiting Programs
Suppose a developer is interested in
finding and fixing exploitable bugs in
the /usr/bin directory of the latest
Debian operating system. For instance,
in June 2012 we downloaded the then-
current Debian 6.0.5, with (in our in-
stallation) 1,168 executables in /usr/
bin to analyze for exploitable bugs.

A typical approach to finding ex-
ploitable bugs is to first find them
and then determine which ones are
exploitable. One popular way to find
bugs is to perform “black-box fuzz-
ing.” Fuzzing is a program-testing
technique that runs a program on
inputs from a fixed alphabet, often
either modifying at random a known
input or trying extreme values (such
as 0 and the native maximum inte-
ger), and the “black-box” refers to the
program itself, which is not analyzed
at all. The fuzzer chooses the inputs
and observes the program, looking
for hangs, crashes, buggy outputs, or
other indications of a bug.

We fuzzed each program using the
following script:

for letter in {a..z} {A..Z}; do
 �timeout -s 9 1s <program>
-$letter <path>

done

The script tries all single-letter com-

stractions often leak by not perfectly
encapsulating all security-relevant
details, and the leaky points tend to
affect the quality of security analysis.
For example, writing 12B to an array
declared to be 11B long is wrong in C
but is also unlikely to be exploitable
because most compilers would pad
the array with extra bytes to word-
align memory operations.

In order to provide high fidelity,
most AEG work analyzes raw execut-
able code. Executable code analysis is
needed because many exploits rely on
low-level details that are abstract in
source code (such as CPU semantics
and memory layout). Executable code
analysis is also attractive because it
is widely applicable; users typically
have access to the executable code of
the programs they run (as opposed to
source code) and thus can audit the
code for security-critical bugs.

Throughout this article, we focus
on AEG as a defensive tool for priori-
tizing exploitable bugs. However, we
are also cognizant of the obvious of-
fensive computing implications and
applications as well. Governments
worldwide are developing computer-
warfare capabilities, and exploits
have become a new type of ammuni-
tion. At present, exploit generation in
practice is mostly a manual process.
Therefore, techniques that help re-

duce the time and effort for exploit
generation can potentially affect a na-
tion’s operational capabilities. AEG
research is in its infancy and not yet
at the point of automatically churn-
ing out weapons-grade exploits for
an arbitrary program. Most reported
research results generate exploits
against bugs up to a few thousand
lines deep in execution and for rela-
tively straightforward bugs, while typ-
ical offensive needs include exploits
for complicated bugs and large pro-
grams like Internet Explorer and Ado-
be Reader. Nonetheless, current AEG
results show promise, and a conserva-
tive defensive security position must
consider the possibility of real-world
offensive AEG capabilities.

This article describes our AEG re-
search at Carnegie Mellon University,
its successes, as well as its current
limitations. We focus primarily on
control-flow hijack exploits that give
an attacker the ability to run arbitrary
code. Control-flow hijacks are a seri-
ous threat to defenders and coveted
by attackers.3,35 Although most current
research focuses on control-flow hi-
jacks due to their immediate danger,
AEG is not limited to only this class
of attacks. Exploitable bugs are found
in programs in all languages, and the
verification-based approach to AEG
still applies.

Our running example of a buffer overflow in acpi-listen.

 1. int main(int argc, char **argv) {
 2. char *name; int i;
 3. for (;;) {
 4. i = getopt(argc, argv, "c:s:t:vh");
 5. if (i == -1) break;
 6. switch (i) {
 7. case 'c': ...; break;
 8. case 's': name = optarg; break;
 9. ...
10. }
11. }
12. sock_fd = ud_connect(name);
13. ...
14. }
15. int ud_connect(const char *name) {
16. int fd;
17. struct sockaddr_un {
18. sa_family_t sun_family;
19. char sun_path[108];
20. } addr;
21. ...
22. sprintf(addr.sun_path, "%s", name);
23. ...
24. return fd;
25. }

00000000 31 c9 f7 e1 51 68 2f 2f 73 68 68 2f 62 69 6e 89 |1...Qh//shh/bin.|

00000010 e3 b0 0b cd 80 41 41 41 41 41 41 41 41 41 41 41 |.....AAAAAAAAAAA|

00000020 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 |AAAAAAAAAAAAAAAA|

*

00000080 41 41 41 41 41 41 41 41 74 f2 ff bf |AAAAAAAAt...|

…

0xbffff274

0xbffff28f

0xbffff28c
–

0xbf

0xff

0xf2

0x74

After sprintf

…

A (0x41)

A (0x41)

shellcode[20]

…

shellcode[0]
lower
address

higher
address…

28 bytes of

…

sun_path[107]

sun_path[0]

sequential
access

Before sprintf

m
ai
n

ud
_
c
o
n
n
e
c
t

…

ret addr LSB

ret addr MSB

saved values

locals &

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 77

mand-line options from a to Z, fol-
lowed by a valid 6,676B filename. The
timeout command limited total exe-
cution time to one second, after which
the program was killed.

The script took about 13 minutes
to fuzz all programs on our test ma-
chine, yielding 756 total crashes. We
identified 52 distinct bugs in 29 pro-
grams by analyzing the calling con-
text and faulting instruction of each
crash. Which bugs should a developer
fix first? The answer is the exploit-
able ones. For now, we forgo several
important issues relevant in practice
we tackle later (such as whether the
buggy program is a realistic attack tar-
get and whether additional operating
system defenses would protect the
otherwise exploitable program from
attack).

We first describe simple manual
exploit generation to introduce ter-
minology and give a flavor of how
exploits work. We focus on control-
flow hijack exploits, which have
been a staple class of exploits in the
computer-security industry for de-
cades.3,35 Well-known examples of
control-flow hijacks range from ex-
ploits in the Morris worm in 1988 to
the more recent Stuxnet and Flame
worms (though the latter exploits are
much more complicated than those
described here).

