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Attackers commonly exploit  buggy programs to 
break into computers. Security-critical bugs pave the 
way for attackers to install trojans, propagate worms, 
and use victim computers to send spam and launch 
denial-of-service attacks. A direct way, therefore, 
to make computers more secure is to find security-
critical bugs before they are exploited by attackers. 

Unfortunately, bugs are plentiful. For example, the 
Ubuntu Linux bug-management database listed more 
than 103,000 open bugs as of January 2013. Specific 
widely used programs (such as the Firefox Web browser 
and the Linux 3.x kernel) list 7,597 and 1,293 open 
bugs in their public bug trackers, respectively.a Other 
projects, including those that are closed-source, likely 
involve similar statistics. These are just the bugs we 
know; there is always the persistent threat of zero-day 
exploits, or attacks against previously unknown bugs. 

Among the thousands of known bugs, which should 
software developers fix first? Which are exploitable?

a	 All bug counts exclude bugs tagged as “wishlist,” “unknown,” “undecided,” or “trivial.”

How would you go about finding the un-
known exploitable ones that still lurk? 

Given a program, the automatic ex-
ploit generation (AEG) research chal-
lenge is to both automatically find 
bugs and generate working exploits. 
The generated exploits unambigu-
ously demonstrate a bug is security-
critical. Successful AEG solutions pro-
vide concrete, actionable information 
to help developers decide which bugs 
to fix first. 

Our research team and others cast 
AEG as a program-verification task 
but with a twist (see the sidebar “His-
tory of AEG”). Traditional verification 
takes a program and a specification of 
safety as inputs and verifies the pro-
gram satisfies the safety specification. 
The twist is we replace typical safety 
properties with an “exploitability” 
property, and the “verification” pro-
cess becomes one of finding a pro-
gram path where the exploitability 
property holds. Casting AEG in a veri-
fication framework ensures AEG tech-
niques are based on a firm theoretic 
foundation. The verification-based 
approach guarantees sound analysis, 
and automatically generating an ex-
ploit provides proof that the reported 
bug is security-critical. 

Verification involves many well-
known scalability challenges, several 
of which are exacerbated in AEG. Each 
new branch potentially doubles the 
number of possible program paths, 
possibly leading to an explosion of 
paths to check for exploitability. Tra-
ditional verification takes advantage 
of source code, models, and other ab-
stractions to help tackle the state ex-
plosion and scale. Unfortunately, ab-
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 key insights

 � �This research formalizes the notion of an 
exploit, allowing for automated reasoning 
about exploitation. 

 � �The technology can be used to identify 
and prioritize security-critical bugs. 

 � �Improvements for verifying programs 
safe may also lead to improvements for 
automatically generating exploits. IIm
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Exploiting Programs 
Suppose a developer is interested in 
finding and fixing exploitable bugs in 
the /usr/bin directory of the latest 
Debian operating system. For instance, 
in June 2012 we downloaded the then-
current Debian 6.0.5, with (in our in-
stallation) 1,168 executables in /usr/
bin to analyze for exploitable bugs. 

A typical approach to finding ex-
ploitable bugs is to first find them 
and then determine which ones are 
exploitable. One popular way to find 
bugs is to perform “black-box fuzz-
ing.” Fuzzing is a program-testing 
technique that runs a program on 
inputs from a fixed alphabet, often 
either modifying at random a known 
input or trying extreme values (such 
as 0 and the native maximum inte-
ger), and the “black-box” refers to the 
program itself, which is not analyzed 
at all. The fuzzer chooses the inputs 
and observes the program, looking 
for hangs, crashes, buggy outputs, or 
other indications of a bug. 

We fuzzed each program using the 
following script: 

for letter in {a..z} {A..Z}; do
 �timeout -s 9 1s <program> 
-$letter <path>

done

The script tries all single-letter com-

stractions often leak by not perfectly 
encapsulating all security-relevant 
details, and the leaky points tend to 
affect the quality of security analysis. 
For example, writing 12B to an array 
declared to be 11B long is wrong in C 
but is also unlikely to be exploitable 
because most compilers would pad 
the array with extra bytes to word-
align memory operations. 

In order to provide high fidelity, 
most AEG work analyzes raw execut-
able code. Executable code analysis is 
needed because many exploits rely on 
low-level details that are abstract in 
source code (such as CPU semantics 
and memory layout). Executable code 
analysis is also attractive because it 
is widely applicable; users typically 
have access to the executable code of 
the programs they run (as opposed to 
source code) and thus can audit the 
code for security-critical bugs. 

Throughout this article, we focus 
on AEG as a defensive tool for priori-
tizing exploitable bugs. However, we 
are also cognizant of the obvious of-
fensive computing implications and 
applications as well. Governments 
worldwide are developing computer-
warfare capabilities, and exploits 
have become a new type of ammuni-
tion. At present, exploit generation in 
practice is mostly a manual process. 
Therefore, techniques that help re-

duce the time and effort for exploit 
generation can potentially affect a na-
tion’s operational capabilities. AEG 
research is in its infancy and not yet 
at the point of automatically churn-
ing out weapons-grade exploits for 
an arbitrary program. Most reported 
research results generate exploits 
against bugs up to a few thousand 
lines deep in execution and for rela-
tively straightforward bugs, while typ-
ical offensive needs include exploits 
for complicated bugs and large pro-
grams like Internet Explorer and Ado-
be Reader. Nonetheless, current AEG 
results show promise, and a conserva-
tive defensive security position must 
consider the possibility of real-world 
offensive AEG capabilities. 

