CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:20 PM - 8:10 PM



Last Class

1. Defenses
a. Direct defense
b. Stack Cookie; Canary - How to bypass
c. Shadow stack



2019 IEEE Symposium on Security and Privacy

SoK: Shining Light on Shadow Stacks

Nathan Burow
Purdue University

Abstract—Control-Flow Hijacking attacks are the dominant
attack vector against C/C++ programs. Control-Flow Integrity
(CFI) solutions mitigate these attacks on the forward edge,
i.e., indirect calls through function pointers and virtual calls.
Protecting the backward edge is left to stack canaries, which are
easily bypassed through information leaks. Shadow Stacks are
a fully precise mechanism for protecting backwards edges, and
should be deployed with CFI mitigations.

We present a comprehensive analysis of all possible shadow
stack mechanisms along three axes: performance, compatibil-
ity, and security. For performance comparisons we use SPEC
CPU2006, while security and compatibility are qualitatively
analyzed. Based on our study, we renew calls for a shadow
stack design that leverages a dedicated register, resulting in
low performance overhead, and minimal memory overhead,
but sacrifices compatibility. We present case studies of our
implementation of such a design, Shadesmar, on Phoronix and
Apache to demonstrate the feasibility of dedicating a general
purpose register to a security monitor on modern architectures,
and Shadesmar’s deployability. Our comprehensive analysis,
including detailed case studies for our novel design, allows
compiler designers and practitioners to select the correct shadow
stack design for different usage scenarios.

Xinping Zhang
Purdue University

Mathias Payer
EPFL

(ROP) [10], [11], [12], are a significant problem in prac-
tice, and will only increase in frequency. In the last year,
Google’s Project Zero has published exploits against Android
libraries, trusted execution environments, and Windows device
drivers [13], [14], [15], [16], [17]. These exploits use arbi-
trary write primitives to overwrite return addresses, leading
to privilege escalation in the form of arbitrary execution in
user space or root privileges. The widespread adoption of
CFI increases the difficulty for attacks on forward edge code
pointers. Consequently, attackers will increasingly focus on
the easier target, backward edges.

C / C++ applications are fundamentally vulnerable to ROP
style attacks for two reasons: (i) the languages provide neither
memory nor type safety, and (ii) the implementation of the
call-return abstraction relies on storing values in writeable
memory. In the absence of memory or type safety, an attacker
may corrupt any memory location that is writeable. Consider,
for the sake of exposition, x86_64 machine code where the
call-return abstraction is implemented by pushing the address



This Class

1. Defenses
a. Address Space Layout Randomization (ASLR)

Seccomp



Defense-4:
Address Space Layout Randomization
(ASLR)



ASLR History

2001 - Linux PaX patch

2003 - OpenBSD

2005 - Linux 2.6.12 user-space

2007 - Windows Vista kernel and user-space
2011 - 10S 5 user-space

2011 - Android 4.0 ICS user-space

2012 - OS X 10.8 kernel-space

2012 - i0S 6 kernel-space

2014 - Linux 3.14 kernel-space

Not supported well in embedded devices.



Address Space Layout Randomization (ASLR)

Attackers need to know which address to control (jump/overwrite)

e Stack - shellcode
e Library - system()

Defense: let's randomize it!

e Attackers do not know where to jump...



Position Independent Executable (PIE)

Position-independent code (PIC) or position-independent
executable (PIE) is a body of machine code that executes
properly regardless of its absolute address.



Process Address Space in General

3GB

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segnengatign*fyglgi '

0xCco000000 == TASK_SIZE

} Random stack offset

Stack (grows down)

iy !

RLIMIT_STACK (e.g., 8MB)

1 Random mmap offset

J

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

T:T brk
Heap start_brk
8 Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

0x08048000

0



Traditional Process Address Space - Static Program

heap

.bss

.data

Fixed
locaton —»




Traditional Process Address Space - Static Program w/shared Libs

.bss and .data

S libc.so

locaton —»

.bss and .data _ _

Runtime linker: Id.so
Fixed

location —»

heap

.bss and .data

Fixed User code and data

locaton —»




Random
location

Random
location

Fixed
location

ASLR Process Address Space - w/o PIE

—_—

—_—

—_—

.bss and .data

.bss and .data

heap

.bss and .data

libc.so

Runtime linker: Id.so

User code and data



ASLR Process Address Space - PIE

.bss and .data

ST libc.so

locaton —»