The figure here shows a bug discov-
ered in acpi _ listen (now patched
in Debian testing) we use as our run-
ning example. A buffer overflow oc-
curs on line 22. The program reads
in a command-line argument; if it is
-s (line 8), it assigns the subsequent
argument string to the name variable.
On line 22, the sprintf function
copies name into sun _ path, a field
in a local instance of the networking
sockaddr _ un data type, a standard
data structure in Unix for sockets.

The bug is that sun _ path is a
fixed-size buffer of 108B, while the
command-line argument copied
through name into sun _ path can
be any length. The C standard says
the execution behavior is undefined if
more than 108B are written. When ex-
ecuted, something will happen; with
the fuzzing script described earlier,
the program crashed. Unfortunately,
this crashing bug can be exploited.

All control-flow hijack exploits

have two goals: hijack control of the
instruction pointer (IP) and then
run an attacker’s computation. For
acpi _ listen, some of the details
an attacker must understand in-
depth include: the hardware execu-
tion model (such as how instructions
are fetched from memory and ex-
ecuted; how function calls are imple-
mented; how writing outside the allo-
cated space can hijack control of the
IP; and how to redirect the IP to run
the attacker’s code). Since any discus-
sion of creating exploits against vul-
nerable C programs assumes a basic
understanding of these facts, we offer
the following overview.

During runtime, computer hard-
ware implements a fetch-decode-
execute loop to run a program. The
hardware maintains an IP register that
contains the memory address of the
next instruction to be executed. During
the fetch phase, the hardware loads the
data pointed to by the IP register. The
data is then decoded as an instruction
that is subsequently executed. The IP
is then set to the next instruction to be
executed. Control is hijacked by taking
control of the IP, which is then used to
fetch, decode, and execute the attack-
er’s computation.

A straightforward exploit for
acpi _ listen hijacks control by
overwriting data used to implement
function returns. Exploits can also
overwrite other control data (such as
function pointers and the global off-
set table, as in Muller29), but we omit
these details here. Function calls,
returns, and local variables are not
supported directly by hardware. The
compiler implements the semantics
of these abstractions using low-level
assembly instructions and memory.
An attacker must be proficient in many
details of code execution (such as how
arguments are passed and registers
are shared between caller and callee).
For simplicity, we assume a standard
C calling convention known as cdecl.
Functions using it implement a stack
abstraction in memory where func-
tions push space for local variables,
arguments to future calls, and other
data onto the stack immediately after
being called. A function return pops
the allocated space off the stack. Thus,
the stack grows a bit for each call and
shrinks a bit on each return.

The twist is
we replace
typical safety
properties with
an “exploitability”
property, and the
“verification”
process becomes
one of finding
a program
path where the
exploitability
property holds.

contributed articles

78 communications of the acm | february 2014 | vol. 57 | no. 2

being overwritten in a variable up-
date. Control-flow hijacks are an in-
stance of a channeling vulnerability
that arise when the control and data
planes are not rigorously separated.
For this particular example, an out-
of-bound write can clobber the return
address. When sprintf executes, it
copies data sequentially from name
up the stack, starting from the ad-
dress for sun _ path, as shown. The
copy stops only when a zero integer,
or ASCII NULL, is found, which is not
necessarily when sun _ path runs
out of space. A long name will clobber
the saved local variables and eventu-
ally the saved return address. Since an
attacker controls the values in name,
and those values overwrite the return
address, the attacker ultimately con-
trols which instructions are executed
when ud _ connect returns.

Attackers must analyze the program
to figure out exactly how many bytes to
write, what constraints may be on the
bytes, and what would be a good value
with which to overwrite the return ad-
dress. For acpi _ listen, a string of
length 140 will overwrite the return ad-
dress. The first 108B will be copied into
space allocated for sun _ path. The
next 28B on the stack are intended to
hold local variables and saved register
values. The final 4B overwrite the saved
return address.

When ud _ connect returns, the
overwritten return address is popped
off the stack into the IP register. The
machine continues executing the in-
struction starting at the overwritten
address. While this example overwrites
the return address, a variety of other
control data structures can be used to
seize control; examples include func-
tion pointers, heap metadata, and C++
virtual function tables.

Control is typically hijacked to run
an attacker-supplied computation.
The most basic attack is to inject execut-
able code into the vulnerable process.
More advanced techniques (such as
command injection, return-to-libc, and
return-oriented programming) are also
possible29,33 (and in some cases can be
automated as well31), but we omit such
discussion here.

A natural choice for the computa-
tion is to execute the command-line
shell /bin/sh so the attacker is able
to subsequently run any command

When f calls g, f first puts g’s argu-
ments onto the stack, then invokes
g, typically through a call assembly
instruction. The semantics of call
includes pushing f’s return address
onto the stack; that is, the address in f
where execution (normally) continues
once g terminates. Upon entrance,
g creates space for its variables and
other run-time information (such as
saved register values). After g com-
pletes, g returns control to f by shrink-
ing the created stack space for g and
popping off the saved address into the
IP register, typically through a ret in-
struction. A critical detail is that the
popped value, regardless of whether it
was the original value pushed by f or
not, is used as the address of the next
instruction to execute. If an attacker
can overwrite that address, the attack-
er can gain control of execution.

The stack frame just before
sprintf is called on line 22 in the Fig-
ure. The flow of execution for creating
the depicted stack includes six steps:

Return address pushed onto the
stack. When main called ud _ con-
nect, main pushed the address of the
next instruction to be executed (corre-
sponding to line 13) onto the stack;

Control transfer. main transferred
control to ud _ connect;

Local variable space allocated. ud _
connect allocated space for its local
variables. On our computer, 108B were
allocated for sun _ path and an addi-
tional 28B for other data (such as ad-
ditional local variables and saved reg-
ister values);

Function body executed. The body of
ud _ connect ran. When sprintf
is called, a similar flow pushes a new
return address on the stack and new
space onto the stack for sprintf’s lo-
cal variables;

Local variable space deallocated.
When ud _ connect returns, it first
deallocates the local variable space,
then pops off the saved return address
into the IP register; and

Return to caller. Under normal op-
eration, the return address points to
the instruction for line 13, and main
resumes execution.