This article describes our AEG re-
search at Carnegie Mellon University, 
its successes, as well as its current 
limitations. We focus primarily on 
control-flow hijack exploits that give 
an attacker the ability to run arbitrary 
code. Control-flow hijacks are a seri-
ous threat to defenders and coveted 
by attackers.3,35 Although most current 
research focuses on control-flow hi-
jacks due to their immediate danger, 
AEG is not limited to only this class 
of attacks. Exploitable bugs are found 
in programs in all languages, and the 
verification-based approach to AEG 
still applies. 

Our running example of a buffer overflow in acpi-listen. 

 1. int main(int argc, char **argv) {
 2.   char *name; int i;
 3.   for (;;) {
 4.     i = getopt(argc, argv, "c:s:t:vh");
 5.     if (i == -1) break;
 6.     switch (i) {
 7.       case 'c': ...; break;
 8.       case 's': name = optarg; break;
 9.       ...
10.     }
11.   }
12.   sock_fd = ud_connect(name);
13.   ...
14. }
15. int ud_connect(const char *name) {
16.   int fd;
17.   struct sockaddr_un {
18.     sa_family_t sun_family;
19.     char sun_path[108];
20.   } addr;
21.   ...
22.   sprintf(addr.sun_path, "%s", name);
23.   ...
24.   return fd;
25. }

00000000  31 c9 f7 e1 51 68 2f 2f  73 68 68 2f 62 69 6e 89  |1...Qh//shh/bin.|
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mand-line options from a to Z, fol-
lowed by a valid 6,676B filename. The 
timeout command limited total exe-
cution time to one second, after which 
the program was killed. 

The script took about 13 minutes 
to fuzz all programs on our test ma-
chine, yielding 756 total crashes. We 
identified 52 distinct bugs in 29 pro-
grams by analyzing the calling con-
text and faulting instruction of each 
crash. Which bugs should a developer 
fix first? The answer is the exploit-
able ones. For now, we forgo several 
important issues relevant in practice 
we tackle later (such as whether the 
buggy program is a realistic attack tar-
get and whether additional operating 
system defenses would protect the 
otherwise exploitable program from 
attack). 

We first describe simple manual 
exploit generation to introduce ter-
minology and give a flavor of how 
exploits work. We focus on control-
flow hijack exploits, which have 
been a staple class of exploits in the 
computer-security industry for de-
cades.3,35 Well-known examples of 
control-flow hijacks range from ex-
ploits in the Morris worm in 1988 to 
the more recent Stuxnet and Flame 
worms (though the latter exploits are 
much more complicated than those 
described here). 

The figure here shows a bug discov-
ered in acpi _ listen (now patched 
in Debian testing) we use as our run-
ning example. A buffer overflow oc-
curs on line 22. The program reads 
in a command-line argument; if it is 
-s (line 8), it assigns the subsequent 
argument string to the name variable. 
On line 22, the sprintf function 
copies name into sun _ path, a field 
in a local instance of the networking 
sockaddr _ un data type, a standard 
data structure in Unix for sockets. 

The bug is that sun _ path is a 
fixed-size buffer of 108B, while the 
command-line argument copied 
through name into sun _ path can 
be any length. The C standard says 
the execution behavior is undefined if 
more than 108B are written. When ex-
ecuted, something will happen; with 
the fuzzing script described earlier, 
the program crashed. Unfortunately, 
this crashing bug can be exploited. 

All control-flow hijack exploits 

have two goals: hijack control of the 
instruction pointer (IP) and then 
run an attacker’s computation. For 
acpi _ listen, some of the details 
an attacker must understand in-
depth include: the hardware execu-
tion model (such as how instructions 
are fetched from memory and ex-
ecuted; how function calls are imple-
mented; how writing outside the allo-
cated space can hijack control of the 
IP; and how to redirect the IP to run 
the attacker’s code). Since any discus-
sion of creating exploits against vul-
nerable C programs assumes a basic 
understanding of these facts, we offer 
the following overview. 

During runtime, computer hard-
ware implements a fetch-decode-
execute loop to run a program. The 
hardware maintains an IP register that 
contains the memory address of the 
next instruction to be executed. During 
the fetch phase, the hardware loads the 
data pointed to by the IP register. The 
data is then decoded as an instruction 
that is subsequently executed. The IP 
is then set to the next instruction to be 
executed. Control is hijacked by taking 
control of the IP, which is then used to 
fetch, decode, and execute the attack-
er’s computation. 

