
CSE 410/510 Special Topics: 
Software Security

Instructor: Dr. Ziming Zhao

Location: Norton 218
Time: Monday, 5:00 PM - 7:50 PM



Course Evaluation

Begins: 10/3/2021
Ends: 10/10/2021

If 90% of student submit the evaluation, all of the class will get 8 bonus points.
41 students.



Midterm Written Exam and CTF

10/18/2021 in class.

30 mins written exam and 2.5 hours CTF.



Last Class

1. Stack-based buffer overflow (Sequential buffer overflow)
a. Overflow RET address to execute a function
b. Overflow RET and more to execute a function with parameters
c. Return to shellcode



This Class

1. Stack-based buffer overflow
a. Place the shellcode at other locations.
b. Overwrite Saved EBP. 
c. Defense.



Conditions we depend on to pull off the attack of 
returning to shellcode on stack

1. The ability to put the shellcode onto stack
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed
4. Know the address of the destination function



Inject shellcode in 
env variable  

and 
command line arguments



Where to put the shellcode?

RET

Saved %ebp

Shellcode 
= 

28 bytes

NOPs = 20 
bytes

RET

Saved %ebp

Shellcode 
= 

28 bytes

NOPs = ??? 
bytes

Garbage



Start a Process

_start ###part of the program; entry point
→ calls __libc_start_main() ###libc

→ calls main() ###part of the program

https://www.bottomupcs.com/starting_a_process.xhtml



The Stack Layout before main()

The stack starts out storing (among 
some other things) the environment 
variables and the program 
arguments. 

$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$ ./stacklayout hello world
hello world

“QT_xxx=xxx\0”

“SESSION_xxx=xxx\0”

“SHELL=xxx\0”

NULL

“world\0”

“hello\0”

“./program\0”

NULL

High 
Addr

envp[2]

envp[1]

envp[0]

NULL

argv[1]

argv[0]

argc = 3

STACK keeps going downwards

Low 
Addr

argv[2]



Buffer Overflow Example: code/overflowret5 32-bit

int vulfoo()
{
  char buf[4];

  fgets(buf, 18, stdin);

  return 0;
}

int main(int argc, char *argv[])
{
  vulfoo();
}





000011cd <vulfoo>:
    11cd: f3 0f 1e fb          endbr32 
    11d1: 55                   push   %ebp
    11d2: 89 e5                mov    %esp,%ebp
    11d4: 53                   push   %ebx
    11d5: 83 ec 04             sub    $0x4,%esp
    11d8: e8 45 00 00 00       call   1222 <__x86.get_pc_thunk.ax>
    11dd: 05 f7 2d 00 00       add    $0x2df7,%eax
    11e2: 8b 90 20 00 00 00    mov    0x20(%eax),%edx
    11e8: 8b 12                mov    (%edx),%edx
    11ea: 52                   push   %edx
    11eb: 6a 12                push   $0x12
    11ed: 8d 55 f8             lea    -0x8(%ebp),%edx
    11f0: 52                   push   %edx
    11f1: 89 c3                mov    %eax,%ebx
    11f3: e8 78 fe ff ff       call   1070 <fgets@plt>
    11f8: 83 c4 0c             add    $0xc,%esp
    11fb: b8 00 00 00 00       mov    $0x0,%eax
    1200: 8b 5d fc             mov    -0x4(%ebp),%ebx
    1203: c9                   leave  
    1204: c3                   ret    

‘\x00’

‘\x0a’

RET = 4 bytes

Old %ebp = 4 bytes

Buf @ -8(%ebp)



The Stack Layout before main()

The stack starts out storing (among 
some other things) the environment 
variables and the program 
arguments. 

