CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:20 PM - 8:10 PM

Announcements

Final Exam: 12/14 2020 7:15PM-10:15PM. Same format as the
mid-term. There will be ? challenges labelled with the vulnerability

type.

Take-home exam. It will have ? offline challenges and multiple
choices questions. Due on 12/21.

HW-15. Due on 12/21.

Guide to Prepare for the Final

1. Redo hw-12 where you develop a ROP shellcode to read from a file
to print out to stdout. Get familiar with the steps to solve the
homework and understand each gadget.

To incentivize you to evaluate the course, for the final evaluation if we
get 100% response (all 13), each of you will get 45 bonus points. If we
only get 12, no bonus points for anyone.

We are at 12/13.

Helpful Links: Registering for Classes | MyUB | Undergraduate Class Schedule

Menu: Department List

CSE 703SEM - Seminars
Lecture

Seminars A

Class #:
Section:
Credits:
Dates:
Days, Time:
Room:
Location:

Reserve Capacities

Description
CSE: Seats Reserved

Course Description

| Search

23864

A

1.00 - 3.00 credits
01/25/2021 - 05/07/2021
M, 12:50 PM - 2:55 PM
Remote

Remote

Enrollment Capacity
30

view map

Enrollment Total

6

Enroliment Information (not real time - data refreshed nightly)

Enrollment Capacity:
Enroliment Total:
Seats Available:
Status:

This course is a seminar. Seminar topics change every semester. Please refer to seminar instance topics and descriptions by semester

Instructor(s)

On-line Resources

o Textbook information is available in the class schedule in the HUB Student Center via MyUB.

Zhao, Z

o Graduate School Homepage

o Office of the Registrar

look up

30

6

24

OPEN WITH RESERVES

Today’s Agenda

1. Spectre

Meltdown and Spectre

https://meltdownattack.com/

£V

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

In-order vs. Out-of-order Dispatch

E|E |[E|R|W
STALL |E |R |W
STALL (D |E |R |W
F D |E |E |E|E W
F|D STALL R
E|E |E|R|W
WAIT |E |R |W
D [E [R W
F|D|E|E |E|E|R|W
F|D| WAT |[E|R|W

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R5 € R6, R8
ADD R7 € R3,R5

N

if

(x < arrayl_size)

Y

array2[arrayl [x]

x 40960];

Speculative Execution

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative

execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed. Work is done
before it is known whether it is actually needed, so as to prevent a delay
that would have to be incurred by doing the work after it is known that it
is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

N A

if (x < arrayl_size)
y = array2[arrayl[x] x 4096];

if €in boundss

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

Spectre vs. Meltdown

Meltdown does not use branch prediction. Instead, it relies on the
observation that when an instruction causes a trap, following
instructions are executed out-of-order before being terminated.

Second, Meltdown exploits a vulnerability specific to many Intel and
some ARM processors which allows certain speculatively executed
instructions to bypass memory protection.

Meltdown accesses kernel memory from user space. This access causes a
trap, but before the trap is issued, the instructions that follow the access
leak the contents of the accessed memory through a cache covert
channel.

