CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:00 PM - 7:50 PM

Homework-4

Walkthrough: hw-4
Crackme-5: overwrite function pointer on stack

Maze2

Last Class

1. Stack-based buffer overflow-3
a. Inject shellcode into environment variable and command line arg
b. Overwrite saved %ebp; Frame-pointer attack
c. Return-to-libc (32-bit); We will discuss 64 bit Ret2libc after ROP
2. Defenses
a. Data Execution Prevention (DEP)

This Class

1. Defenses
a. Direct defense

b. Stack Cookie; Canary - How to bypass
c. Shadow stack

d. Sandbox - seccomp

Attacker’s Goal

Take control of the victim’s machine
e Hijack the execution flow of a running program
e Execute arbitrary code
Requirements
e Inject attack code or attack parameters
e Abuse vulnerability and modify memory such that control flow is
redirected
Change of control flow
e alter a code pointer (RET, function pointer, etc.)
e change memory region that should not be accessed

Overflow Types

Overflow some code pointer

e Overflow memory region on the stack

o overflow function return address

o overflow function frame (base) pointer

o overflow longjmp buffer
e Overflow (dynamically allocated) memory region on the heap
e Overflow function pointers

o stack, heap, BSS

Other pointers?

Can we exploit other pointers as well?

1. Memory that is used in a value to influence mathematical operations,
conditional jumps.

2. Memory that is used as a read pointer (or offset), allowing us to force
the program to access arbitrary memory.

3. Memory that is used as a write pointer (or offset), allowing us to force
the program to overwrite arbitrary memory.

4. Memory that is used as a code pointer (or offset), allowing us to
redirect program execution!

Typically, you use one or more vulnerabilities to achieve multiple of these
effects.

Defenses

e Prevent buffer overflow
o Adirect defense
o Could be accurate but could be slow
o Good in theory, but not practical in real world

e Make exploit harder
o An indirect defense
o Could be inaccurate but could be fast
o Simple in theory, widely deployed in real world

Examples

e Base and bound check
o Prevent buffer overflow!
o A direct defense

e Stack Cookie
o An indirect defense
o Prevent overwriting return address

e Data execution prevention (DEP, NX, etc.)
o Anindirect defense
o Prevent using of shellcode on stack

Spatial Memory Safety - Base and Bound check

char *a
* char *a_base;
* char *a_bound;

a = (char*)malloc(512)
*a_base = a;
*a_bound =a+512

Access must be between [a_base, a_bound)
* a[0], a[1], a[2], ..., and a[511] are OK

* a[512] NOT OK

* a[-1] NOT OK

Spatial Memory Safety - Base and Bound check

Propagation

* char *b = a;
* b_base = a_base;
* b_bound =a_bound;

e char *c = &b[2];
* C_base = b_base;
* ¢_bound = b_bound;

Overhead - Based and Bound

+2x overhead on storing a pointer
 char *a

e char *a_base;

e char *a_bound;

+2x overhead on assignment
e char *b = a;

* b_base = a_base;

* b_bound =a_bound;

+2 comparisons added on access
o C[i]

e if(c+i >= c_base)

e if(c+i < c_bound)

SoftBound: Highly Compatible and Complete
Spatial Memory Safety for C

Santosh Nagarakatte = Jianzhou Zhao Milo M. K. Martin ~ Steve Zdancewic

Computer and Information Sciences Department, University of Pennsylvania
santoshn@cis.upenn.edu jianzhou®cis.upenn.edu milom@cis.upenn.edu stevez@cis.upenn.edu

Abstract dress on the stack, address space randomization, non-executable
stack), vulnerabilities persist. For one example, in November 2008
Adobe released a security update that fixed several serious buffer
overﬂowe [2] Attackers have reportedly exploited these buffer-

Avarfl A nlnarahilitiac hyr 1101 o hannar adoc An wiahoitac ta rads

PLDI 09

The serious bugs and security vulnerabilities facilitated by C/C++’s
lack of bounds checking are well known, yet C and C++ remain
in widespread use. Unfortunately, C’s arbitrary pointer arithmetic,

HardBound: Architectural Support for
Spatial Safety of the C Programming Language

Joe Devietti * Colin Blundell
University of Washington University of Pennsylvania
devietti@cs.washington.edu blundell@cis.upenn.edu
Abstract