$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$ ./stacklayout hello world
hello world

“QT_xxx=xxx\0”

“SESSION_xxx=xxx\0”

“SHELL=xxx\0”

NULL

“world\0”

“hello\0”

“./program\0”

NULL

High 
Addr

envp[2]

envp[1]

envp[0]

NULL

argv[1]

argv[0]

argc = 3

STACK keeps going downwards

Low 
Addr

argv[2]



export SCODE=$(python -c "print '\x90'*500 + 
'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\x89\xc2\xb0\x0b
\xcd\x80\x31\xc0\x40\xcd\x80'")

int main(int argc, char *argv[])
{

if (argc != 2)
{

puts("Usage: getenv envname");
return 0;

}

printf("%s is at %p\n", argv[1], getenv(argv[1]));
return 0;

}

getenv.c



Frame Pointer Attack
Change the upper level func’s return address



Overflow6 32bit

int vulfoo(char *p)
{

char buf[4];

memcpy(buf, p, 12);

return 0;
}

int main(int argc, char *argv[])
{

if (argc != 2)
return 0;

vulfoo(argv[1]);
}



Overflow6 32bit

000011cd <vulfoo>:
    11cd: f3 0f 1e fb          endbr32 
    11d1: 55                   push   %ebp
    11d2: 89 e5                mov    %esp,%ebp
    11d4: 53                   push   %ebx
    11d5: 83 ec 04             sub    $0x4,%esp
    11d8: e8 58 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    11dd: 05 fb 2d 00 00       add    $0x2dfb,%eax
    11e2: 6a 0c                push   $0xc
    11e4: ff 75 08             pushl  0x8(%ebp)
    11e7: 8d 55 f8             lea    -0x8(%ebp),%edx
    11ea: 52                   push   %edx
    11eb: 89 c3                mov    %eax,%ebx
    11ed: e8 7e fe ff ff       call   1070 <memcpy@plt>
    11f2: 83 c4 0c             add    $0xc,%esp
    11f5: b8 00 00 00 00       mov    $0x0,%eax
    11fa:8b 5d fc             mov    -0x4(%ebp),%ebx
    11fd: c9                   leave  
    11fe:c3                   ret    

p

RET

Saved EBP

Buf = 8 bytes



Overflow6 32bit

000011cd <vulfoo>:
    11cd: f3 0f 1e fb          endbr32 
    11d1: 55                   push   %ebp
    11d2: 89 e5                mov    %esp,%ebp
    11d4: 53                   push   %ebx
    11d5: 83 ec 04             sub    $0x4,%esp
    11d8: e8 58 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    11dd: 05 fb 2d 00 00       add    $0x2dfb,%eax
    11e2: 6a 0c                push   $0xc
    11e4: ff 75 08             pushl  0x8(%ebp)
    11e7: 8d 55 f8             lea    -0x8(%ebp),%edx
    11ea: 52                   push   %edx
    11eb: 89 c3                mov    %eax,%ebx
    11ed: e8 7e fe ff ff       call   1070 <memcpy@plt>
    11f2: 83 c4 0c             add    $0xc,%esp
    11f5: b8 00 00 00 00       mov    $0x0,%eax
    11fa:8b 5d fc             mov    -0x4(%ebp),%ebx
    11fd: c9                   leave  
    11fe:c3                   ret    

p

RET

Saved EBP = AAAA

Buf = 8 bytes

%ebp = AAAA

%esp



Overflow6 32bit

000011ff <main>:
    11ff: f3 0f 1e fb          endbr32 
    1203: 55                   push   %ebp
    1204: 89 e5                mov    %esp,%ebp
    1206: e8 2a 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    120b: 05 cd 2d 00 00       add    $0x2dcd,%eax
    1210: 83 7d 08 02          cmpl   $0x2,0x8(%ebp)
    1214: 74 07                je     121d <main+0x1e>
    1216: b8 00 00 00 00       mov    $0x0,%eax
    121b: eb 16                jmp    1233 <main+0x34>
    121d: 8b 45 0c             mov    0xc(%ebp),%eax
    1220: 83 c0 04             add    $0x4,%eax
    1223: 8b 00                mov    (%eax),%eax
    1225: 50                   push   %eax
    1226: e8 a2 ff ff ff       call   11cd <vulfoo>
    122b: 83 c4 04             add    $0x4,%esp
    122e: b8 00 00 00 00       mov    $0x0,%eax
    1233: c9                   leave  
    1234: c3                   ret    

p

RET

Saved EBP

Buf = 8 bytes

%esp ...