A straightforward exploit for 
acpi _ listen hijacks control by 
overwriting data used to implement 
function returns. Exploits can also 
overwrite other control data (such as 
function pointers and the global off-
set table, as in Muller29), but we omit 
these details here. Function calls, 
returns, and local variables are not 
supported directly by hardware. The 
compiler implements the semantics 
of these abstractions using low-level 
assembly instructions and memory. 
An attacker must be proficient in many 
details of code execution (such as how 
arguments are passed and registers 
are shared between caller and callee). 
For simplicity, we assume a standard 
C calling convention known as cdecl. 
Functions using it implement a stack 
abstraction in memory where func-
tions push space for local variables, 
arguments to future calls, and other 
data onto the stack immediately after 
being called. A function return pops 
the allocated space off the stack. Thus, 
the stack grows a bit for each call and 
shrinks a bit on each return. 

The twist is 
we replace 
typical safety 
properties with 
an “exploitability” 
property, and the 
“verification” 
process becomes 
one of finding 
a program 
path where the 
exploitability 
property holds. 
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being overwritten in a variable up-
date. Control-flow hijacks are an in-
stance of a channeling vulnerability 
that arise when the control and data 
planes are not rigorously separated. 
For this particular example, an out-
of-bound write can clobber the return 
address. When sprintf executes, it 
copies data sequentially from name 
up the stack, starting from the ad-
dress for sun _ path, as shown. The 
copy stops only when a zero integer, 
or ASCII NULL, is found, which is not 
necessarily when sun _ path runs 
out of space. A long name will clobber 
the saved local variables and eventu-
ally the saved return address. Since an 
attacker controls the values in name, 
and those values overwrite the return 
address, the attacker ultimately con-
trols which instructions are executed 
when ud _ connect returns. 

Attackers must analyze the program 
to figure out exactly how many bytes to 
write, what constraints may be on the 
bytes, and what would be a good value 
with which to overwrite the return ad-
dress. For acpi _ listen, a string of 
length 140 will overwrite the return ad-
dress. The first 108B will be copied into 
space allocated for sun _ path. The 
next 28B on the stack are intended to 
hold local variables and saved register 
values. The final 4B overwrite the saved 
return address. 

When ud _ connect returns, the 
overwritten return address is popped 
off the stack into the IP register. The 
machine continues executing the in-
struction starting at the overwritten 
address. While this example overwrites 
the return address, a variety of other 
control data structures can be used to 
seize control; examples include func-
tion pointers, heap metadata, and C++ 
virtual function tables. 

Control is typically hijacked to run 
an attacker-supplied computation. 
The most basic attack is to inject execut-
able code into the vulnerable process. 
More advanced techniques (such as 
command injection, return-to-libc, and 
return-oriented programming) are also 
possible29,33 (and in some cases can be 
automated as well31), but we omit such 
discussion here. 

A natural choice for the computa-
tion is to execute the command-line 
shell /bin/sh so the attacker is able 
to subsequently run any command 

When f calls g, f first puts g’s argu-
ments onto the stack, then invokes 
g, typically through a call assembly 
instruction. The semantics of call 
includes pushing f’s return address 
onto the stack; that is, the address in f 
where execution (normally) continues 
once g terminates. Upon entrance, 
g creates space for its variables and 
other run-time information (such as 
saved register values). After g com-
pletes, g returns control to f by shrink-
ing the created stack space for g and 
popping off the saved address into the 
IP register, typically through a ret in-
struction. A critical detail is that the 
popped value, regardless of whether it 
was the original value pushed by f or 
not, is used as the address of the next 
instruction to execute. If an attacker 
can overwrite that address, the attack-
er can gain control of execution. 

The stack frame just before 
sprintf is called on line 22 in the Fig-
ure. The flow of execution for creating 
the depicted stack includes six steps: 

Return address pushed onto the 
stack. When main called ud _ con-
nect, main pushed the address of the 
next instruction to be executed (corre-
sponding to line 13) onto the stack; 

Control transfer. main transferred 
control to ud _ connect; 

Local variable space allocated. ud _
connect allocated space for its local 
variables. On our computer, 108B were 
allocated for sun _ path and an addi-
tional 28B for other data (such as ad-
ditional local variables and saved reg-
ister values); 

Function body executed. The body of 
ud _ connect ran. When sprintf 
is called, a similar flow pushes a new 
return address on the stack and new 
space onto the stack for sprintf’s lo-
cal variables; 

Local variable space deallocated. 
When ud _ connect returns, it first 
deallocates the local variable space, 
then pops off the saved return address 
into the IP register; and 

Return to caller. Under normal op-
eration, the return address points to 
the instruction for line 13, and main 
resumes execution. 

The crux of a control-flow hijack 
is that memory is used to store both 
control data (such as return address-
es) and program-variable values, but 
the control data is not protected from 

Governments 
worldwide are 
developing 
computer-warfare 
capabilities, and 
exploits have 
become a new type 
of ammunition. 
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Our research vision is to automate it. 
AEG uses verification techniques to 

transform the process of finding and 
deciding exploitability to reasoning 
in logic. At a high level, AEG consists 
of three steps: It first encodes what it 
means to exploit a program as a logi-
cal property; it then checks whether 
the exploitability property holds on 
a program path; and finally, for each 
path the property holds, it produces a 
satisfying input that exploits the pro-
gram along the path. 

