
CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Norton 218
Time: Monday, 5:00 PM - 7:50 PM

Second Course Evaluation

Begins: 11/26/2021
Ends: 12/12/2021

If 90% of student submit the evaluation, everyone gets 8 bonus points.
44 students in total right now. So, we need 40 reviews.

Last class

1. Cache side channel attack
2. Meltdown
3. Spectre

https://meltdownattack.com/

Today

1. Heap and heap exploitation

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

The Heap

The heap is pool of memory used for dynamic allocations at runtime

– malloc() grabs memory on the heap
– free() releases memory on the heap

Both are standard C library interfaces. Neither of them directly mapps to
a system call.

Malloc and Free Prototype

void* malloc(size_t size);

Allocates size bytes of uninitialized storage. If allocation
succeeds, returns a pointer that is suitably aligned for any
object type with fundamental alignment.

void free(void* ptr);

Deallocates the space previously allocated by malloc(), etc.

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

How to use malloc() and free()

int main()
{

char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s!\n”, buffer);

/* destroy our dynamically allocated buffer */
free(buffer);
return 0;

}

Heap vs. Stack

Heap
● Dynamic memory

allocations at runtime

● Objects, big buffers,
structs, persistence,
larger things

Slower, Manual
– Done by the programmer
– malloc/calloc/recalloc/free
– new/delete

Stack
● Fixed memory allocations

known at compile time

● Local variables, return
addresses, function args

Fast, Automatic; Done by the
compiler
– Abstracts away any concept
of allocating/de-allocating

Heap Implementations

dlmalloc. Default native version of malloc in some old distributions of Linux
(http://gee.cs.oswego.edu/dl/html/malloc.html)

ptmalloc. ptmalloc is based on dlmalloc and was extended for use with multiple
threads. On Linux systems, ptmalloc has been put to work for years as part of the
GNU C library.

tcmalloc. Google's customized implementation of C's malloc() and C++'s
operator new (https://github.com/google/tcmalloc)

jemalloc. jemalloc is a general purpose malloc(3) implementation that
emphasizes fragmentation avoidance and scalable concurrency support.

The Hoard memory allocator. UMass Amherst CS Professor Emery Berger

http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc

Which implementation on my laptop?

ldd --version

GLIBC 2.31

Ptmalloc2

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32);
● malloc(4);
● malloc(20);
● malloc(0);

code/heapsizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;} https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/sizes.c

Heap goes from low address to high address

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

code/heapsizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;}

Chunk 10

...

H

L

Chunk 3

Chunk 2

Chunk 1

code/heapsizes 32bit

code/heapsizes 64bit

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32); 48 bytes (32bit/64bit)
● malloc(4); 16 bytes (32bit) / 32 bytes (64bit)
● malloc(20); 32 bytes (32bit/64bit)
● malloc(0); 16 bytes (32bit) / 32 bytes (64bit)

Malloc_chunk (ptmalloc2 in glibc2.31)

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

struct malloc_chunk {

 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */
 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */
 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
 struct malloc_chunk* bk_nextsize;
};

INTERNAL_SIZE_T is the same as size_t. 8 bytes in 64 bit;
4 bytes in 32 bits machine.
Pointer is 8/4 bytes on a 64/32 bit machine, respectively.

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T

Heap Chunks (figures in 32 bit)
buffer = malloc(0x100);

//Out comes a heap chunk

Previous Chunk Size: Size of previous chunk (if prev chunk is free)
Chunk Size: Size of entire chunk including overhead
Data: Your newly allocated memory / ptr returned by malloc
Flags: Because of byte alignment, the lower 3 bits of the chunk size field would always be
zero. Instead they are used for flag bits.
0x01 PREV_INUSE – set when previous chunk is in use
0x02 IS_MMAPPED – set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

code/heapchunks

void print_chunk(size_t * ptr, unsigned int len)

{

 printf("[prev - 0x%08x][size - 0x%08x][data buffer (0x%08x) -------> ...] - from

malloc(%d)\n", *(ptr-2), *(ptr-1), (unsigned int)ptr, len);}

int main()