%ebp = AAAA



Overflow6 32bit

000011ff <main>:
    11ff: f3 0f 1e fb          endbr32 
    1203: 55                   push   %ebp
    1204: 89 e5                mov    %esp,%ebp
    1206: e8 2a 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    120b: 05 cd 2d 00 00       add    $0x2dcd,%eax
    1210: 83 7d 08 02          cmpl   $0x2,0x8(%ebp)
    1214: 74 07                je     121d <main+0x1e>
    1216: b8 00 00 00 00       mov    $0x0,%eax
    121b: eb 16                jmp    1233 <main+0x34>
    121d: 8b 45 0c             mov    0xc(%ebp),%eax
    1220: 83 c0 04             add    $0x4,%eax
    1223: 8b 00                mov    (%eax),%eax
    1225: 50                   push   %eax
    1226: e8 a2 ff ff ff       call   11cd <vulfoo>
    122b: 83 c4 04             add    $0x4,%esp
    122e: b8 00 00 00 00       mov    $0x0,%eax
    1233: c9                   leave  
    1234: c3                   ret    

p

RET

Saved EBP

Buf = 8 bytes

%esp ...

%ebp = AAAA



Overflow6 32bit

000011ff <main>:
    11ff: f3 0f 1e fb          endbr32 
    1203: 55                   push   %ebp
    1204: 89 e5                mov    %esp,%ebp
    1206: e8 2a 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    120b: 05 cd 2d 00 00       add    $0x2dcd,%eax
    1210: 83 7d 08 02          cmpl   $0x2,0x8(%ebp)
    1214: 74 07                je     121d <main+0x1e>
    1216: b8 00 00 00 00       mov    $0x0,%eax
    121b: eb 16                jmp    1233 <main+0x34>
    121d: 8b 45 0c             mov    0xc(%ebp),%eax
    1220: 83 c0 04             add    $0x4,%eax
    1223: 8b 00                mov    (%eax),%eax
    1225: 50                   push   %eax
    1226: e8 a2 ff ff ff       call   11cd <vulfoo>
    122b: 83 c4 04             add    $0x4,%esp
    122e: b8 00 00 00 00       mov    $0x0,%eax
    1233: c9                   leave  
    1234: c3                   ret    

p

RET

Saved EBP

Buf = 8 bytes

...

1. %esp = AAAA
2. %ebp = *(AAAA); %esp += 4, 

AAAE
mov %ebp, %esp 
pop %ebp



Overflow6 32bit

000011ff <main>:
    11ff: f3 0f 1e fb          endbr32 
    1203: 55                   push   %ebp
    1204: 89 e5                mov    %esp,%ebp
    1206: e8 2a 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    120b: 05 cd 2d 00 00       add    $0x2dcd,%eax
    1210: 83 7d 08 02          cmpl   $0x2,0x8(%ebp)
    1214: 74 07                je     121d <main+0x1e>
    1216: b8 00 00 00 00       mov    $0x0,%eax
    121b: eb 16                jmp    1233 <main+0x34>
    121d: 8b 45 0c             mov    0xc(%ebp),%eax
    1220: 83 c0 04             add    $0x4,%eax
    1223: 8b 00                mov    (%eax),%eax
    1225: 50                   push   %eax
    1226: e8 a2 ff ff ff       call   11cd <vulfoo>
    122b: 83 c4 04             add    $0x4,%esp
    122e: b8 00 00 00 00       mov    $0x0,%eax
    1233: c9                   leave  
    1234: c3                   ret    

p

RET

Saved EBP

Buf = 8 bytes

...

1. %eip = *(AAAE)



Overflow6 32bit

000011ff <main>:
    11ff: f3 0f 1e fb          endbr32 
    1203: 55                   push   %ebp
    1204: 89 e5                mov    %esp,%ebp
    1206: e8 2a 00 00 00       call   1235 <__x86.get_pc_thunk.ax>
    120b: 05 cd 2d 00 00       add    $0x2dcd,%eax
    1210: 83 7d 08 02          cmpl   $0x2,0x8(%ebp)
    1214: 74 07                je     121d <main+0x1e>
    1216: b8 00 00 00 00       mov    $0x0,%eax
    121b: eb 16                jmp    1233 <main+0x34>
    121d: 8b 45 0c             mov    0xc(%ebp),%eax
    1220: 83 c0 04             add    $0x4,%eax
    1223: 8b 00                mov    (%eax),%eax
    1225: 50                   push   %eax
    1226: e8 a2 ff ff ff       call   11cd <vulfoo>
    122b: 83 c4 04             add    $0x4,%esp
    122e: b8 00 00 00 00       mov    $0x0,%eax
    1233: c9                   leave  
    1234: c3                   ret    

p

RET

Saved EBP = PPPP

Buf = 8 bytes

...