The C programming language is at least as well known for its ab-
sence of spatial memory safety guarantees (i.e., lack of bounds
checking) as it is for its high performance. C’s unchecked pointer
arithmetic and array indexing allow simple programming mistakes
to lead to erroneous executions, silent data corruption, and security
vulnerabilities. Many prior proposals have tackled enforcing spatial
safety in C programs by checking pointer and array accesses. How-
ever, existing software-only proposals have significant drawbacks
that may prevent wide adoption, including: unacceptably high run-
time overheads, lack of completeness, incompatible pointer repre-
sentations, or need for non-trivial changes to existing C source code

and ~ramnilar infractrmintuira

ASPLOS 09

Milo M. K. Martin Steve Zdancewic
University of Pennsylvania University of Pennsylvania
milom@cis.upenn.edu stevez@cis.upenn.edu

(A)

Arbitrary Bounded Pointer

s,metadata shadow space

| pointer | | base | bound |

Defense-2;
Shadow Stack

Shadow Stack

Traditional shadow stack Main stack Parallel shadow stack
%Qgs:108 | 0x8000000 0x9000000
OxBEEF0048 Parameters for R1
RTINS S - Return address. RO
- First caller's EBP
. Parameters for R2
~ . Return address, R1| -------- Return address, R1
* 7] EPP vlalue f(t))i R1
| /.~ Local variables
Rolm e) pamelemfoRy
| L Sa1 ----- |[Return address, R2| -------- eturn address, R2
'Return address, R2 EBP value for R?
—» Return address, R3 . Local variables
 Return address, R3| -------- Return address, R3
EBP value for R3

Local variables

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

Traditional Shadow Stack

SUB $4, %gs:108 # Decrement SSP

MOV %gs:108, %eax # Copy SSP into EAX

MOV (%esp), %$ecx # Copy ret. address into
MOV %$ecx, (%eax) # shadow stack wvia ECX

Figure 2: Prologue for traditional shadow stack.

MOV %gs:108, %ecx # Copy SSP into ECX

ADD $4, %gs:108 # Increment SSP

MOV (%ecx), %edx # Copy ret. address from
MOV %edx, (%esp) # shadow stack wvia EDX
RET

Figure 3: Epilogue for traditional shadow stack
(overwriting).

Traditional Shadow Stack

MOV %gs:108, %ecx
ADD $4, %gs:108
MOV (%ecx), %edx
CMP %edx, (%esp) # Instead of overwriting,
JNZ abort = we compare
RET
abort:
HLT

Figure 4: Epilogue for traditional shadow stack
(checking).

Overhead - Traditional Shadow Stack

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

Shadow Stack

Traditional shadow stack Main stack Parallel shadow stack
%Qgs:108 | 0x8000000 0x9000000
OxBEEF0048 Parameters for R1
RTINS S - Return address. RO
- First caller's EBP
. Parameters for R2
~ . Return address, R1| -------- Return address, R1
* 7] EPP vlalue f(t))i R1
| /.~ Local variables
Rolm e) pamelemfoRy
| L Sa1 ----- |[Return address, R2| -------- eturn address, R2
'Return address, R2 EBP value for R?
—» Return address, R3 . Local variables
 Return address, R3| -------- Return address, R3
EBP value for R3

Local variables

https://people.eecs.berkeley.edu/~daw/papers/shadow-asiaccs15.pdf

Parallel Shadow Stack

POP 999996 (%esp) # Copy ret addr to shadow stack
SUB $4, %esp # Fix up stack pointer (undo POP)

Figure 7: Prologue for parallel shadow stack.

ADD $4, %esp # Fix up stack pointer
PUSH 999996 (%esp) # Copy from shadow stack

Figure 8: Epilogue for parallel shadow stack.

Overhead Comparison

The overhead is roughly 10% for a traditional shadow stack.

The parallel shadow stack overhead is 3.5%.

Defense-3:
Stack cookies; Canary

specific to sequential stack overflow

JANUARY 26-29, 1998 « SAN ANTONIO, TX, USA

USENIX

StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks

Abstract:

This paper presents a systematic solution to the persistent problem of buffer overflow attacks. Buffer overflow attacks
gained notoriety in 1988 as part of the Morris Worm incident on the Internet. While it is fairly simple to fix individual buffer
overflow vulnerabilities, buffer overflow attacks continue to this day. Hundreds of attacks have been discovered, and
while most of the obvious vulnerabilities have now been patched, more sophisticated buffer overflow attacks continue to
emerge.