The crux of a control-flow hijack
is that memory is used to store both
control data (such as return address-
es) and program-variable values, but
the control data is not protected from

Governments
worldwide are
developing
computer-warfare
capabilities, and
exploits have
become a new type
of ammunition.

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 79

Our research vision is to automate it.
AEG uses verification techniques to

transform the process of finding and
deciding exploitability to reasoning
in logic. At a high level, AEG consists
of three steps: It first encodes what it
means to exploit a program as a logi-
cal property; it then checks whether
the exploitability property holds on
a program path; and finally, for each
path the property holds, it produces a
satisfying input that exploits the pro-
gram along the path.

These steps are the cornerstones
of AEG research. First, what exploit-
ability properties do we encode, and
how? In industry, an exploit could
mean control-flow hijack, while an
intelligence agency might also in-
clude information disclosures, and
a safety board could include denial
of service for critical services. Any
single property may have many en-
codings, with some more efficient
for automated tools to check than
others. Second, what techniques and
algorithms should a programmer em-
ploy to check a program? The general
problem of checking programs for
properties is called “software model
checking,”24 encompassing a num-
ber of techniques (such as bounded
model checking, symbolic execution,
and abstract interpretation). Third,
what does it take to implement real
systems, and how do these systems
perform on real software?

The theory of AEG can be de-
scribed with a small number of opera-
tions on a well-defined programming
language that interacts with its envi-
ronment in a few predicable, easy-to-
model ways. However, a real system
must also contend with hundreds of
CPU instructions and the tricky and
complex ways programs interact with
their environments. Sometimes even
pedestrian yet necessary details are
difficult to get right; for example, it
took our team almost a year to stop
finding bugs in our internal seman-
tics for the x86 shift instructions
(such as shl). The developers of Mi-
crosoft’s SAGE tool reported similar
difficulties for the same instructions.4

Current AEG research primar-
ily uses symbolic execution25 to check
program paths for exploitability prop-
erties. At a high level, symbolic execu-
tion represents all possible inputs as

with the privileges of the exploited
process. In fact, executing a shell is so
popular that colloquially any attacker
code is called “shellcode.” A classic
approach is to give executable code as
input to the program and redirect con-
trol flow to the given executable code.
The executable code itself can be cre-
ated by mimicking the assembly for
execve("/bin/sh", args, NULL).
Attackers introduce the shellcode to
the vulnerable program as a normal
string program input that is eventu-
ally decoded and executed as code.

The final step of the attack is to
overwrite the return address with the
address of the shellcode. On our ma-
chine, sun _ path is at memory ad-
dress 0xbffff274. The complete
exploit for acpi _ listen (gener-
ated automatically by our AEG tools) is
shown in the figure, where:

Shellcode. The first bytes of the com-
mand line argument are the shellcode;
the shellcode is 21B, and, in this case,
the first 21B are copied into bytes 0–20
of sun _ path;

Padding. The next 115B of input can
be any non-zero, or non-NULL ASCII,
value; the bytes are copied into bytes
21–107 of sun _ path and the addi-
tional space for other locals; and

Shellcode address. The last 4B of
input are the hex string 0x74 0xf2
0xff 0xbf. They overwrite the return
address. When the return address is
popped, the bytes become the address
0xbffff274 (because x86 is little en-
dian), which is the address of the shell-
code after it is copied to sun _ path.

The figure shows the stack frame
after supplying this string as a com-
mand-line argument following -s.
When ud _ connect returns, the ad-
dress 0xbffff274 is popped into the
IP register, and the hardware fetches,
decodes, and executes the bytes in
sun _ path that, when interpreted as
executable code, runs /bin/sh. When
the shellcode runs, the attacker is able
to run any command with the same
privileges as the exploited program.

Research Vision
Manual exploit generation requires
a developer to reason about an enor-
mous number of details (such as size
of the stack, location of control flow
critical data, like return address, and
precise semantics of each instruction).

a set of symbolic input variables. Sym-
bolic execution then picks a program
path through a predefined path-selec-
tion algorithm. The path is then “ex-
ecuted,” except, instead of executing
on a real, concrete input, a symbolic
input stands in for any possible con-
crete value. Symbolic execution builds
up a path formula in terms of the sym-
bolic inputs based on the instructions
executed. The path formula is satis-
fied, meaning made true, by any con-
crete input that executes the desired
path. If the path formula is unsatisfi-
able, there is no input that executes
the path, and the path is called infea-
sible. The satisfiability check itself is
done through automated solvers (such
as Satisfiability Modulo Theories, or
SMT).15 By construction, free variables
correspond to program inputs, and
any satisfying assignment of values
to free variables (called a model) is an
input that executes the selected path.
SMT solvers enumerate satisfying an-
swers when needed.

In acpi _ listen, the symbolic
inputs are the first two arguments
argv[1] and argv[2]. (Although we
have shown source code for acpi _
listen for clarity, our AEG tool
Mayhem requires only the program
executable.12) Executing the -s op-
tion program path generates the con-
straint that the first 3B of argv[1]
correspond to the NULL-terminated
string -s. At each subsequent branch
point, symbolic execution adds more
constraints to the formula. Next,
acpi _ listen calls sprintf, which
copies bytes from name to addr.
sun _ path until it encounters a
NULL character. Symbolic execution
captures this logic by adding the con-
straint that each copied byte is non-
NULL. Symbolically executing the -s
program path where argv[1] is three
symbolic bytes and argv[2] is 140
non-NULL symbolic bytes generates
the constraints:

argv[1][0:2]= "−s" ∧∀i∈[0,139].
argv[2][i]≠0∧argv[2][140]=0	 (1)

Note that a formula may have many
satisfying answers; for example, bytes
0–139 of argv[2] can be “A,” “B,” or
any other non-NULL character.

Each feasible path can be checked
for exploitability by adding a set of con-

contributed articles

80 communications of the acm | february 2014 | vol. 57 | no. 2

be placed anywhere in memory. In our
experiment, our AEG tool Mayhem12
found the exploitable path and solved
the exploitability formula in 0.5 sec-
onds. Mayhem is also able to enumer-
ate satisfying answers to automatically
generate multiple exploits.