These steps are the cornerstones 
of AEG research. First, what exploit-
ability properties do we encode, and 
how? In industry, an exploit could 
mean control-flow hijack, while an 
intelligence agency might also in-
clude information disclosures, and 
a safety board could include denial 
of service for critical services. Any 
single property may have many en-
codings, with some more efficient 
for automated tools to check than 
others. Second, what techniques and 
algorithms should a programmer em-
ploy to check a program? The general 
problem of checking programs for 
properties is called “software model 
checking,”24 encompassing a num-
ber of techniques (such as bounded 
model checking, symbolic execution, 
and abstract interpretation). Third, 
what does it take to implement real 
systems, and how do these systems 
perform on real software? 

The theory of AEG can be de-
scribed with a small number of opera-
tions on a well-defined programming 
language that interacts with its envi-
ronment in a few predicable, easy-to-
model ways. However, a real system 
must also contend with hundreds of 
CPU instructions and the tricky and 
complex ways programs interact with 
their environments. Sometimes even 
pedestrian yet necessary details are 
difficult to get right; for example, it 
took our team almost a year to stop 
finding bugs in our internal seman-
tics for the x86 shift instructions 
(such as shl). The developers of Mi-
crosoft’s SAGE tool reported similar 
difficulties for the same instructions.4 

Current AEG research primar-
ily uses symbolic execution25 to check 
program paths for exploitability prop-
erties. At a high level, symbolic execu-
tion represents all possible inputs as 

with the privileges of the exploited 
process. In fact, executing a shell is so 
popular that colloquially any attacker 
code is called “shellcode.” A classic 
approach is to give executable code as 
input to the program and redirect con-
trol flow to the given executable code. 
The executable code itself can be cre-
ated by mimicking the assembly for 
execve("/bin/sh", args, NULL). 
Attackers introduce the shellcode to 
the vulnerable program as a normal 
string program input that is eventu-
ally decoded and executed as code. 

The final step of the attack is to 
overwrite the return address with the 
address of the shellcode. On our ma-
chine, sun _ path is at memory ad-
dress 0xbffff274. The complete 
exploit for acpi _ listen (gener-
ated automatically by our AEG tools) is 
shown in the figure, where: 

Shellcode. The first bytes of the com-
mand line argument are the shellcode; 
the shellcode is 21B, and, in this case, 
the first 21B are copied into bytes 0–20 
of sun _ path; 

Padding. The next 115B of input can 
be any non-zero, or non-NULL ASCII, 
value; the bytes are copied into bytes 
21–107 of sun _ path and the addi-
tional space for other locals; and 

Shellcode address. The last 4B of 
input are the hex string 0x74 0xf2 
0xff 0xbf. They overwrite the return 
address. When the return address is 
popped, the bytes become the address 
0xbffff274 (because x86 is little en-
dian), which is the address of the shell-
code after it is copied to sun _ path. 

The figure shows the stack frame 
after supplying this string as a com-
mand-line argument following -s. 
When ud _ connect returns, the ad-
dress 0xbffff274 is popped into the 
IP register, and the hardware fetches, 
decodes, and executes the bytes in 
sun _ path that, when interpreted as 
executable code, runs /bin/sh. When 
the shellcode runs, the attacker is able 
to run any command with the same 
privileges as the exploited program. 

Research Vision 
Manual exploit generation requires 
a developer to reason about an enor-
mous number of details (such as size 
of the stack, location of control flow 
critical data, like return address, and 
precise semantics of each instruction). 

a set of symbolic input variables. Sym-
bolic execution then picks a program 
path through a predefined path-selec-
tion algorithm. The path is then “ex-
ecuted,” except, instead of executing 
on a real, concrete input, a symbolic 
input stands in for any possible con-
crete value. Symbolic execution builds 
up a path formula in terms of the sym-
bolic inputs based on the instructions 
executed. The path formula is satis-
fied, meaning made true, by any con-
crete input that executes the desired 
path. If the path formula is unsatisfi-
able, there is no input that executes 
the path, and the path is called infea-
sible. The satisfiability check itself is 
done through automated solvers (such 
as Satisfiability Modulo Theories, or 
SMT).15 By construction, free variables 
correspond to program inputs, and 
any satisfying assignment of values 
to free variables (called a model) is an 
input that executes the selected path. 
SMT solvers enumerate satisfying an-
swers when needed. 

In acpi _ listen, the symbolic 
inputs are the first two arguments 
argv[1] and argv[2]. (Although we 
have shown source code for acpi _
listen for clarity, our AEG tool 
Mayhem requires only the program 
executable.12) Executing the -s op-
tion program path generates the con-
straint that the first 3B of argv[1] 
correspond to the NULL-terminated 
string -s. At each subsequent branch 
point, symbolic execution adds more 
constraints to the formula. Next, 
acpi _ listen calls sprintf, which 
copies bytes from name to addr.
sun _ path until it encounters a 
NULL character. Symbolic execution 
captures this logic by adding the con-
straint that each copied byte is non-
NULL. Symbolically executing the -s 
program path where argv[1] is three 
symbolic bytes and argv[2] is 140 
non-NULL symbolic bytes generates 
the constraints: 

argv[1][0:2]= "−s" ∧∀i∈[0,139]. 
argv[2][i]≠0∧argv[2][140]=0	 (1)

Note that a formula may have many 
satisfying answers; for example, bytes 
0–139 of argv[2] can be “A,” “B,” or 
any other non-NULL character. 

