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Today’s Agenda

1. Cache side channel attack



Speed Gap Between CPU and DRAM

CPU

DRAM

0002
6661
8661
L66L
9661
G661
r66L
£661
2661
L66L
0661
6861
8861
LB6L
9861
G861
r861L
£861
2861
L86L
0861



Memory Hierarchy

Ideally one would desire an
indefinitely large memory
capacity such that any
particular ... word would be
immediately available. ... We

A tradEOff bEtween SPEEdr are ... forced to recognize the
COSt an d Ca pa Clty possibility of constructing a

hierarchy of memories, each
of which has greater capacity
than the preceding but which

is less quickly accessible.

A. W. Burks, H. H. Goldstine, and
J. von Neumann
Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument, 1946



CPU Cache

A cache is a small amount of fast, expensive memory (SRAM). The cache goes
between the CPU and the main memory (DRAM).

It keeps a copy of the most frequently used data from the main memory.

All levels of caches are integrated onto the processor chip.



Cache
Memory

Secondary

Access Time

Static RAM

Dynamic RAM

Flash

Magnetic disks

Access Time in 2012

0.5-2.5ns

50- 70 ns

5,000 - 50,000 ns

5,000,000 - 20,000,000 ns




Cache Hits and Misses

A cache hit occurs if the cache contains the data that we're looking for.

A cache miss occurs if the cache does not contain the requested data.



Cache Hierarchy

L1 Cache is closest to the CPU. Usually divided in Code and Data cache

L2 and L3 cache are usually unified.



Cache Hierarchy
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Cache Line/Block

The minimum unit of information that can be either present or not present
in a cache.

64 bytes in modern Intel and ARM CPUs



n-Way Set-Associative Cache

Any given block/line in the main memory may be cached in any
of the n cache lines in one cache set.



n-Way Set-Associative Cache

31 13 12 6 5

Tag Set, Index Offset

32KB 4-way set-associative data cache, 64 bytes per line
Number of sets
= Cache Size / (Number of ways * Line size)
=32*1024/ (4 * 64)

=128



n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index Offset

32KB 4-way set-associative data cache, 64 bytes per line
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n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset—

32KB 4-way set-associative data cache, 64 bytes per line

O O O O
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n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line
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n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line
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Congruent Addresses

Each memory address maps to one of these cache sets.

Memory addresses that map to the same cache set are called
congruent.

Congruent addresses compete for cache lines within the same
set, where replacement policy needs to decide which line will
be replaced.



Replacement Algorithm

Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)

Random



Cache Side-Channel Attacks

Cache side-channel attacks utilize time differences between a cache hit and a
cache miss to infer whether specific code/data has been accessed.



: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack
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: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]
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: Assume rO = 0x3000
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: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]
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: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]
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: Assume rO = 0x3000

: Load a word:;

:Get current time t1

LDR r1, [rO]

:Get current time t2; t2 - t1
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Attack Primitives

Evict+Time
Prime+Probe
Flush+Flush
Flush+Reload

Evict+Reload



2.4.1 Evict+Time

In 2005 Percival [66] and Osvik et al. [63] proposed more fine-grained ex-
ploitations of memory accesses to the CPU cache. In particular, Osvik et al.
formalized two concepts, namely Evict+Time and Prime+Probe that we will
discuss in this and the following section. The basic idea is to determine

which specific cache sets have been accessed by a victim program.

Algorithm 1 Evict+Time

1: Measure execution time of victim program.
2: Evict a specific cache set.
3: Measure execution time of victim program again.

The basic approach, outlined in Algorithm 1, is to determine which cache
set is used during the victim’s computations. At first, the execution time
of the victim program is measured. In the second step, a specific cache
set is evicted before the program is measured a second time in the third
step. By means of the timing difference between the two measurements,
one can deduce how much the specific cache set is used while the victim’s

program is running.

Osvik et al. [63] and Tromer et al. [81] demonstrated with Evict+Time a
powerful type of attack against on OpenSSL implementations that
requires neither knowledge of the plaintext nor the ciphertext.

Moritz Lipp, Cache Attacks on ARM, Graz University Of Technology



' b
Prime+Pr
R errrobe
I Step 1 Prime: Attacker occupies a
I set
Attacker Address Space Victim Address Space
0] 0] 0] 0]
127 127 127 127

Way O Way 1 Way 2 Way 3



127

Attacker Address Space

Way O

127

Prime+Probe

Step 1 Prime: Attacker occupies a
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Step 2: Victim runs
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Step 3 Probe: Attacker accesses
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Flush+Reload

A memory block is cached .
Attacker Address Space Victim Address Space
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Flush+Reload

Step 1 Flush: Attacker flushes this I
memory block out of cache
Attacker Address Space Victim Address Space
o) o) o) o)
127 127 127 127

Way O Way 1 Way 2 Way 3
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Step 2 Reload: Victim may / may not
access that block again
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2S5 Terminal

[11/23/20] seed@VM:~$ lscpu
Architecture: 1686

CPU op-mode(s): 32-bit

Byte Order: Little Endian
CPU(s): P
On-1line CPU(s) list: 0,1

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 1

Vendor 1ID: Genuinelntel

CPU family: 6

Model: 126

Model name: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz

Stepping: )

CPU MHz: 1497 .600

BogoMIPS: 2995.20

Hypervisor vendor: KVM

Virtualization type: full

L1ld cache: 48K

L1i cache: 32K

L2 cache: 512K

L3 cache: 8192K

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 ht nx rdtscp constant tsc xtopology non