PPPP



5 mins break



Conditions we depend on to pull off the attack of 
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed or to overwrite Saved EBP
4. Know the address of the destination function



Conditions we depend on to pull off the attack of 
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed or to overwrite Saved EBP
4. Know the address of the destination function



Defense 1:
Data Execution Prevention 

(DEP, W⨁X, NX)



Harvard vs. Von-Neumann Architecture

Harvard Architecture
The Harvard architecture stores machine instructions and data in separate memory units that are 
connected by different busses. In this case, there are at least two memory address spaces to 
work with, so there is a memory register for machine instructions and another memory register 
for data. Computers designed with the Harvard architecture are able to run a program and 
access data independently, and therefore simultaneously. Harvard architecture has a strict 
separation between data and code. Thus, Harvard architecture is more complicated but separate 
pipelines remove the bottleneck that Von Neumann creates.

Von-Neumann architecture
In a Von-Neumann architecture, the same memory and bus are used to store both data and 
instructions that run the program. Since you cannot access program memory and data memory 
simultaneously, the Von Neumann architecture is susceptible to bottlenecks and system 
performance is affected.



Older CPUs

Older CPUs: Read permission on a page implies execution. So all 
readable memory was executable.

AMD64 – introduced NX bit (No-eXecute in 2003) 

Windows Supporting DEP from Windows XP SP2 (in 2004)

Linux Supporting NX since 2.6.8 (in 2004)



Modern CPUs

Modern architectures support memory permissions:

- PROT_READ allows the process to read memory
- PROT_WRITE allows the process to write memory
- PROT_EXEC allows the process to execute memory



gcc parameter -z execstack to disable this protection





What DEP cannot prevent

Can still corrupt stack or function pointers or critical data on the heap 

As long as RET (saved EIP) points into legit code section, W⊕X protection 
will not block control transfer



Ret2libc 32bit
Bypassing NX



Discovered by Solar Designer, 1997



Ret2libc

Now programs built 
with non-executable 
stack.

Then, how to run a 
shell? Ret to C library 
system(“/bin/sh”) like 
how we called 
printsecret() in 
overflowret



Buffer Overflow Example: code/overflowret4 32-bit 
(./or4nxnc)

int vulfoo()
{
  char buf[30];

  gets(buf);
  return 0;
}

int main(int argc, char *argv[])
{
  vulfoo();
  printf("I pity the fool!\n");  
}

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on 
Ubuntu to disable ASLR temporarily   



Conditions we depend on to pull off the attack of 
ret2libc

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is 

executed or to overwrite Saved EBP
4. Know the address of the destination function and arguments



Control Hijacking Attacks

Control flow 
● Order in which individual statements, instructions or function calls of a 

program are executed or evaluated

Control Hijacking Attacks (Runtime exploit) 
● A control hijacking attack exploits a program error, particularly a 

memory corruption vulnerability, at application runtime to subvert the 
intended control-flow of a program. 

● Alter a code pointer (i.e., value that influences program counter) or, Gain 
control of the instruction pointer %eip 

● Change memory region that should not be accessed



Code Injection Attacks

Code-injection Attacks 
● a subclass of control hijacking attacks that subverts the intended 

control-flow of a program to previously injected malicious code  

Shellcode 
● code supplied by attacker − often saved in buffer being overflowed − 

traditionally transferred control to a shell (user command-line 
interpreter) 

● machine code − specific to processor and OS − traditionally needed 
good assembly language skills to create − more recently have 
automated sites/tools



Code-Reuse Attack

Code-Reuse Attack: a subclass of control-flow attacks that subverts the 
intended control-flow of a program to invoke an unintended execution 
path inside the original program code.