Each feasible path can be checked 
for exploitability by adding a set of con-



contributed articles

80    communications of the acm    |   february 2014  |   vol.  57  |   no.  2

be placed anywhere in memory. In our 
experiment, our AEG tool Mayhem12 
found the exploitable path and solved 
the exploitability formula in 0.5 sec-
onds. Mayhem is also able to enumer-
ate satisfying answers to automatically 
generate multiple exploits. 

Managing state explosion. AEG is 
a type of software verification, albeit 
for a very special property. As such, it 
inherits benefits but also well-known 
scalability challenges (such as path ex-
plosion and the NP-hardness of solving 
SMT queries in general). They are often 

dress of our shellcode. The full formula 
to reach and exploit the acpi _ lis-
ten bug is: 

(Equation 1)∧mem[ar]=as 
∧mem[as:as+len(shellcode)−1]=
〈shellcode〉	 (3)

The mem[ar] constraint requires the re-
turn address to contain the address of 
the shellcode as. The final constraint re-
quires the shellcode to start at address 
as. The variable as is left unconstrained 
since the shellcode could potentially 

straints that are satisfied only by ex-
ploiting inputs. Most research tackles 
control-flow hijack exploits, where the 
exploitability constraints specify the IP 
register holds a value that corresponds 
to some function f of user input i (such 
as, f may be a call to tolower on the 
input i) and the resulting IP points to 
shellcode: 

IP=f(i)∧mem[IP]=〈shellcode〉	 (2)

Now let ar be the memory address for 
the return address and as be the ad-

Symbolic execution was invented around 1975 
independently by several researchers.5,23,25 Around 
2005, the field exploded. Hundreds of papers have now 
been published describing advanced techniques and 
applications; see Cadar and Sen11 for a description and 
the main challenges of symbolic execution. Modern 
tools (such as KLEE,9 EXE,10 SAGE,20 and others7,13,32,37) 
find inputs that can crash or hang a system. Such inputs 
may well be viewed as exploits in safety-critical systems 
where uptime is critical. More generally, work in 
symbolic execution is directly applicable to making AEG 
more efficient. As of 2012, most symbolic-execution 
work followed one execution path at a time. Since then, 
more work has looked at generalizing over multiple 
paths (such as to loops30). Others have also investigated 
alternatives to symbolic execution that tame path 
explosion (such as Brumley and Jager6 and Flanagan 
and Saxe16,18,26). More generally, any verification 
technique that can produce example inputs (such as 
bounded model checking) is likely usable for AEG. 

Modern AEG research dates to at least Ganapathy 
et al.,17 who explicitly connected verification to 
exploit generation, modeling how format string 
specifiers are parsed by functions like printf that 
take a variable number of arguments and use the 
model to automatically generate exploits. They also 
demonstrated automatically generating an exploit 
against a key integrity property for a cryptographic 
co-processor.17 However, they considered only API-level 
exploits, which do not include running shellcode or the 
conditions necessary to reach a vulnerable API call site. 

In 2007, Medeiros28 and Grenier et al.21 proposed 
techniques based on pattern matching for AEG. 

In 2008, Brumley et al.8 developed automatic patch-
based exploit generation (APEG). The APEG challenge 
is, given a buggy program P and a patched version P′, 
generate an exploit for the bug present in P but not 
present in P′. The idea is the difference between P and 
P′ reflects where the original bug occurs and under 
what conditions it might be triggered. Attackers have 
long known the value of analyzing patches to find non-
public bugs; for example, attackers have been known to 
joke Microsoft’s “patch Tuesday” is followed by “exploit 
Wednesday.” Our techniques automatically found the 
differences between P and P′ and generated inputs 
that triggered the bugs in P using symbolic execution. 
One main security implication is that attackers can 
potentially use APEG to exploit bugs before patches can 
be distributed to a large number of users. We generated 
exploits for five Microsoft security patches, including 

triggering an infinite loop in the TCP/IP driver and 
stealing files on Microsoft Web servers. One limitation 
was that our work on APEG only proposed, but did not 
implement, techniques for executing shellcode for 
memory-safety bugs.8 

Heelan’s 2009 thesis22 was the first to 
comprehensively describe and implement techniques 
for automatically generating control-flow hijack exploits 
that execute shellcode. In Heelan’s problem setting, the 
attacker is given an input that executes an exploitable 
program path, and the goal is to output a working 
control-flow-hijack exploit. This setting is the same as 
in our running example where we first fuzzed to find 
bugs, then checked exploitability. Heelan proposed 
using symbolic execution and taint analysis to derive the 
conditions necessary to transfer control to shellcode and 
demonstrated a tool that produced exploits for several 
synthetic and for one real vulnerability. He also used a 
technique called return-to-register to improve exploit 
robustness. Heelan’s thesis also presented a history of 
AEG work through 2009. 