.bss and .data _ _
Runtime linker: Id.so
Random

locaton —»

heap

.bss and .data

Random User code and data

location




code/aslr1

int k = 50;
intl;
char *p = "hello world";

int add(int a, int b)

{
inti=10;
i=a+b;
printf("The address of i is %p\n", &i);
return i;
}
int sub(int d, int c)
{
intj =20;
j=d-¢c
printf("The address of j is %p\n", &j);
return j;
}
int compute(int a, int b, int c)
{
return sub(add(a, b), c) * k;
}

int main(int argc, char *argv[])

{

printf("===== Libc function addresses =====\n");

printf("The address of printf is %p\n", printf);

printf("The address of memcpy is %p\n", memcpy);

printf("The distance between printf and memcpy is %x\n", (int)printf - (int)ymemcpy);
printf("The address of system is %p\n", system);

printf("The distance between printf and system is %x\n", (int)printf - (int)system);
printf("===== Module function addresses =====\n");

printf("The address of main is %p\n", main);

printf("The address of add is %p\n", add);

printf("The distance between main and add is %x\n", (int)main - (int)add);
printf("The address of sub is %p\n", sub);

printf("The distance between main and sub is %x\n", (int)main - (int)sub);
printf("The address of compute is %p\n", compute);

printf("The distance between main and compute is %x\n", (int)main - (int)compute);

printf("===== Global initialized variable addresses =====\n");
printf("The address of k is %p\n", &k);

printf("The address of p is %p\n", p);

printf("The distance between k and p is %x\n", (int)&k - (int)p);

printf("===== Global uninitialized variable addresses =====\n");
printf("The address of | is %p\n", &I);
printf("The distance between k and I is %x\n", (int)&k - (int)l);

printf("===== Local variable addresses =====\n");
return compute(9, 6, 4);




Check the symbols

_init

_start

__x86.get_pc_thunk.bx =

deragletertalelones 0000000000001000 t _init

register_tm_clones _star‘F
do_global_dtors_aux deregister_tm_clones

frame_dummy - register_tm_clones

__x86.get_pc_thunk.dx __do_global_dtors_aux

add frame_dummy

sub add

compute sub

main compute

__x86.get_pc_thunk.ax main

__libc_csu_init 1ibc csu init

— e Een A libc_csu_fint
__x86.get_pc_thunk.bp == St

4 fini

_fiﬁzck_chk_fau_local Biolscdintused

Efnibw __GNU_EH_FRAME_HDR

_10_stdin_used __FRAME_END__
GNU_EH_FRAME_HDR __frame_dummy_init_array_entry
FRAME_END __init_array_start

" frame_dummy_init_array_entry __do_global_dtors_aux_fini_array_entry

| 00003ec8 d __init_array_start __init_array_end
n I I I SO rt 00003ecc __do_global_dtors_aux_fini_array_entry DYNAMIC

00003ecc d __1init_array_end _GLOBAL_OFFSET_TABLE_
00003ed0® _DYNAMIC __data_start

00003fc8 _GLOBAL_OFFSET_TABLE_ data_start

00004000 D _ data_start dso handle
data_start kK
__dso_handle
3

p
__bss_start
; bss_start completed.8059
completed.7621 _edata

edata __TMC_END__
__TMC_END__

end
_end __libc_start_main@@GLIBC_2.2.5
__libc_start_main@@GLIBC_2.0 memcpy@@GLIBC_2.14
memcpy@@GLIBC_2.0 printf@@GLIBC_2.2.5
printf@@GLIBC_2.0 puts@@GLIBC_2.2.5
puts@@GLIBC_2.0 __stack_chk_fail@@GLIBC_2.4
__stack_chk_fail@@GLIBC_2.4 system@@GLIBC_2.2.5

system@@GLIBC 2.0 __cxa_finalize@@GLIBC_2.2.5
__cxa_finalize@@GLIBC_2.1.3 gmon_start