Managing state explosion. AEG is
a type of software verification, albeit
for a very special property. As such, it
inherits benefits but also well-known
scalability challenges (such as path ex-
plosion and the NP-hardness of solving
SMT queries in general). They are often

dress of our shellcode. The full formula
to reach and exploit the acpi _ lis-
ten bug is:

(Equation 1)∧mem[ar]=as
∧mem[as:as+len(shellcode)−1]=
〈shellcode〉	 (3)

The mem[ar] constraint requires the re-
turn address to contain the address of
the shellcode as. The final constraint re-
quires the shellcode to start at address
as. The variable as is left unconstrained
since the shellcode could potentially

straints that are satisfied only by ex-
ploiting inputs. Most research tackles
control-flow hijack exploits, where the
exploitability constraints specify the IP
register holds a value that corresponds
to some function f of user input i (such
as, f may be a call to tolower on the
input i) and the resulting IP points to
shellcode:

IP=f(i)∧mem[IP]=〈shellcode〉	 (2)

Now let ar be the memory address for
the return address and as be the ad-

Symbolic execution was invented around 1975
independently by several researchers.5,23,25 Around
2005, the field exploded. Hundreds of papers have now
been published describing advanced techniques and
applications; see Cadar and Sen11 for a description and
the main challenges of symbolic execution. Modern
tools (such as KLEE,9 EXE,10 SAGE,20 and others7,13,32,37)
find inputs that can crash or hang a system. Such inputs
may well be viewed as exploits in safety-critical systems
where uptime is critical. More generally, work in
symbolic execution is directly applicable to making AEG
more efficient. As of 2012, most symbolic-execution
work followed one execution path at a time. Since then,
more work has looked at generalizing over multiple
paths (such as to loops30). Others have also investigated
alternatives to symbolic execution that tame path
explosion (such as Brumley and Jager6 and Flanagan
and Saxe16,18,26). More generally, any verification
technique that can produce example inputs (such as
bounded model checking) is likely usable for AEG.

Modern AEG research dates to at least Ganapathy
et al.,17 who explicitly connected verification to
exploit generation, modeling how format string
specifiers are parsed by functions like printf that
take a variable number of arguments and use the
model to automatically generate exploits. They also
demonstrated automatically generating an exploit
against a key integrity property for a cryptographic
co-processor.17 However, they considered only API-level
exploits, which do not include running shellcode or the
conditions necessary to reach a vulnerable API call site.

In 2007, Medeiros28 and Grenier et al.21 proposed
techniques based on pattern matching for AEG.

In 2008, Brumley et al.8 developed automatic patch-
based exploit generation (APEG). The APEG challenge
is, given a buggy program P and a patched version P′,
generate an exploit for the bug present in P but not
present in P′. The idea is the difference between P and
P′ reflects where the original bug occurs and under
what conditions it might be triggered. Attackers have
long known the value of analyzing patches to find non-
public bugs; for example, attackers have been known to
joke Microsoft’s “patch Tuesday” is followed by “exploit
Wednesday.” Our techniques automatically found the
differences between P and P′ and generated inputs
that triggered the bugs in P using symbolic execution.
One main security implication is that attackers can
potentially use APEG to exploit bugs before patches can
be distributed to a large number of users. We generated
exploits for five Microsoft security patches, including

triggering an infinite loop in the TCP/IP driver and
stealing files on Microsoft Web servers. One limitation
was that our work on APEG only proposed, but did not
implement, techniques for executing shellcode for
memory-safety bugs.8

Heelan’s 2009 thesis22 was the first to
comprehensively describe and implement techniques
for automatically generating control-flow hijack exploits
that execute shellcode. In Heelan’s problem setting, the
attacker is given an input that executes an exploitable
program path, and the goal is to output a working
control-flow-hijack exploit. This setting is the same as
in our running example where we first fuzzed to find
bugs, then checked exploitability. Heelan proposed
using symbolic execution and taint analysis to derive the
conditions necessary to transfer control to shellcode and
demonstrated a tool that produced exploits for several
synthetic and for one real vulnerability. He also used a
technique called return-to-register to improve exploit
robustness. Heelan’s thesis also presented a history of
AEG work through 2009.

In 2011, we proposed AEG techniques that find
bugs and generate exploits, demonstrating them
on 16 vulnerabilities.1 The initial work performed
symbolic execution on source code to find bugs, then
used dynamic binary analysis to generate control-
flow hijack exploits. Included were a number of
optimizations for searching the state space (such as
preconditioned symbolic execution and the buggy-
path first optimizations discussed earlier). In 2012, we
introduced Mayhem, a tool and set of techniques for
AEG on executable code.12 With Mayhem, we proposed
techniques for actively managing symbolically
executed program paths without exhausting memory
and reasoning about symbolic memory addresses
efficiently. Both papers1,12 targeted control-flow hijacks
for buffer overflows and format-string vulnerabilities.
Mayhem generated exploits for seven Windows and 22
Linux vulnerabilities. Disregarding one long-running
outlier, the average exploit-generation time in all
experiments was 165 seconds. As of July 2013, Mayhem
was able to generate exploits for buffer overflows,
format strings, command injection, and some
information-leak vulnerabilities.

AEG1 and Mayhem12 were designed to demonstrate a
bug is exploitable but do not try to bypass defenses that
may otherwise protect a system. In 2011, we proposed
techniques for bypassing the DEP and ASLR defenses
implemented in Windows 7 and Linux, as well as exploit
hardening and maintenance.31

History of AEG

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 81

amplified in AEG because AEG tech-
niques reason about both low-level
code and large inputs, along with a few
abstractions. However, specific charac-
teristics of AEG also afford researchers
unique opportunities.