In 2011, we proposed AEG techniques that find 
bugs and generate exploits, demonstrating them 
on 16 vulnerabilities.1 The initial work performed 
symbolic execution on source code to find bugs, then 
used dynamic binary analysis to generate control-
flow hijack exploits. Included were a number of 
optimizations for searching the state space (such as 
preconditioned symbolic execution and the buggy-
path first optimizations discussed earlier). In 2012, we 
introduced Mayhem, a tool and set of techniques for 
AEG on executable code.12 With Mayhem, we proposed 
techniques for actively managing symbolically 
executed program paths without exhausting memory 
and reasoning about symbolic memory addresses 
efficiently. Both papers1,12 targeted control-flow hijacks 
for buffer overflows and format-string vulnerabilities. 
Mayhem generated exploits for seven Windows and 22 
Linux vulnerabilities. Disregarding one long-running 
outlier, the average exploit-generation time in all 
experiments was 165 seconds. As of July 2013, Mayhem 
was able to generate exploits for buffer overflows, 
format strings, command injection, and some 
information-leak vulnerabilities. 

AEG1 and Mayhem12 were designed to demonstrate a 
bug is exploitable but do not try to bypass defenses that 
may otherwise protect a system. In 2011, we proposed 
techniques for bypassing the DEP and ASLR defenses 
implemented in Windows 7 and Linux, as well as exploit 
hardening and maintenance.31 

History of AEG
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amplified in AEG because AEG tech-
niques reason about both low-level 
code and large inputs, along with a few 
abstractions. However, specific charac-
teristics of AEG also afford researchers 
unique opportunities. 

Consider the affect of path prioriti-
zation on this program: 

    int x = get _ int();
    if((x % 2) == 0) {
      if(x > 10) vuln1(); 
      else if(x == 3) vuln2();
      else safe();
    } else { safe(); } 

Let xo be ao explore the program and 
find the vulnerability: 

(x0% 2) = 0  ∧ ¬(x0 > 10) ∧ ¬(x0 = 3)
(x0% 2) = 0  ∧ ¬(x0 > 10) ∧ x0 = 3
¬((x0% 2) = 0)
(x0% 2) = 0 ∧ x0 > 10

The first formula for the first path 
is satisfiable (such as when xo = 4), in-
dicating the path can be executed but 
is safe (unexploitable). The second 
formula corresponds to the infeasible 
path up to vuln2() and is unsatisfi-
able because the constraint (xo % 2) = 
0 and xo =3 cannot both be true simul-
taneously. Since vuln2 will never be 
executed, it can never be exploited. 
The third formula corresponds to a 
feasible, safe path. Only the fourth 
formula corresponding to the path 
up to vuln1() is satisfiable, where a 
satisfying assignment (such as xo =42) 
corresponds to an exploit. In general, 
the number of paths and formulas 
is infinite for programs with loops 
and exponential in terms of number 
of branches for any acyclic portion, 
making effective path selection a fun-
damental issue in AEG research. 

Path-selection heuristics guide 
execution so vulnerable paths are se-
lected early in exploration. Symbolic 
execution research is filled with a vari-
ety of approaches. For example, KLEE 
has options for depth-first traversal 
of the control-flow graph, as well as a 
randomized strategy.9 Microsoft uses 
generational search,20 which priori-
tizes symbolically executing program 
paths that branch off a known path 
taken by a fixed concrete seed input. 
Godefroid et al.’s research20 suggests 
generational search is more effective 

than either breadth-first search or 
depth-first search. 

Two techniques that proved effec-
tive in our experiments at Carnegie 
Mellon are “preconditioned symbolic 
execution” and “buggy-path first.”1 
Preconditioned symbolic execution 
first performs lightweight analysis 
to determine the necessary condi-
tions to exploit any lurking bugs, then 
prunes the search space of paths that 
do not meet these conditions. For ex-
ample, a lightweight program analy-
sis may determine the minimum 
length input string needed to trigger 
possible buffer overflows, and paths 
corresponding to inputs smaller than 
the minimum length can be pruned 
or skipped. 

The idea of buggy-path first is that 
any bug is a sign of programmer con-
fusion, increasing the likelihood of 
an exploitable bug being nearby. For 
example: 

 char buf[1024];
 memset(buf, 0, strlen(input));
 ...
 �strncpy(buf, input, 
strlen(input));

The second line contains a mistake 
where potentially more than 1,024B of 
buf are zeroed. This bug would likely 
not lead to a control-flow hijack, but 
does signal confusion that the length 
of input is somehow related to the size 
of buf. Buggy-path first would priori-
tize further exploration of the buggy 
path over other possible paths and 
thus discover the subsequent exploit-
able code more quickly in our tests. 
Note that a unique aspect of buggy-
path first is that execution continues 
under the assumption the bug has 
been triggered (such as in the example 
when nearby stack variables may have 
been zeroed inadvertently). 

A second core challenge of AEG 
research is optimizing SMT satisfi-
ability checks. In theory, each satisfi-
ability check is an NP-hard problem 
instance, but in practice many queries 
are resolved quickly. For example, in 
an experiment involving 5.6 million 
SMT queries, 99.98% of all solved que-
ries took one second or less. Domain-
specific optimizations in symbolic ex-
ecution (such as arithmetic and logical 
simplifications, strength reduction, 

A sound AEG 
technique says a 
bug is exploitable 
if it really is 
exploitable, 
while a complete 
technique reports 
all exploitable bugs. 
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Automatically 
generating an 
exploit provides 
proof that the 
reported bug is 
security-critical. 

concrete execution, and caching) all 
help speed queries.9,10,13,19,32 

In 2006 when we started using sym-
bolic execution and SMT solvers, we 
treated the SMT solver as a black box, 
focusing only on the symbolic execu-
tor. In hindsight, that approach was 
naive. In our research group we now 
believe it is more fruitful to view the 
SMT solver as a search procedure and 
use optimizations to guide the search. 
For example, one recurring challenge 
in AEG is checking satisfiability of for-
mulas that operate on memory with 
symbolic memory addresses. A sym-
bolic memory address occurs when 
an index into an array or memory is 
based on user input, as in: 

...; y = mem[i % 256]; if(y == 2) vuln(); ... 