Return-to-Libc Attacks (Ret2Libc)
Return-Oriented Programming (ROP)
Jump-Oriented Programming (JOP)



Exercise: Overthewire /maze/maze2

1. Open a terminal
2. Type: ssh -p 2225 maze2@maze.labs.overthewire.org
3. Input password: fooghihahr
4. cd /maze; this is where the binary are
5. Your goal is to get the password of maze3 

Overthewire

http://overthewire.org/wargames/



Attacker’s Goal

Take control of the victim’s machine
● Hijack the execution flow of a running program
● Execute arbitrary code

Requirements
● Inject attack code or attack parameters
● Abuse vulnerability and modify memory such that control flow is 

redirected
Change of control flow
● alter a code pointer (RET, function pointer, etc.)
● change memory region that should not be accessed



Overflow Types

Overflow some code pointer

● Overflow memory region on the stack
○ overflow function return address
○ overflow function frame (base) pointer
○ overflow longjmp buffer

● Overflow (dynamically allocated) memory region on the heap
● Overflow function pointers

○ stack, heap, BSS



Other pointers?

Can we exploit other pointers as well?

1. Memory that is used in a value to influence mathematical operations, 
conditional jumps.

2. Memory that is used as a read pointer (or offset), allowing us to force 
the program to access arbitrary memory.

3. Memory that is used as a write pointer (or offset), allowing us to force 
the program to overwrite arbitrary memory.

4. Memory that is used as a code pointer (or offset), allowing us to 
redirect program execution!

Typically, you use one or more vulnerabilities to achieve multiple of these 
effects.



Defenses

● Prevent buffer overflow
○ A direct defense
○ Could be accurate but could be slow
○ Good in theory, but not practical in real world

● Make exploit harder
○ An indirect defense
○ Could be inaccurate but could be fast
○ Simple in theory, widely deployed in real world 



Examples

● Base and bound check
○ Prevent buffer overflow!
○ A direct defense

● Stack Cookie
○ An indirect defense
○ Prevent overwriting return address

● Data execution prevention (DEP, NX, etc.)
○ An indirect defense
○ Prevent using of shellcode on stack



Spatial Memory Safety – Base and Bound check

char *a
• char *a_base;
• char *a_bound;

a = (char*)malloc(512)
• a_base = a;
• a_bound = a+512

Access must be between [a_base, a_bound)
• a[0], a[1], a[2], ..., and a[511] are OK
• a[512] NOT OK
• a[-1] NOT OK



Spatial Memory Safety – Base and Bound check

Propagation

• char *b = a;
• b_base = a_base;
• b_bound = a_bound;

• char *c = &b[2];
• c_base = b_base;
• c_bound = b_bound;



Overhead - Based and Bound

+2x overhead on storing a pointer
• char *a

• char *a_base;
• char *a_bound;

+2x overhead on assignment
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

+2 comparisons added on access
• c[i]

• if(c+i >= c_base)
• if(c+i < c_bound)



PLDI 09



ASPLOS 09



Defense-2:
Shadow Stack



Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf



Traditional Shadow Stack



Traditional Shadow Stack



Overhead - Traditional Shadow Stack

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function



Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf



Parallel Shadow Stack



Overhead Comparison

The overhead is roughly 10% for a traditional shadow stack. 

The parallel shadow stack overhead is 3.5%.



Defense-3:
Stack cookies; Canary

specific to sequential stack overflow





StackGuard

A compiler technique that attempts to eliminate buffer overflow 
vulnerabilities 
● No source code changes 
● Patch for the function prologue and epilogue 

○ Prologue: push an additional value into the stack (canary)
○ Epilogue: check the canary value hasn’t changed. If changed, 

exit.



Buffer Overflow Example: code/overflowret4

int vulfoo()
{
  char buf[30];

  gets(buf);
  return 0;
}

int main(int argc, char *argv[])
{
  vulfoo();
  printf("I pity the fool!\n");  
}

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on 
Ubuntu to disable ASLR temporarily   



With and without Canary 32bit

000011ed <vulfoo>:
    11ed:f3 0f 1e fb          endbr32 
    11f1: 55                   push   %ebp
    11f2: 89 e5                mov    %esp,%ebp
    11f4: 53                   push   %ebx
    11f5: 83 ec 34             sub    $0x34,%esp
    11f8: e8 64 00 00 00       call   1261 <__x86.get_pc_thunk.ax>
    11fd: 05 d7 2d 00 00       add    $0x2dd7,%eax
    1202:83 ec 0c             sub    $0xc,%esp
    1205:8d 55 d0             lea    -0x30(%ebp),%edx
    1208:52                   push   %edx
    1209:89 c3                mov    %eax,%ebx
    120b:e8 70 fe ff ff       call   1080 <gets@plt>
    1210:83 c4 10             add    $0x10,%esp
    1213:b8 00 00 00 00       mov    $0x0,%eax
    1218:8b 5d fc             mov    -0x4(%ebp),%ebx
    121b:c9                   leave  
    121c: c3                   ret    