__gmon_start__ -
_ITM_deregisterTMCloneTable _ITM deregisterTMCloneTable

ITM registerTMCloneTable _ITM_registerTMCloneTable




Position Independent Executable (PIE)

in add ()
disassemble
Dump of assembler code for function add:
<+0>: endbr32
<+4>: push ebp
<+5>: mov ebp,esp
<+7>: push ebx
<+8>: sub esp,0x14
<+11>: call < x86.get pc_ th
<+16>: add eax,0x2ddf
<+21>: mov DWORD PTR [ebp-0xc],0xa
<+28>: mov ecx,DWORD PTR [ebp+0x8]
<+31>: mov edx,DWORD PTR [ebp+0xc]
<+34>: add edx,ecx
<+36>: mov DWORD PTR [ebp-0xc],edx
<+39>: sub esp,0x8
<+42>: lea edx, [ebp-0xc]
<+45>: push edx
<+46>: lea edx, [eax-0x1fb8]
<+52>: push edx
<+53>: mov ebx,eax
<+55>: call
<+60>: add esp,0x10
<+63>: mov eax,DWORD PTR [ebp-0xc]
<+66>: mov ebx,DWORD PTR [ebp-0x4]
<+69>: leave
<+70>: ret




X86 Instruction Set Reference

CALL

Call Procedure

Opcode Mnemonic Description
E8 cw CALL rell6 Call near, relative, displacement relative to next instruction
E8 cd CALL rel32 Call near, relative, displacement relative to next instruction
FF /2 CALL r/ml6 Call near, absolute indirect, address given in r/m16
EE/2 CALL r/m32 Call near, absolute indirect, address given in r/m32
9A cd CALL ptrl6:16 Call far, absolute, address given in operand
9A cp CALL ptrl6:32 Call far, absolute, address given in operand
FF /3 CALL ml6:16 Call far, absolute indirect, address given in m16:16
EE3 CALL ml6:32 Call far, absolute indirect, address given in m16:32
Description

Saves procedure linking information on the stack and branches to the procedure (called procedure) specified with the destination (target) operand. The
target operand specifies the address of the first instruction in the called procedure. This operand can be an immediate value, a generalpurpose register, or a
memory location.

This instruction can be used to execute four different types of calls:

Near call

A call to a procedure within the current code segment (the segment currently pointed to by the CS register), sometimes referred to as an intrasegment call.
Far call

A call to a procedure located in a different segment than the current code segment, sometimes referred to as an intersegment call.

Inter-privilege-level far call

A far call to a procedure in a segment at a different privilege level than that of the currently executing program or procedure.

Task switch

A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See the section titled "Calling Procedures Using
Call and RET" in Chapter 6 of the IA-32 Intel Architecture Software Developer's Manual, Volume 1, for additional information on near, far, and inter-privilege-
level calls. See Chapter 6, Task Management, in the IA-32 Intel Architecture Software Developer's Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call




PIE Overhead

e <1% in 64 bit

Access all strings via relative address from current %rip
lea 0x23423(%rip), %rdi

e ~3%in 32 bit
Cannot address using %eip
Call _86.get_pc_thunk.xx functions



Temporarily enable and disable ASLR

Disable:
echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Enable:
echo 2 | sudo tee /proc/sys/kernel/randomize_va_space



ASLR Enabled; PIE: 32 bit

= Libc function addresses =

address of printf is 0xf7d57340

address of memcpy is 0xf7e55d0e

distance between printf and memcpy is fffo1640

address of system is 0xf7d48830

distance between printf and system is eb10

= Module function addresses

address of main is ©x565a32ad

address of add is ©x565a31dd

distance between main and add is de

address of sub is 0x565a3224

distance between main and sub is 89

address of compute is 0x565a3269

distance between main and compute is 44

distance between main and printf is 5e84bfé6d

distance between main and memcpy is 5e74d5ad
Global initialized variable addresses

address of k is 0x565a6008

address of p is 0x565a4008

distance between k and p is 2000

distance between k and main is 2dsb

distance between k and memcpy is 5e750308

= Global uninitialized variable addresses

address of 1 is 0x565a6014

distance between k and 1 is 565a6008

= Local variable addresses

address of i is @xfff276bc

address of j is 0xfff270bc

S ./aslr1

= Libc function addresses =

address of printf is 0xf7ded340

address of memcpy is 0xf7eebdee

distance between printf and memcpy is fffe1640
address of system is 0xf7dde83e

distance between printf and system is eb1®

= Module function addresses

address of main is 0x565892ad

address of add is ©x565891dd

distance between main and add is de

address of sub is ©x56589224

distance between main and sub is 89

address of compute is 0x56589269

distance between main and compute is 44
distance between main and printf is 5e79bféd
distance between main and memcpy is 5e69d5ad
= Global initialized variable addresses
address of k is ©x5658c008