Without more information, the SMT 
solver must do a case split over all pos-
sible values of i that may reach down-
stream statements (such as vuln). 
Case splits can quickly push an SMT 
solver off an exponential cliff. Sym-
bolic memory references often crop 
up in commonly occurring library 
calls (such as conversion functions 
like tolower and toascii) and pars-
ing functions (such as sscanf). Many 
symbolic executors mitigate the case 
split by concretizing symbolic ad-
dresses to a specific value (such as by 
picking i=42). 

Unfortunately, in our experiments 
with dozens of exploitable bugs we 
found concretization overconstrains 
formulas, leading our initial AEG 
techniques to miss 40% of known ex-
ploitable bugs in our test suite;12 for 
example, AEG may need to craft an 
input that becomes valid shellcode 
after being processed by tolower 
(such as tolower is f in Equation 2). 
In Mayhem, we proposed a number of 
optimizations for symbolic memory;12 
for example, one performs a type of 
strength reduction where symbolic 
memory accesses are encoded as 
piecewise linear equations.12 

Example application: Exploiting  
/usr/bin. Recall we fuzzed Debian  
/usr/bin and found 52 distinct bugs 
in 29 programs, including acpi _
listen. One goal was to determine 
which bugs are exploitable. 

We ran our binary-only AEG tool 
called Mayhem12 on each crash to de-

termine if we could automatically gen-
erate an exploit from the crashing path. 
We also manually checked whether it 
was possible to exploit the bug. Five of 
the 52 bugs were vulnerable to a con-
trol-flow hijack, and Mayhem generat-
ed exploits for four of them. The exploit 
for acpi _ listen took 0.5 seconds to 
generate, and the remaining three took 
8, 12, and 28 seconds, respectively. 

These results on /usr/bin offer 
three insights: First, current AEG tools 
like Mayhem are sound but incom-
plete. A sound AEG technique says a 
bug is exploitable if it really is exploit-
able, while a complete technique re-
ports all exploitable bugs. Unfortunate-
ly, Rice’s theorem implies developing 
a sound and complete analysis for any 
nontrivial program property is in gen-
eral undecidable. Second, AEG can be 
very fast when it succeeds. And finally, 
there is ample room for improving 
AEG in particular and symbolic execu-
tion and software model checking in 
general. For example, we analyzed why 
Mayhem failed on the last vulnerability, 
finding the problem was a single con-
straint that pushed the SMT solver (we 
use Z3) off an exponential cliff. Perhaps 
comically, manual analysis showed the 
constraint was superfluous but was not 
recognized as such by the automatic 
formula optimizer. Once the constraint 
was removed from the formula, exploit 
generation took less than five seconds. 

Real-World Considerations 
Security practitioners often focus only 
on exploits for programs on the at-
tack surface of a system.27 The attack 
surface consists roughly of the set of 
programs, files, protocols, services, 
and other channels available to an 
attacker; examples include network 
daemons, programs called from Web 
servers on untrusted inputs, privileged 
programs, and media players. Our ex-
ample acpi _ listen is not on the at-
tack surface. We chose acpi _ listen 
because it highlights the steps of AEG, 
yet disclosing the exploit would do lit-
tle damage because it is not on the at-
tack surface. Interestingly, the acpi _
listen vulnerability is remarkably 
similar to a recent PHP vulnerability 
that performs an unchecked copy on 
the same data structure.14 

Overall, AEG techniques are valu-
able because they show whether a pro-
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gram can be exploited regardless of 
whether it is on the attack surface or 
not. For example, a program not on the 
attack surface in one deployment may 
be on the surface for another. More 
generally, programs on the attack 
surface are simply a subset of all pro-
grams; if we can handle all programs 
we can surely handle the subset on 
the attack surface. Current techniques 
have found exploits on the attack sur-
face, albeit not in widely used large ap-
plications like Internet Explorer. For 
example, as we wrote this article we 
ran Mayhem on additional examples 
that are on the attack surface, finding a 
number of zero-day exploits for media 
applications (such as ezstream and 
imview) and network applications 
(such as latd and ndtpd). 

Another consideration is additional 
layers of defense that might protect 
otherwise exploitable programs. Two 
popular operating-system-level de-
fenses against control-flow hijacks are 
data-execution prevention, or DEP, and 
address space layout randomization, 
or ASLR. 