0000120d <vulfoo>:
    120d:f3 0f 1e fb          endbr32 
    1211:55                   push   %ebp
    1212:89 e5                mov    %esp,%ebp
    1214:53                   push   %ebx
    1215:83 ec 34             sub    $0x34,%esp
    1218:e8 81 00 00 00       call   129e <__x86.get_pc_thunk.ax>
    121d:05 b3 2d 00 00       add    $0x2db3,%eax
    1222:65 8b 0d 14 00 00 00 mov    %gs:0x14,%ecx
    1229:89 4d f4             mov    %ecx,-0xc(%ebp)
    122c: 31 c9                xor    %ecx,%ecx
    122e:83 ec 0c             sub    $0xc,%esp
    1231:8d 55 cc             lea    -0x34(%ebp),%edx
    1234:52                   push   %edx
    1235:89 c3                mov    %eax,%ebx
    1237:e8 54 fe ff ff       call   1090 <gets@plt>
    123c: 83 c4 10             add    $0x10,%esp
    123f: b8 00 00 00 00       mov    $0x0,%eax
    1244:8b 4d f4             mov    -0xc(%ebp),%ecx
    1247:65 33 0d 14 00 00 00 xor    %gs:0x14,%ecx
    124e:74 05                je     1255 <vulfoo+0x48>
    1250:e8 db 00 00 00       call   1330 <__stack_chk_fail_local>
    1255:8b 5d fc             mov    -0x4(%ebp),%ebx
    1258:c9                   leave  
    1259:c3                   ret    

or4

or4nx



Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86


With and without Canary
or4 or4nx

...

...

RET

Saved %ebp

buf 0x30

...

...

RET

Saved %ebp

buf

0x34

%ebp %ebp

Canary%ebp - 0xc

0x28 = 40



With and without Canary 64bit

0000000000001169 <vulfoo>:
    1169:f3 0f 1e fa          endbr64 
    116d:55                   push   %rbp
    116e:48 89 e5             mov    %rsp,%rbp
    1171:48 83 ec 30          sub    $0x30,%rsp
    1175:48 8d 45 d0          lea    -0x30(%rbp),%rax
    1179:48 89 c7             mov    %rax,%rdi
    117c: b8 00 00 00 00       mov    $0x0,%eax
    1181:e8 ea fe ff ff       callq  1070 <gets@plt>
    1186:b8 00 00 00 00       mov    $0x0,%eax
    118b:c9                   leaveq 
    118c: c3                   retq 

0000000000001189 <vulfoo>:
    1189:f3 0f 1e fa          endbr64 
    118d:55                   push   %rbp
    118e:48 89 e5             mov    %rsp,%rbp
    1191:48 83 ec 30          sub    $0x30,%rsp
    1195:64 48 8b 04 25 28 00 mov    %fs:0x28,%rax
    119c: 00 00 
    119e:48 89 45 f8          mov    %rax,-0x8(%rbp)
    11a2:31 c0                xor    %eax,%eax
    11a4:48 8d 45 d0          lea    -0x30(%rbp),%rax
    11a8:48 89 c7             mov    %rax,%rdi
    11ab:b8 00 00 00 00       mov    $0x0,%eax
    11b0:e8 db fe ff ff       callq  1090 <gets@plt>
    11b5:b8 00 00 00 00       mov    $0x0,%eax
    11ba:48 8b 55 f8          mov    -0x8(%rbp),%rdx
    11be:64 48 33 14 25 28 00 xor    %fs:0x28,%rdx
    11c5: 00 00 
    11c7: 74 05                je     11ce <vulfoo+0x45>
    11c9: e8 b2 fe ff ff       callq  1080 <__stack_chk_fail@plt>
    11ce: c9                   leaveq 
    11cf: c3                   retq   

or464

or464nx



Overhead - Canary

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function



%gs:0x14, %fs:0x28

A random canary is generated at program initialization, and stored in a global 
variable (pointed by %gs, %fs).

Applications on x86-64 uses FS or GS to access per thread context including 
Thread Local Storage (TLS).

Thread-local storage (TLS) is a computer programming method that uses static or 
global memory local to a thread.