We describe StackGuard: a simple compiler technique that virtually eliminates buffer overflow vulnerabilities with only
modest performance penalties. Privileged programs that are recompiled with the StackGuard compiler extension no
longer yield control to the attacker, but rather enter a fail-safe state. These programs require no source code changes at
all, and are binary-compatible with existing operating systems and libraries. We describe the compiler technique (a
simple patch to gcc), as well as a set of variations on the technique that trade-off between penetration resistance and
performance. We present experimental results of both the penetration resistance and the performance impact of this
technique.

StackGuard

A compiler technique that attempts to eliminate buffer overflow
vulnerabilities
e No source code changes
e Patch for the function prologue and epilogue
o Prologue: push an additional value into the stack (canary)
o Epilogue: check the canary value hasn't changed. If changed,
exit.

Buffer Overflow Example: code/overflowret4

int vulfoo()

{
char buf[30];

gets(buf);
return O;

}

int main(int argc, char *argv[])
{

vulfoo();

printf("I pity the fool'\n");
}

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on
- Ubuntu to disable ASLR temporarily

With and without Canary 32bit

ord

000011ed <vulfoo>:
11ed:f3 0f 1e fb
11f1: 55
11f2: 89 e5
11f4: 53
11f5: 83 ec 34
11f8: e8 64 00 00 00
11fd: 05 d7 2d 00 00
1202:83 ec Oc
1205:8d 55 d0
1208:52
1209:89 c3
120b:e8 70 fe ff ff
1210:83c4 10
1213:b8 00 00 00 00
1218:8b 5d fc
121b:c9
121¢c:. c3

endbr32
push %ebp
mov %esp,%ebp
push %ebx
sub $0x34,%esp
call 1261 <_ x86.get_pc_thunk.ax>
add $0x2dd7,%eax
sub $0xc,%esp
lea -0x30(%ebp),%edx
push %edx
mov %eax,%ebx
call 1080 <gets@plt>
add $0x10,%esp
mov $0x0,%eax
mov -0x4(%ebp),%ebx
leave
ret

or4nx
0000120d <vulfoo>:
120d:f3 0f 1e fb endbr32
1211:55 push %ebp
1212:89 e5 mov %esp,%ebp
1214:53 push %ebx

1215:83 ec 34 sub $0x34,%esp
1218:e8 81 00 00 00 call 129e <_ x86.get_pc_thunk.ax>

121d:05 b3 2d 00 00 add $0x2db3,%eax

1222:658b 0d 14000000 mov %gs:0x14,%ecx

1229:89 4d f4 mov %ecx,-0xc(%ebp)
122¢:31 c9 xor %ecx,%ecx
T7Z€:83 ec Uc SUD __ $UXC,%esp
1231:8d 55 cc lea -0x34(%ebp),%edx
1234:52 push %edx

1235:89 c3 mov %eax,%ebx

1237:e8 54 fe ff ff
123¢:83 ¢4 10
123f: b8 00 00 00 00

call 1090 <gets@plt>
add $0x10,%esp
mov $0x0,%eax

1244:8b 4d f4 mov -0xc(%ebp),%ecx

1247:65330d 14000000 xor %gs:0x14,%ecx

124e:74 05 je 1255 <vulfoo+0x48>

1250:e8 db 00 00 00 call 1330 <_stack chk fail _local>
1255:8b 5d fc mov -0x4(%ebp),%ebx

1258:¢9 leave

1259:¢3 ret

Registers on x86 and amd64

ZMMO [YMMO [XMMO]| ZMM1

[YMM1

XMML]| [sT(0)[MMO]| sT(1)[MM1 || [RETaxEAX|RAX|[Trer] reo] Re|[EuanrzoR12] [MswicRO| CR4 |

ZMM2 [YMM2_[xMM2]| ZMM3

[YMM3

pxvmz]| [ST(2)[MM2][ST(3)[MM3 || [EEdexEsXRBX|[[=Le] roo] Ro|EFewlur13| [CR1 || CRS |