DEP marks memory pages either 
“writable” or “executable” but forbids 
a memory page from being both. DEP 
prevents an exploit that requires writ-
ing and then executing shellcode on 
a memory page from working (such 
as the shellcode mentioned earlier). 
Unfortunately, attackers have devel-
oped techniques to bypass DEP. One 
such method is called return-to-libc 
where the attacker shellcode executes 
code already present in memory (such 
as by running system (“/bin/sh”) in 
libc directly) rather than writing new 
code to memory. Return-oriented pro-
gramming, or ROP, uses instruction 
sequences already present in memo-
ry, called “gadgets.” Shacham et al.33 
showed it is possible to find a Turing-
complete set of gadgets in libc. 

ASLR prevents control-flow hijacks 
by randomizing the location of ob-
jects in memory. Recall that to exploit 
acpi _ listen, the attacker needs 
to know the address of the shellcode. 
ASLR randomizes addresses so vul-
nerable programs likely crash instead 
of successfully redirecting control to 
the shellcode. ASLR is an important 
defense but does not fix the underly-
ing vulnerabilities and thus may pro-
vide limited protection; for example, 

Windows and Linux systems running 
on 32b processors may have insuffi-
cient randomness to provide strong 
security,34 though 64b architectures 
can address this problem. Particular 
deployments of ASLR may have weak-
nesses as well; for example as of Janu-
ary 2013 the program image of Linux 
executables is often not randomized. 
Even when randomized well, addi-
tional vulnerabilities may disclose 
information that can subsequently be 
used in a control-hijack exploit. 

Schwartz et al.31 proposed exploit 
hardening, which takes an exploit that 
works against an undefended system 
and hardens it to bypass defenses. 
One step in exploit hardening is to 
automatically generate ROP payloads 
(to bypass DEP) that take advantage 
of small portions of unrandomized 
memory (to bypass ASLR on the 2013 
implementations of ASLR on Windows 
7 and Linux). In particular, Schwartz et 
al. showed ROP payloads can be gener-
ated for most programs in Windows 
and Linux that have at least 20KB of 
unrandomized code, which is true for 
many programs. Exploit hardening 
can be paired with AEG to check the 
end-to-end security of a program run-
ning on a specific system. 

Finally, DEP and ASLR defend only 
against memory overwrite attacks. 
Other vulnerabilities (such as informa-
tion disclosure, denial of service, and 
command injection) are also critical in 
practice; for example, DEP and ASLR 
do not protect against exploits for 
the command-injection vulnerability 
found by Mayhem in ezstream. 

Conclusion 
AEG is far from being solved. Scalabil-
ity will always be an open and inter-
esting problem. As of February 2013, 
AEG tools typically scale to finding 
buffer overflow exploits in programs 
the size of common Linux utilities. 
In Mayhem, one current bottleneck is 
driving the symbolic executor to the 
buggy portion of the state space. As a 
result, programs with deep bugs are 
typically beyond the scope of our cur-
rent Mayhem AEG tool. Examples in-
clude large programs with bugs deep 
in the program (such as Internet Ex-
plorer and Adobe Reader), as well as 
those with large protocol state (such 
as first authenticate, then send mul-

tiple fragmented messages to exploit 
a bug). In addition, programs with 
complex functions (such as hashes) 
are often a bottleneck for SMT solv-
ers. One promising data point is that 
Microsoft’s SAGE tool routinely finds 
bugs in large applications,20 though 
automatically generating exploits for 
those bugs is an open challenge with 
huge potential rewards. 

More fundamentally, AEG must 
expand to involve a wider variety of 
exploitability properties and scale to 
new program domains. While buffer 
overflows continue to be exploited3,35 
integer overflows, use-after-free, heap 
overflows, and Web vulnerabilities are 
also important (and popular) targets;3 
for example, heap overflows against 
modern operating systems like Win-
dows 8 pose difficult challenges (such 
as modeling internal heap metadata 
and new heap allocators with built-in 
defenses). In our experience, the prob-
lem is often not coming up with some 
formalism, but with the right formal-
ism and optimizations that make AEG 
efficient and practical on real-world 
programs and vulnerabilities. 

Except for a few examples (such as 
Ganapathy et al.’s17 exploits against 
a particular cryptographic API), most 
work in AEG has focused on exploiting 
programs in type-unsafe languages, 
though type safety is no panacea. In-
formation flow, command injection, 
and many other common exploitable 
bugs can all occur in typical type-safe 
languages. Moreover, the runtime 
environment itself may have security-
critical flaws. For example, the most 
commonly exploited vulnerabilities 
in 2011 were in Java.2 

AEG can be modeled as a verifica-
tion task; therefore, the better pro-
grammers and researchers get at soft-
ware verification, the better they will 
likely get at automatically generating 
exploits. Some security researchers 
are pessimistic about the practicality 
of AEG in many application settings,36 
rightfully pointing out significant scal-
ability hurdles and the lack of exploits 
against vulnerabilities like use-after-
free. We are more optimistic. Eight 
years ago, AEG techniques were re-
stricted to analyzing a single API call. 
Today, AEG can both automatically 
find and generate exploits in com-
mon binaries. In an effort to improve 
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security in Debian, we started a proj-
ect in 2013 to check all programs in  
/usr/bin for exploitable bugs and so 
far have found more than 13,000 with 
more than 150 exploitable. Advance-
ments will continue to be fueled by 
better tools, techniques, and improve-
ments in verification and security. 
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