Consider the affect of path prioriti-
zation on this program:

 int x = get _ int();
 if((x % 2) == 0) {
 if(x > 10) vuln1();
 else if(x == 3) vuln2();
 else safe();
 } else { safe(); }

Let xo be ao explore the program and
find the vulnerability:

(x0% 2) = 0 ∧ ¬(x0 > 10) ∧ ¬(x0 = 3)
(x0% 2) = 0 ∧ ¬(x0 > 10) ∧ x0 = 3
¬((x0% 2) = 0)
(x0% 2) = 0 ∧ x0 > 10

The first formula for the first path
is satisfiable (such as when xo = 4), in-
dicating the path can be executed but
is safe (unexploitable). The second
formula corresponds to the infeasible
path up to vuln2() and is unsatisfi-
able because the constraint (xo % 2) =
0 and xo =3 cannot both be true simul-
taneously. Since vuln2 will never be
executed, it can never be exploited.
The third formula corresponds to a
feasible, safe path. Only the fourth
formula corresponding to the path
up to vuln1() is satisfiable, where a
satisfying assignment (such as xo =42)
corresponds to an exploit. In general,
the number of paths and formulas
is infinite for programs with loops
and exponential in terms of number
of branches for any acyclic portion,
making effective path selection a fun-
damental issue in AEG research.

Path-selection heuristics guide
execution so vulnerable paths are se-
lected early in exploration. Symbolic
execution research is filled with a vari-
ety of approaches. For example, KLEE
has options for depth-first traversal
of the control-flow graph, as well as a
randomized strategy.9 Microsoft uses
generational search,20 which priori-
tizes symbolically executing program
paths that branch off a known path
taken by a fixed concrete seed input.
Godefroid et al.’s research20 suggests
generational search is more effective

than either breadth-first search or
depth-first search.

Two techniques that proved effec-
tive in our experiments at Carnegie
Mellon are “preconditioned symbolic
execution” and “buggy-path first.”1
Preconditioned symbolic execution
first performs lightweight analysis
to determine the necessary condi-
tions to exploit any lurking bugs, then
prunes the search space of paths that
do not meet these conditions. For ex-
ample, a lightweight program analy-
sis may determine the minimum
length input string needed to trigger
possible buffer overflows, and paths
corresponding to inputs smaller than
the minimum length can be pruned
or skipped.

The idea of buggy-path first is that
any bug is a sign of programmer con-
fusion, increasing the likelihood of
an exploitable bug being nearby. For
example:

 char buf[1024];
 memset(buf, 0, strlen(input));
 ...
 �strncpy(buf, input,
strlen(input));

The second line contains a mistake
where potentially more than 1,024B of
buf are zeroed. This bug would likely
not lead to a control-flow hijack, but
does signal confusion that the length
of input is somehow related to the size
of buf. Buggy-path first would priori-
tize further exploration of the buggy
path over other possible paths and
thus discover the subsequent exploit-
able code more quickly in our tests.
Note that a unique aspect of buggy-
path first is that execution continues
under the assumption the bug has
been triggered (such as in the example
when nearby stack variables may have
been zeroed inadvertently).

A second core challenge of AEG
research is optimizing SMT satisfi-
ability checks. In theory, each satisfi-
ability check is an NP-hard problem
instance, but in practice many queries
are resolved quickly. For example, in
an experiment involving 5.6 million
SMT queries, 99.98% of all solved que-
ries took one second or less. Domain-
specific optimizations in symbolic ex-
ecution (such as arithmetic and logical
simplifications, strength reduction,

A sound AEG
technique says a
bug is exploitable
if it really is
exploitable,
while a complete
technique reports
all exploitable bugs.

contributed articles

82 communications of the acm | february 2014 | vol. 57 | no. 2

Automatically
generating an
exploit provides
proof that the
reported bug is
security-critical.

concrete execution, and caching) all
help speed queries.9,10,13,19,32

In 2006 when we started using sym-
bolic execution and SMT solvers, we
treated the SMT solver as a black box,
focusing only on the symbolic execu-
tor. In hindsight, that approach was
naive. In our research group we now
believe it is more fruitful to view the
SMT solver as a search procedure and
use optimizations to guide the search.
For example, one recurring challenge
in AEG is checking satisfiability of for-
mulas that operate on memory with
symbolic memory addresses. A sym-
bolic memory address occurs when
an index into an array or memory is
based on user input, as in:

...; y = mem[i % 256]; if(y == 2) vuln(); ...

Without more information, the SMT
solver must do a case split over all pos-
sible values of i that may reach down-
stream statements (such as vuln).
Case splits can quickly push an SMT
solver off an exponential cliff. Sym-
bolic memory references often crop
up in commonly occurring library
calls (such as conversion functions
like tolower and toascii) and pars-
ing functions (such as sscanf). Many
symbolic executors mitigate the case
split by concretizing symbolic ad-
dresses to a specific value (such as by
picking i=42).

Unfortunately, in our experiments
with dozens of exploitable bugs we
found concretization overconstrains
formulas, leading our initial AEG
techniques to miss 40% of known ex-
ploitable bugs in our test suite;12 for
example, AEG may need to craft an
input that becomes valid shellcode
after being processed by tolower
(such as tolower is f in Equation 2).
In Mayhem, we proposed a number of
optimizations for symbolic memory;12
for example, one performs a type of
strength reduction where symbolic
memory accesses are encoded as
piecewise linear equations.12

Example application: Exploiting
/usr/bin. Recall we fuzzed Debian
/usr/bin and found 52 distinct bugs
in 29 programs, including acpi _
listen. One goal was to determine
which bugs are exploitable.

We ran our binary-only AEG tool
called Mayhem12 on each crash to de-

termine if we could automatically gen-
erate an exploit from the crashing path.
We also manually checked whether it
was possible to exploit the bug. Five of
the 52 bugs were vulnerable to a con-
trol-flow hijack, and Mayhem generat-
ed exploits for four of them. The exploit
for acpi _ listen took 0.5 seconds to
generate, and the remaining three took
8, 12, and 28 seconds, respectively.