(ZMM4 [YMM4_[xMM4]| ZMM5

[YMM5

XMM5]| | ST(4)[MM4]| ST(5)[MM5 || [ETeIcXECX|RCX|[Efaow]raooR 10| [eduswrecR 14| | CR2 || CR6 |

(zMM6 [YMM6 _[XMM6]| zMM7 [YMM7_[XMM7] [ST(6)[MM6 || ST(7)[MM7 | [EEDXEoXRDX|[EkufrsR11|[FusfusoR1s] | CR3 || CR7 |
(zMM8 [YMM8 [xMM8][ZMM9 [YMM9_[xmmo]| [=ePEBPRBP| [2dDIenRDI| [P EP[RIP| [MXCSR][CR8 |
(ZMM10 [YMM10 [xMmio][zMM11 [YMM11[xmmii]| [cw |[FP_IP|FP_DP|FP_cs| [EISIESI RsI| [IsPESPRSP) CR9

ZMM12 [YMM12 XMM12j| ZMM13 | YMM13 [XMM13] | SW

CR10

ZMM14 |YMM14 XMM1a]| ZMM15 |YMMI5 ,m' IW‘ [l 8-bit register || 32-bit register || 80-bit register [256-bit register CR11

’ ZMM16|| ZMM17“ ZMM18|| ZMM19H ZMM20|| ZMM21” ZMM22|| ZMM23‘ |FP DS‘

B 16-bit register || 64-bit register || 128-bit register] 512-bit register

CR12

’ ZMM24|| ZMM25“ ZMM26|| ZMM27” ZMM28|| ZMM29” ZMM30|| ZMM31‘ |FP_OPCHFP_DPH FP_IP‘ | CS H SS H DS |

| GDTR | IDTR | [DRO || DR6 | [CR13]|

https://en.wikipedia.org/wiki/X86

| Es || Fs || Gs |

| TR | LbTR | [DR1 || DR7 | [CR14]|

[==JRFLAGS| | DR2 || DR8 | [CR15|

| DR4 | DR10 | DR12 | DR14 |
| DR5 | DR11 | DR13 || DR15 |

https://en.wikipedia.org/wiki/X86

With and without Canary

or4 or4dnx

%ebp %ebp

—
%ebp - Oxc
0x30 —_—

0x28 = 401

0x34

With and without Canary 64bit

or464

or464nx

0000000000001189 <vulfoo>:

1189:f3 Of 1e fa endbre4d

118d:55 push
118e:48 89 e5 mov
1191:48 83 ec 30

%rbp
%rsp,%rbp
sub $0x30,%rsp

0000000000001169 <vulfoo>:
1169:f3 0f 1e fa endbre4

116d:55 push %rbp

116e:48 89 e5 mov %rsp,%rbp

1171:48 83 ec 30 sub $0x30,%rsp
1175:48 8d 45 d0 lea -0x30(%rbp),%rax
1179:48 89 c7 mov %rax,%rdi

117c: b8 00 00 00 00 mov $0x0,%eax
1181:e8eafeffff callqg 1070 <gets@plt>
1186:b8 00 00 00 00 mov $0x0,%eax
118b:c9 leaveq

118c: c3 retq

1195:64 48 8b 04 25 28 00
119¢: 00 00
119e:48 89 45 {8

mov %fs:0x28,%rax

mov %rax,-0x8(%rbp)

11a2:31 c0 xor %eax,%eax

11a4:48 8d 45 d0

11a8:48 89 c7 mov
11ab:b8 00 00 00 00
11b0:e8 db fe ff ff
11b5:b8 00 00 00 00

lea -0x30(%rbp),%rax
%rax,%rdi

mov $0x0,%eax

callg 1090 <gets@plt>

mov__$0x0.%eax

11ba:48 8b 55 8
11be:64 48 33 14 25 28 00
11c¢5:00 00

11c9: e8 b2 fe ff ff

mov -0x8(%rbp),%rdx
xor %fs:0x28,%rdx

11¢7:74 05 je 11ce <vulfoo+0x45>

callg 1080 <_ stack_chk fail@plt>

11ce: c9 leaveq
1cf: 3 retq

Overhead - Canary

If no attack:
6 more instructions
2 memory moves
1 memory compare
1 conditional jmp

Per function

%gs:0x14, %fs:0x28

A random canary is generated at program initialization, and stored in a global
variable (pointed by %gs, %fs).