{

 void * ptr[LEN];

 unsigned int lengths[] = {0, 4, 8, 16, 24, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};

 int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_chunk(ptr[i], lengths[i]);

 return 0;}

Extended from
https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/heap_c
hunks.c

Heap Chunks – Two states (figures in 32 bit)

Heap chunks exist in two states
– in use (malloc’d)

– free’d.
Forward Pointer: A pointer
to the next freed chunk
Backwards Pointer: A
pointer to the previous
freed chunk
Implementation-defined.

code/heapfrees
void print_inuse_chunk(unsigned int * ptr)

{

 printf("[prev - 0x%08x][size - 0x%08x][data buffer

(0x%08x) ----> ...] - Chunk 0x%08x - In use\n", \

 *(ptr-2),

 *(ptr-1),

 (unsigned int)ptr,

 (unsigned int)(ptr-2));

}

void print_freed_chunk(unsigned int * ptr)

{

 printf("[prev - 0x%08x][size - 0x%08x][fd - 0x%08x][bk -

0x%08x] - Chunk 0x%08x - Freed\n", \

 *(ptr-2),

 *(ptr-1),

 *ptr,

 *(ptr+1),

 (unsigned int)(ptr-2));

}

int main()

{

 unsigned int * ptr[LEN];

 unsigned int lengths[] = {32, 32, 32, 32, 32}; int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_inuse_chunk(ptr[i]);

 printf("\nfreeing all chunks...\n");

 for(i = 0; i < LEN; i++)

 free(ptr[i]);

 for(i = 0; i < LEN; i++)

 print_freed_chunk(ptr[i]);

 return 0;}

Heap-based Buffer Overflow

Heap Overflow

● Buffer overflows are basically the same on the heap as they are on
the stack

● Heap cookies/canaries aren’t a thing
○ No ‘return’ addresses to protect

● In the real world, lots of cool and complex things like objects/structs
end up on the heap
○ Anything that handles the data you just corrupted is now viable

attack surface in the application
● It’s common to put function pointers in structs which generally are

malloc’d on the heap

code/heapoverflow

void secret()
{

printf("The secret is bla bla...\n");
}

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; secret() at %p\n", fly, secret);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

code/heapoverflow

void secret()
{

printf("The secret is bla bla...\n");
}

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; secret() at %p\n", fly, secret);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Airplane 1

Airplane 2

code/heapoverflow

void secret()
{

printf("The secret is bla bla...\n");
}

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; secret() at %p\n", fly, secret);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 50, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Size (4)

Prev_size (4)

Pfun (4)

name (20)

Airplane 1

Airplane 2

Exploit looks like

python -c "print 'a\n' + 'a'*28 + '\x4d\x62\x55\x56'" | ./heapoverflow32

Use after free (UAF)

A class of vulnerability where data on the heap is freed, but
a leftover reference or ‘dangling pointer’ is used by the code
as if the data were still valid.

Most popular in Web Browsers, complex programs

Dangling Pointer

Dangling Pointer
– A left over pointer in your code that references free’d data
and is prone to be re-used
– As the memory it’s pointing at was freed, there’s no
guarantees on what data is there now
– Also known as stale pointer, wild pointer

Exploit UAF

To exploit a UAF, you usually have to allocate a different type of object
over the one you just freed

code/heapoverflow2

void secret()
{

printf("The secret is bla bla...\n");
}

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; secret() at %u\n", fly, (unsigned int)secret);

 struct airplane *p = malloc(sizeof(airplane));
 printf("Airplane is at %p\n", p);
 p->pfun = fly;
 p->pfun();
 free(p);

 p = malloc(sizeof(car));
 printf("Car is at %p\n", p);

 int volume;
 printf("What is the volume of the car?\n");
 scanf("%u", &volume);
 ((struct car *)(p))->volume = volume;

 p->pfun();
 free(p);
 return 0;
}