Pwngdb command tls to get the address of tls

Data Structure 
https://code.woboq.org/userspace/glibc/sysdeps/x86_64/nptl/tls.h.html



Canary Types

● Random Canary – The original concept for canary values took a pseudo random value 
generated when program is loaded

● Random XOR Canary – The random canary concept was extended in StackGuard 
version 2 to provide slightly more protection by performing a XOR operation on the 
random canary value with the stored control data.

● Null Canary – The canary value is set to 0x00000000 which is chosen based upon the 
fact that most string functions terminate on a null value and should not be able to 
overwrite the return address if the buffer must contain nulls before it can reach the 
saved address.

● Terminator Canary – The canary value is set to a combination of Null, CR, LF, and 0xFF. 
These values act as string terminators in most string functions, and accounts for 
functions which do not simply terminate on nulls such as gets().



Terminator Canary

0x000aff0d

\x00: terminates strcpy
\x0a: terminates gets (LF)
\xff: Form feed
\x0d: Carriage return



Evolution of Canary

StackGuard published at the 1998 USENIX Security. StackGuard was introduced as a set of 
patches to the GCC 2.7.

From 2001 to 2005, IBM developed ProPolice. It places buffers after local pointers in the stack 
frame. This helped avoid the corruption of pointers, preventing access to arbitrary memory 
locations.

In 2012, Google engineers implemented the -fstack-protector-strong flag to strike a better 
balance between security and performance. This flag protects more kinds of vulnerable functions 
than -fstack-protector does, but not every function, providing better performance than 
-fstack-protector-all. It is available in GCC since its version 4.9.

Most packages in Ubuntu are compiled with -fstack-protector since 6.10. Every Arch Linux 
package is compiled with -fstack-protector since 2011. All Arch Linux packages built since 4 May 
2014 use -fstack-protector-strong.



ProPolice

int foo() {
  int a;            
  int *b;            
  char c[10];        
  char d[3];

  b = &a;            
  strcpy(c,get_c());
  *b = 5;  
  strcpy(d,get_d());
  return *b;  
}

RET

Saved %ebp

Default Layout

a

b

c

d

RET

Saved %ebp

ProPolice

a

b

c

d

Canary



Bypass Canary
-fstack-protector



Bypass Canary

1. Read the canary from the stack due to some 
information leakage vulnerabilities, e.g. format 
string

2. Brute force. 32-bit version. Least significant is 0, 
so there are 256^3 combinations = 16,777,216

If it take 1 second to guess once, it will take at most 
194 days to guess the canary



Bypass Canary - Apps using fork()

1. Canary is generated when the process is created
2. A child process will not generate a new canary
3. So, we do not need to guess 3 bytes canary at 

the same time. Instead, we guess one byte a 
time. At most 256*3 = 768 trials. 



code/bypasscanary

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h> 

char g_buffer[200] = {0};
int g_read = 0;

int vulfoo()
{

char buf[40];
FILE *fp;

while (1)
{

fp = fopen("exploit", "r");
if (fp)

break;}

usleep(500 * 1000);
g_read = 0;
memset(g_buffer, 0, 200);
g_read = fread(g_buffer, 1, 70, fp);
printf("Child reads %d bytes. Guessed canary is %x.\n", 

g_read, *((int*)(&g_buffer[40])));

memcpy(buf, g_buffer, g_read);

fclose(fp);
remove("exploit");
return 0;

}

int main(int argc, char *argv[])
{

while(1)
{

if (fork() == 0)
{

//child
printf("Child pid: %d\n", getpid());
vulfoo();
printf("I pity the fool!\n");
exit(0);

}
else
{

//parent
int status;
printf("Parent pid: %d\n", getpid());
waitpid(-1, &status, 0);

}
}  

}



bc

...

...

RET

Saved %ebp

buf

0x34 = 52

%ebp

Canary%ebp - 0xc

0x28 = 40

Canary: 0x??????00



Demo

1. Assume ASLR is disable. 
2. To make things easier, we put the shellcode in env variable.
3. Write a script to guess the canary byte by byte.
4. Send the full exploit to the program

export SCODE=$(python -c "print '\x90'*500 + 
'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\x89\xc2\xb0\x0b
\xcd\x80\x31\xc0\x40\xcd\x80'")