Applications on x86-64 uses FS or GS to access per thread context including
Thread Local Storage (TLS).

Thread-local storage (TLS) is a computer programming method that uses static or
global memory local to a thread.

Pwngdb command tls to get the address of tls

Data Structure
https://code.woboq.org/userspace/glibc/sysdeps/x86_64/nptl/tls.h.html

Canary Types

Random Canary - The original concept for canary values took a pseudo random value
generated when program is loaded

Random XOR Canary - The random canary concept was extended in StackGuard
version 2 to provide slightly more protection by performing a XOR operation on the
random canary value with the stored control data.

Null Canary - The canary value is set to 0x00000000 which is chosen based upon the
fact that most string functions terminate on a null value and should not be able to
overwrite the return address if the buffer must contain nulls before it can reach the
saved address.

Terminator Canary - The canary value is set to a combination of Null, CR, LF, and OxFF.
These values act as string terminators in most string functions, and accounts for
functions which do not simply terminate on nulls such as gets().

Terminator Canary

0x000affod

\x00: terminates strcpy
\x0a: terminates gets (LF)
\xff: Form feed

\x0d: Carriage return

Evolution of Canary

StackGuard published at the 1998 USENIX Security. StackGuard was introduced as a set of
patches to the GCC 2.7.

From 2001 to 2005, IBM developed ProPolice. It places buffers after local pointers in the stack
frame. This helped avoid the corruption of pointers, preventing access to arbitrary memory
locations.

In 2012, Google engineers implemented the -fstack-protector-strong flag to strike a better
balance between security and performance. This flag protects more kinds of vulnerable functions
than -fstack-protector does, but not every function, providing better performance than
-fstack-protector-all. It is available in GCC since its version 4.9.

Most packages in Ubuntu are compiled with -fstack-protector since 6.10. Every Arch Linux
package is compiled with -fstack-protector since 2011. All Arch Linux packages built since 4 May
2014 use -fstack-protector-strong.

ProPolice

Default Layout ProPolice

int foo() {
int a;
int *b;
char c[10];
char d[3];

b = &a;
strcpy(c,get_c());
*p =5;
strcpy(d,get_d();
return *b;

Bypass Canary

-fstack-protector

Bypass Canary

1. Read the canary from the stack due to some
information leakage vulnerabilities, e.g. format
string

2. Brute force. 32-bit version. Least significant is 0,
so there are 256”3 combinations = 16,777,216

If it take 1 second to guess once, it will take at most
194 days to guess the canary

—
.

wY

Bypass Canary - Apps using fork()

Canary is generated when the process is created
A child process will not generate a new canary
So, we do not need to guess 3 bytes canary at
the same time. Instead, we guess one byte a
time. At most 256*3 = 768 trials.

code/bypasscanary

#include <stdio.h> memcpy(buf, g_buffer, g_read);
#include <string.h>
#include <stdlib.h> fclose(fp);
#include <unistd.h> remove("exploit");
return 0;
char g_buffer[200] = {0}; }
int g_read =0;
int main(int argc, char *argv[])
int vulfoo() {
{ while(1)
char buf[40]; {
FILE *fp; if (fork() == 0)
{
while (1) //child
{ printf("Child pid: %d\n", getpid());
fp = fopen("exploit", "r"); vulfoo();
if (fp) printf("I pity the fooll\n");
break;} exit(0);
}
usleep(500 * 1000); else
g_read =0; {
memset(g_buffer, 0, 200); //parent
g_read = fread(g_buffer, 1, 70, fp); int status;
printf("Child reads %d bytes. Guessed canary is %x.\n", printf("Parent pid: %d\n", getpid());
g_read, *((int*)(&g_buffer[40]))); waitpid(-1, &status, 0);
}
}
}

bc

%ebp
—_—

%ebp - Oxc
—

0x34 =52

0x28 = 401

Demo

Assume ASLR is disable.

To make things easier, we put the shellcode in env variable.
Write a script to guess the canary byte by byte.

Send the full exploit to the program

= =

1
| export SCODE=$(python -c "print "\x90'*500 + !
; "\X31\xc0\x50\x68\x2Ax2\x73\x68\x68\x2\x62\x69\x6e\x89\xe3\x89\xc1\x89\xc2\xb0\x0b !
! \xcd\x80\x31\xc0\x40\xcd\x80"") !

