CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:20 PM - 8:10 PM

Today’s Agenda

1. Cache side channel attack

Speed Gap Between CPU and DRAM

CPU

DRAM

0002
6661
8661
L66L
9661
G661
r66L
£661
2661
L66L
0661
6861
8861
LB6L
9861
G861
r861L
£861
2861
L86L
0861

Memory Hierarchy

Ideally one would desire an
indefinitely large memory
capacity such that any
particular ... word would be
immediately available. ... We

A tradEOff bEtween SPEEdr are ... forced to recognize the
COSt an d Ca pa Clty possibility of constructing a

hierarchy of memories, each
of which has greater capacity
than the preceding but which

is less quickly accessible.

A. W. Burks, H. H. Goldstine, and
J. von Neumann
Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument, 1946

CPU Cache

A cache is a small amount of fast, expensive memory (SRAM). The cache goes
between the CPU and the main memory (DRAM).

It keeps a copy of the most frequently used data from the main memory.

All levels of caches are integrated onto the processor chip.

Cache
Memory

Secondary

Access Time

Static RAM

Dynamic RAM

Flash

Magnetic disks

Access Time in 2012

0.5-2.5ns

50- 70 ns

5,000 - 50,000 ns

5,000,000 - 20,000,000 ns

Cache Hits and Misses

A cache hit occurs if the cache contains the data that we're looking for.

A cache miss occurs if the cache does not contain the requested data.

Cache Hierarchy

L1 Cache is closest to the CPU. Usually divided in Code and Data cache

L2 and L3 cache are usually unified.

Cache Hierarchy

222J193u A10Wd L A —

Buffer Allocation ¢

Register Rename

Instruction Queue (fo
critical fields of the uOps)

General Instruction

le ate
fields of the uOps for schedulin,

F Point, MMX

allel (Matrix) Scheduler
for the two double pumped ALU's

General Floating

Load/ St
(8x8 d

Load / Store Linear Ad
Collision History Table

Integer Execution

uOp Dispatch unit & 3
ip to 6 uOps / cycle

bus switch &
from the Integer R
Fl. Write Back
(5) Double Pumped ALU (
(6) Double Pumped ALU |
(7) Load Address C ator Unit
(8) Store Address Generator Unit
(9) Load Buffer (48 entries)

(10) Store Buffer (24 entries)

Cache Hierarchy

Intel Pentium 4 Northwood

Instruction Trace Cache

Execution Pipeline Start

Micro code Sequencer ache
Micro code ROM & Fla Fill Buffers

Distributed Tag comparator
24 bit virtua

Register Alias History Tables (2x120)

ables uOp Queue

Trace Cache Acces
next Address Predict

Trace Cache Branch [
Table (BTB), 512 ents

Return Si 2x16 entries)
Trace Cache next IP's (

Miscellancous Tag Data

| Instruction Decoder
e Up to 4 decoded uOp

~256-kByte -
L2 Cache

-256-kByte -
L2 Cache
- Block __

mmed Address Index
che Line Read / Write Tr
bit wide bus to and from L2 cache

(11) ROB Reorder
(12) 8 kByte Level | Data cache
ative. IR/TW

rbuffers and

il 19, 2003

(from max. one x86 instr
Instructions with mor
are handled by Micro S
he LRU bits
aw Instruction Bytes
Data TLB, 64 entr
sociative, betw
d (for

Instruction Fet
from L2 cache and
Branch Prediction

Front End Branch Pre
T), shared, 4096

Instruction TLB's
ssociative for 4

Front Side Bus Inte
face, 400..800 MHz

www.chip-architect.com

':"a'q'\'n‘

Cache Line/Block

The minimum unit of information that can be either present or not present
in a cache.

64 bytes in modern Intel and ARM CPUs

n-Way Set-Associative Cache

Any given block/line in the main memory may be cached in any
of the n cache lines in one cache set.

n-Way Set-Associative Cache

31 13 12 6 5

Tag Set, Index Offset

32KB 4-way set-associative data cache, 64 bytes per line
Number of sets
= Cache Size / (Number of ways * Line size)
=32*1024/ (4 * 64)

=128

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index Offset

32KB 4-way set-associative data cache, 64 bytes per line

O O O O

127 127 127 127

Way O Way 1 Way 2 Way 3

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset—

32KB 4-way set-associative data cache, 64 bytes per line

O O O O

127 127 127 127

Way O Way 1 Way 2 Way 3

127

31

n-Way Set-Associative Cache

13 12

6

5

Tag

Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

Way O

0

127

Way 1

0

127

Way 2

0

127

Way 3

127

31

n-Way Set-Associative Cache

13 12

6

5

Tag

Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

Way O

0

127

Way 1

0

127

Way 2

0

127

Way 3

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

O O O O

127 127 127 127
Way O Way 1 Way 2 Way 3

n-Way Set-Associative Cache

31 13 12 6 5 0
Tag Set, Index

Offset

32KB 4-way set-associative data cache, 64 bytes per line

O O O O

127 127 127 127
Way O Way 1 Way 2 Way 3

127

Vv

31

32KB 4-way set-associative data cache, 64 bytes per line

Tag Data

Cache Line/Block Content

13 12

6

5

Tag

Set, Index

Offset

D

Way O

0

127

0

127

Way 1

Way 2

0

127

Way 3

Congruent Addresses

Each memory address maps to one of these cache sets.