These results on /usr/bin offer
three insights: First, current AEG tools
like Mayhem are sound but incom-
plete. A sound AEG technique says a
bug is exploitable if it really is exploit-
able, while a complete technique re-
ports all exploitable bugs. Unfortunate-
ly, Rice’s theorem implies developing
a sound and complete analysis for any
nontrivial program property is in gen-
eral undecidable. Second, AEG can be
very fast when it succeeds. And finally,
there is ample room for improving
AEG in particular and symbolic execu-
tion and software model checking in
general. For example, we analyzed why
Mayhem failed on the last vulnerability,
finding the problem was a single con-
straint that pushed the SMT solver (we
use Z3) off an exponential cliff. Perhaps
comically, manual analysis showed the
constraint was superfluous but was not
recognized as such by the automatic
formula optimizer. Once the constraint
was removed from the formula, exploit
generation took less than five seconds.

Real-World Considerations
Security practitioners often focus only
on exploits for programs on the at-
tack surface of a system.27 The attack
surface consists roughly of the set of
programs, files, protocols, services,
and other channels available to an
attacker; examples include network
daemons, programs called from Web
servers on untrusted inputs, privileged
programs, and media players. Our ex-
ample acpi _ listen is not on the at-
tack surface. We chose acpi _ listen
because it highlights the steps of AEG,
yet disclosing the exploit would do lit-
tle damage because it is not on the at-
tack surface. Interestingly, the acpi _
listen vulnerability is remarkably
similar to a recent PHP vulnerability
that performs an unchecked copy on
the same data structure.14

Overall, AEG techniques are valu-
able because they show whether a pro-

contributed articles

february 2014 | vol. 57 | no. 2 | communications of the acm 83

gram can be exploited regardless of
whether it is on the attack surface or
not. For example, a program not on the
attack surface in one deployment may
be on the surface for another. More
generally, programs on the attack
surface are simply a subset of all pro-
grams; if we can handle all programs
we can surely handle the subset on
the attack surface. Current techniques
have found exploits on the attack sur-
face, albeit not in widely used large ap-
plications like Internet Explorer. For
example, as we wrote this article we
ran Mayhem on additional examples
that are on the attack surface, finding a
number of zero-day exploits for media
applications (such as ezstream and
imview) and network applications
(such as latd and ndtpd).

Another consideration is additional
layers of defense that might protect
otherwise exploitable programs. Two
popular operating-system-level de-
fenses against control-flow hijacks are
data-execution prevention, or DEP, and
address space layout randomization,
or ASLR.

DEP marks memory pages either
“writable” or “executable” but forbids
a memory page from being both. DEP
prevents an exploit that requires writ-
ing and then executing shellcode on
a memory page from working (such
as the shellcode mentioned earlier).
Unfortunately, attackers have devel-
oped techniques to bypass DEP. One
such method is called return-to-libc
where the attacker shellcode executes
code already present in memory (such
as by running system (“/bin/sh”) in
libc directly) rather than writing new
code to memory. Return-oriented pro-
gramming, or ROP, uses instruction
sequences already present in memo-
ry, called “gadgets.” Shacham et al.33
showed it is possible to find a Turing-
complete set of gadgets in libc.

ASLR prevents control-flow hijacks
by randomizing the location of ob-
jects in memory. Recall that to exploit
acpi _ listen, the attacker needs
to know the address of the shellcode.
ASLR randomizes addresses so vul-
nerable programs likely crash instead
of successfully redirecting control to
the shellcode. ASLR is an important
defense but does not fix the underly-
ing vulnerabilities and thus may pro-
vide limited protection; for example,

Windows and Linux systems running
on 32b processors may have insuffi-
cient randomness to provide strong
security,34 though 64b architectures
can address this problem. Particular
deployments of ASLR may have weak-
nesses as well; for example as of Janu-
ary 2013 the program image of Linux
executables is often not randomized.
Even when randomized well, addi-
tional vulnerabilities may disclose
information that can subsequently be
used in a control-hijack exploit.

Schwartz et al.31 proposed exploit
hardening, which takes an exploit that
works against an undefended system
and hardens it to bypass defenses.
One step in exploit hardening is to
automatically generate ROP payloads
(to bypass DEP) that take advantage
of small portions of unrandomized
memory (to bypass ASLR on the 2013
implementations of ASLR on Windows
7 and Linux). In particular, Schwartz et
al. showed ROP payloads can be gener-
ated for most programs in Windows
and Linux that have at least 20KB of
unrandomized code, which is true for
many programs. Exploit hardening
can be paired with AEG to check the
end-to-end security of a program run-
ning on a specific system.

Finally, DEP and ASLR defend only
against memory overwrite attacks.
Other vulnerabilities (such as informa-
tion disclosure, denial of service, and
command injection) are also critical in
practice; for example, DEP and ASLR
do not protect against exploits for
the command-injection vulnerability
found by Mayhem in ezstream.

Conclusion
AEG is far from being solved. Scalabil-
ity will always be an open and inter-
esting problem. As of February 2013,
AEG tools typically scale to finding
buffer overflow exploits in programs
the size of common Linux utilities.
In Mayhem, one current bottleneck is
driving the symbolic executor to the
buggy portion of the state space. As a
result, programs with deep bugs are
typically beyond the scope of our cur-
rent Mayhem AEG tool. Examples in-
clude large programs with bugs deep
in the program (such as Internet Ex-
plorer and Adobe Reader), as well as
those with large protocol state (such
as first authenticate, then send mul-

tiple fragmented messages to exploit
a bug). In addition, programs with
complex functions (such as hashes)
are often a bottleneck for SMT solv-
ers. One promising data point is that
Microsoft’s SAGE tool routinely finds
bugs in large applications,20 though
automatically generating exploits for
those bugs is an open challenge with
huge potential rewards.

More fundamentally, AEG must
expand to involve a wider variety of
exploitability properties and scale to
new program domains. While buffer
overflows continue to be exploited3,35
integer overflows, use-after-free, heap
overflows, and Web vulnerabilities are
also important (and popular) targets;3
for example, heap overflows against
modern operating systems like Win-
dows 8 pose difficult challenges (such
as modeling internal heap metadata
and new heap allocators with built-in
defenses). In our experience, the prob-
lem is often not coming up with some
formalism, but with the right formal-
ism and optimizations that make AEG
efficient and practical on real-world
programs and vulnerabilities.