address of p is 0x5658a008

distance between k and p is 2000

distance between k and main is 2dsb

distance between k and memcpy is 5e6a0308

= Global uninitialized variable addresses
address of 1 is 0x5658c014

distance between k and 1 is 5658c008

= Local variable addresses

address of i is oxffe1175c

address of j is Oxffel175c




ASLR Enabled: PIE: 64 bit

Libc function addresses
address of printf is 0x7f11749603e10
address of memcpy is 0x7f1174a2d670
distance between printf and memcpy is ffed67ae@
address of system is 0x7f11748f4410
distance between printf and system is fa0o
= Module function addresses
address of main is 0x55d4942af216
address of add is 0x55d4942af159
distance between main and add is bd
address of sub is @x55d4942af19a
distance between main and sub is 7c
address of compute is ©x55d4942af1d9
distance between main and compute is 3d
distance between main and printf is 1f9ab406
distance between main and memcpy is 1f881ba6
Global initialized variable addresses
address of k is 0x55d4942b2010
address of p is 0x55d4942b6008
distance between k and p is 2008
distance between k and main is 2dfa
distance between k and memcpy is 1f8849a0
= Global uninitialized variable addresses =
address of 1 is 0x55d4942b2024
distance between k and 1 is 942b2010
= Local variable addresses
address of 1 is @x7ffc65ad48ac
address of j is 0x7ffc65ad48ac

S ./aslr164

A S ./aslri64
= Libc function addresses

address of printf is 0x7feaf8132e10

address of memcpy is 0x7f0af825c670

distance between printf and memcpy is ffed67a0@
address of system is 0x7f0af8123410

distance between printf and system is fa0o

= Module function addresses

address of main is 0x5579ce78d216

address of add is 0x5579ce78d159

distance between main and add is bd

address of sub is @x5579ce78d19a

distance between main and sub is 7c

address of compute is 0x5579ce78d1d9
distance between main and compute is 3d
distance between main and printf is d665a406
distance between main and memcpy is d6530ba6
= Global initialized variable addresses
address of k is 0x5579ce790010

address of p is ©x5579ce78e008

distance between k and p is 2008

distance between k and main is 2dfa

distance between k and memcpy is d65339a0

= Global uninitialized variable addresses =
address of 1 is 0x5579ce790024

distance between k and 1 is ce790010

= Local variable addresses

address of 1 is @x7ffed9e3c6ic

address of j is 0x7ffed9e3c6ic




Bypass ASLR

Address leak: certain vulnerabilities allow attackers to obtain the
addresses required for an attack, which enables bypassing ASLR.
Relative addressing: some vulnerabilities allow attackers to obtain
access to data relative to a particular address, thus bypassing ASLR.
Implementation weaknesses: some vulnerabilities allow attackers to
guess addresses due to low entropy or faults in a particular ASLR
implementation.

Side channels of hardware operation: certain properties of processor
operation may allow bypassing ASLR.



code/aslr2 with ASLR

int printsecret()

{
printf("This is the secret...\n");
return O;

}

int vulfoo()

{
printf("vulfoo is at %p \n", vulfoo);
char buf[8];
gets(buf);
return O;

}

int main(int argc, char *argv[])

{

vulfoo();
return O;




Secure Computing Mode
(Seccomp)



Seccomp - A system call firewall

seccomp allows developers to write complex rules to:
- allow certain system calls
- disallow certain system calls
- filter allowed and disallowed system calls based on argument variables

seccomp rules are inherited by children!

These rules can be quite complex (see
http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html).


http://man7.org/linux/man-pages/man3/seccomp_rule_add.3.html

History of seccomp

2005 - seccomp was first devised by Andrea Arcangeli for use in public grid
computing and was originally intended as a means of safely running untrusted
compute-bound programs.

2005 - Merged into the Linux kernel mainline in kernel version 2.6.12, which was
released on March 8, 2005.

2017 - Android uses a seccomp-bpf filter in the zygote since Android 8.0 Oreo.


https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Grid_computing