Memory addresses that map to the same cache set are called
congruent.

Congruent addresses compete for cache lines within the same
set, where replacement policy needs to decide which line will
be replaced.

Replacement Algorithm

Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)

Random

Cache Side-Channel Attacks

Cache side-channel attacks utilize time differences between a cache hit and a
cache miss to infer whether specific code/data has been accessed.

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

?

Registers

Ox2FFC

"B 0x3000

0x3004

0x00000000

0x00000001

0x00000002

Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

0x0001

Registers

OX2FFC 0x00000000
"B 0x3000 0x00000001
]
0x3004 0x00000002
Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

?

Registers

Way 0

Way 1

Cache

Ox2FFC

"B 0x3000

0x3004

0x00000000

0x00000001

0x00000002

Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

ro

ri

0x3000

0x0001

Registers T
7/

Way 0

Way 1

Cache

Ox2FFC

"B 0x3000

0x3004

0x00000000

0x00000001

0x00000002

Memory

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

0x00000000

0x00000001

0x00000002

Memory

Cache

r0 0x3000 . Ox2FFC
ol
1 0x0001 0x3000
004
Registers /
Way 0 Way 1

: Assume rO = 0x3000
: Load a word:;

LDR r1, [rO]

Cache Side-Channel Attack

0x00000000

0x00000001

0x00000002

Memory

Cache

r0 0x3000 . Ox2FFC
ol
1 0X0001 0x3000
004
Registers T /
4
Way 0 Way 1

: Assume rO = 0x3000

: Load a word:;

:Get current time t1

LDR r1, [rO]

:Get current time t2; t2 - t1

ro

ri

0x3000

0x0001

"B 0x3000
W

Registers T
7/

Way 0

Way 1

Cache

Cache Side-Channel Attack

Ox2FFC

0x00000000

0x00000001

0x00000002

Memory

Attack Primitives

Evict+Time
Prime+Probe
Flush+Flush
Flush+Reload

Evict+Reload

2.4.1 Evict+Time

In 2005 Percival [66] and Osvik et al. [63] proposed more fine-grained ex-
ploitations of memory accesses to the CPU cache. In particular, Osvik et al.
formalized two concepts, namely Evict+Time and Prime+Probe that we will
discuss in this and the following section. The basic idea is to determine

which specific cache sets have been accessed by a victim program.

Algorithm 1 Evict+Time

1: Measure execution time of victim program.
2: Evict a specific cache set.
3: Measure execution time of victim program again.

The basic approach, outlined in Algorithm 1, is to determine which cache
set is used during the victim’s computations. At first, the execution time
of the victim program is measured. In the second step, a specific cache
set is evicted before the program is measured a second time in the third
step. By means of the timing difference between the two measurements,
one can deduce how much the specific cache set is used while the victim’s

program is running.

Osvik et al. [63] and Tromer et al. [81] demonstrated with Evict+Time a
powerful type of attack against on OpenSSL implementations that
requires neither knowledge of the plaintext nor the ciphertext.

Moritz Lipp, Cache Attacks on ARM, Graz University Of Technology

' b
Prime+Pr
R errrobe
I Step 1 Prime: Attacker occupies a
I set
Attacker Address Space Victim Address Space
0] 0] 0] 0]
127 127 127 127

Way O Way 1 Way 2 Way 3

127

Attacker Address Space

Way O

127

Prime+Probe

Step 1 Prime: Attacker occupies a
set

127

Way 1 Way 2

Victim Address Space

0

127

Way 3

127

Attacker Address Space

Way O

127

Prime+Probe

Step 2: Victim runs

127

Way 1 Way 2

Victim Address Space

0

127

Way 3

127

Attacker Address Space

Way O

127

Prime+Probe

Step 3 Probe: Attacker accesses
memory again and measures the
time

127

Way 1 Way 2

Victim Address Space

0

127

Way 3

Flush+Reload

A memory block is cached .
Attacker Address Space Victim Address Space
0o 0o 0o 0o
127 127 127 127

Way O Way 1 Way 2 Way 3

Flush+Reload

Step 1 Flush: Attacker flushes this I
memory block out of cache
Attacker Address Space Victim Address Space
o) o) o) o)
127 127 127 127

Way O Way 1 Way 2 Way 3

127

Attacker Address Space

Way O

127

Flush+Reload

Step 2 Reload: Victim may / may not
access that block again

127

Way 1 Way 2

Victim Address Space

0

127

Way 3

127

Attacker Address Space

Way O

127

Flush+Reload

Step 3 Probe: Attacker accesses that
block again and measure

127

Way 1 Way 2

Victim Address Space

0

127

Way 3

2S5 Terminal

[11/23/20] seed@VM:~$ lscpu
Architecture: 1686

CPU op-mode(s): 32-bit

Byte Order: Little Endian
CPU(s): P
On-1line CPU(s) list: 0,1

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 1

Vendor 1ID: Genuinelntel

CPU family: 6

Model: 126

Model name: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz

Stepping:)

CPU MHz: 1497 .600

BogoMIPS: 2995.20

Hypervisor vendor: KVM

Virtualization type: full

L1ld cache: 48K

L1i cache: 32K

L2 cache: 512K

L3 cache: 8192K

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 ht nx rdtscp constant tsc xtopology non