Except for a few examples (such as
Ganapathy et al.’s17 exploits against
a particular cryptographic API), most
work in AEG has focused on exploiting
programs in type-unsafe languages,
though type safety is no panacea. In-
formation flow, command injection,
and many other common exploitable
bugs can all occur in typical type-safe
languages. Moreover, the runtime
environment itself may have security-
critical flaws. For example, the most
commonly exploited vulnerabilities
in 2011 were in Java.2

AEG can be modeled as a verifica-
tion task; therefore, the better pro-
grammers and researchers get at soft-
ware verification, the better they will
likely get at automatically generating
exploits. Some security researchers
are pessimistic about the practicality
of AEG in many application settings,36
rightfully pointing out significant scal-
ability hurdles and the lack of exploits
against vulnerabilities like use-after-
free. We are more optimistic. Eight
years ago, AEG techniques were re-
stricted to analyzing a single API call.
Today, AEG can both automatically
find and generate exploits in com-
mon binaries. In an effort to improve

contributed articles

84 communications of the acm | february 2014 | vol. 57 | no. 2

security in Debian, we started a proj-
ect in 2013 to check all programs in
/usr/bin for exploitable bugs and so
far have found more than 13,000 with
more than 150 exploitable. Advance-
ments will continue to be fueled by
better tools, techniques, and improve-
ments in verification and security.

Acknowledgments
This research is partially supported
by grants and support from the Na-
tional Science Foundation, the De-
fense Advanced Research Projects
Agency, Lockheed Martin, Northrop
Grumman, and the Prabhu and Poo-
nam Goel Fellowship. Any opinions,
findings, and conclusions or recom-
mendations expressed in this mate-
rial are those of the authors and do
not necessarily reflect the views of the
funding agencies. 	

References
1.	A vgerinos, T., Cha, S.K., Lim, B.T.H., and Brumley, D.

AEG: Automatic Exploit Generation. In Proceedings
of the Network and Distributed System Security
Symposium (San Diego, CA, Feb. 6–9). Internet
Society, Reston, VA, 2011, 283–300.

2.	B atchelder, D., Bawany, S., Blackbird, J., Blakemore, E.,
Faulhaber, J., Fayyaz, S., Felstead, D., Henry, P., Goel,
N.K., Jones, J., Kuo, J., Lauricella, M., Malcolmson,
K., Ng, N., Oram, M., Peccelj, D., Probert, D., Rains,
T., Simorjay, F., Stewart, H., Thomlinson, M., Wu, S.,
and Zink, T. Microsoft Security Intelligence Report 12
(July–Dec. 2011). Microsoft, Redmond, WA; http://
www.microsoft.com/security/sir/archive/default.aspx

3.	B ilge, L. and Dumitras, T. Before we knew it: An
empirical study of zero-day attacks in the real world.
In Proceedings of the ACM Conference on Computer
and Communications Security (Raleigh, NC, Oct.
16–18). ACM Press, New York, 2012, 833–844.

4.	B ounimova, E., Godefroid, P., and Molnar, D. Billions
and Billions of Constraints: Whitebox Fuzz Testing
in Production. Technical Report MSR-TR-2012-55.
Microsoft, Redmond, WA, May 2012; http://research.
microsoft.com/apps/pubs/?id=165861

5.	B oyer, R. S., Elspas, B., and Levitt, K. N. SELECT—A
formal system for testing and debugging programs
by symbolic execution. In Proceedings of the
International Conference on Reliable Software (Los
Angeles, Apr). ACM Press, New York, 1975, 234–245.

6.	B rumley, D. and Jager, I. Efficient Directionless
Weakest Preconditions. Technical Report CMU-
CyLab-10-002. Carnegie Mellon University, Pittsburgh,
PA, July 14, 2010; https://www.cylab.cmu.edu/
research/techreports/2010/tr_cylab10002.html

7.	B rumley, D., Jager, I., Avgerinos, T., and Schwartz,
E.J. BAP: A binary analysis platform. In Proceedings
of the International Conference on Computer Aided
Verification (Snowbird, UT, July 14–20). Springer,
Berlin, Heidelberg, Germany, 2011, 463–469.

8.	B rumley, D., Poosankam, P., Song, D., and Zheng, J.
Automatic patch-based exploit generation is possible:
Techniques and implications. In Proceedings of
the IEEE Symposium on Security and Privacy (San
Francisco, May 18–21). IEEE Press, Los Alamitos, CA,
2008, 143–157.

9.	 Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the
USENIX Symposium on Operating System Design and
Implementation (San Diego, CA, Dec. 8–10). USENIX
Association, Berkeley, CA, 2008, 209–224.

10.	 Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., and
Engler, D.R. EXE: Automatically generating inputs
of death. In Proceedings of the ACM Conference on
Computer and Communications Security (Alexandria,

VA, Oct. 30–Nov. 3). ACM Press, New York, 2006,
322–335.

11.	 Cadar, C. and Sen, K. Symbolic execution for software
testing: Three decades later. Commun. ACM 56, 2 (Feb
2013), 82–90.

12.	 Cha, S.K., Avgerinos, T., Rebert, A., and Brumley, D.
Unleashing Mayhem on binary code. In Proceedings
of the IEEE Symposium on Security and Privacy (San
Francisco, May 21–23). IEEE Press, Los Alamitos, CA,
2012, 380–394.

13.	 Chipounov, V., Kuznetsov, V., and Candea, G. The S2E
platform. ACM Transactions on Computer Systems 30,
1 (Feb. 2012).

14.	 CERT/NIST. PHP socket_connect() Stack Buffer
Overflow. National Vulnerability Database,
Entry CVE-2011-1938. National Institute of
Standards and Technology, Gaithersburg, MD,
May 31, 2011; http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2011-1938

15.	D e Moura, L. and Bjørner, N. Satisfiability Modulo
Theories: Introduction and applications. Commun.
ACM 54, 9 (Sept. 2011), 69–77.

16.	 Flanagan, C. and Saxe, J.B. Avoiding exponential
explosion: Generating compact verification conditions.
In Proceedings of the ACM Symposium on Principles
of Programming Languages (London, U.K., Jan. 17–19).
ACM Press, New York, 2001, 193–205.

17.	G anapathy, V., Seshia, S.A., Jha, S., Reps, T.W., and
Bryant, R.E. Automatic discovery of API-level exploits.
In Proceedings of the International Conference on
Software Engineering (St. Louis, MO, May 15–21).
IEEE Press, Los Alamitos, CA, 2005, 312–321.

18.	G odefroid, P. Compositional dynamic test generation.
In Proceedings of the ACM Symposium on the
Principles of Programming Languages (Nice, France,
Jan. 17–19). ACM Press, New York, 2007, 47–54.

19.	G odefroid, P., Klarlund, N., and Sen, K. DART: Directed
automated random testing. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation (Chicago, June 12–15). ACM Press,
New York, 2005, 213–223.

20.	G odefroid, P., Levin, M.Y., and Molnar, D. SAGE:
Whitebox fuzzing for security. Commun. ACM 55, 3
(Mar. 2012), 40–44.

21.	G renier, L. (Pusscat and Lin0xx). Byakugan:
Automating exploitation. In ToorCon Seattle (Seattle,
WA, May 2007); http://seattle.toorcon.net/

22.	H eelan, S. Automatic Generation of Control Flow
Hijacking Exploits for Software Vulnerabilities. M.Sc.
thesis. University of Oxford, Oxford, U.K., Sept. 3,
2009; http://solo.bodleian.ox.ac.uk/primo_library/
libweb/action/dlDisplay.do?vid=OXVU1&docId=oxfale
ph017069721

23.	H owden, W.E. Methodology for the generation of
program test data. IEEE Transactions on Computers
C-24, 5 (May 1975), 554–560.

24.	 Jhala, R. and Majumdar, R. Software model checking.
ACM Computing Surveys 41, 4 (Oct. 2009).

25.	 King, J.C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976), 385–394.

26.	 Kuznetsov, V., Kinder, J., Bucur, S., and Candea, G.
Efficient state merging in symbolic execution. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (Beijing, June
11–16). ACM Press, New York, 2012, 193–204.

27.	 Manadhata, P.K. and Wing, J.M. An attack surface
metric. IEEE Transactions on Software Engineering
37, 3 (May–June). IEEE Press, Los Alamitos, CA,
2011, 371–386.

28.	 Medeiros, J. Automated Exploit Development, The
Future of Exploitation Is Here. Technical Report.
Grayscale Research, 2007; http://www.grayscale-
research.org/new/pdfs/toorcon_whitepaper.pdf

29.	 Muller, T. ASLR Smack & Laugh Reference Seminar
on Advanced Exploitation Techniques. Technical
Report. RWTH Aachen University, Aachen, Germany,
Feb. 2008.

30.	 Saxena, P., Poosankam, P., McCamant, S., and Song,
D. Loop-extended symbolic execution on binary
programs. In Proceedings of the International
Symposium on Software Testing and Analysis
(Chicago, July 19–23). ACM Press, New York, 2009,
225–236.

31.	 Schwartz, E.J., Avgerinos, T., and Brumley, D.Q: Exploit
hardening made easy. In Proceedings of the USENIX
Security Symposium (San Francisco, Aug. 8–12).
USENIX Association, Berkeley, CA, 2011, 379–394.

32.	 Sen, K., Marinov, D., and Agha, G. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the ACM

International Symposium on Foundations of Software
Engineering (St. Petersburg, Russia, Aug. 18–26). ACM
Press, New York, 2005, 263–272.

33.	 Shacham, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the x86).
In Proceedings of the ACM Conference on Computer and
Communications Security (Alexandria, VA, Oct. 29–Nov.
2). ACM Press, New York, 2007, 552–561.

34.	 Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N.,
and Boneh, D. On the effectiveness of address-space
randomization. In Proceedings of the ACM Conference
on Computer and Communications Security
(Washington, D.C., Oct. 25–29). ACM Press, New York,
2004, 298–307.

35.	 van der Veen, V., dutt-Sharma, N., Cavallaro, L.,
and Bos, H. Memory errors: The past, the present,
and the future. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and
Defenses (Amsterdam, The Netherlands, Sept. 12–14).
Springer, Berlin, Heidelberg, Germany, 2012, 86–106.

36.	V anegue, J., Heelan, S., and Rolles, R. SMT solvers
for software security. In Proceedings of the USENIX
Workshop on Offensive Technologies (Bellevue, WA,
Aug. 6–7). USENIX Association, Berkeley, CA, 2012.

37.	 Wang, X., Chen, H., Jia, Z., Zeldovich, N., and Kaashoek,
M.F. Improving integer security for systems with
KINT. In Proceedings of the USENIX Conference
on Operating Systems Design and Implementation
(Hollywood, CA, Oct. 8–10). USENIX Association,
Berkeley, CA, 2012, 163–177.

Thanassis Avgerinos (thanassis@cmu.edu) is a Ph.D.
candidate in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA,
and a founder of ForAllSecure.com.

Sang Kil Cha (sangkilc@cmu.edu) is a Ph.D. candidate in
the Electrical and Computer Engineering Department at
Carnegie Mellon University, Pittsburgh, PA.

Alexandre Rebert (alexandre@cmu.edu) is a Ph.D.
student in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA,
and a founder of ForAllSecure.com.

Edward J. Schwartz (edmcman@cmu.edu) is a Ph.D.
candidate in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA.

Maverick Woo (pooh@cmu.edu) is a systems scientist in
CyLab at Carnegie Mellon University, Pittsburgh, PA.

David Brumley (dbrumley@cmu.edu) is an assistant
professor in the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA,
and CEO of ForAllSecure.com.

Copyright held by Owner/Author(s). Publication rights
licensed to ACM. $15.00

