CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:20 PM - 8:10 PM

Today’s Agenda

1. Return-oriented Programing

History of ROP

e This technique was first introduced in 2005 to work around 64-bit
architectures that require parameters to be passed using registers (the
“borrowed chunks” technique, by Krahmer)

e In CCS 2007, the most general ROP technique was proposed in “The

Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86)”, by Hovav Shacham

The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)

Hovav Shacham*
hovav@cs.ucsd.edu

September 5, 2007

Abstract

We present new techniques that allow a return-into-libc attack to be mounted on x86 exe-
cutables that calls no functions at all. Our attack combines a large number of short instruction
sequences to build gadgets that allow arbitrary computation. We show how to discover such
instruction sequences by means of static analysis. We make use, in an essential way, of the
properties of the x86 instruction set.

1 Introduction

We present new techniques that allow a return-into-libc attack to be mounted on x86 executables
that is every bit as powerful as code injection. We thus demonstrate that the widely deployed
“WeX” defense, which rules out code injection but allows return-into-libc attacks, is much less

useful than previously thought.

“In any sufficiently large body of x86 executable code there will exist sufficiently many useful code
sequences that an attacker who controls the stack will be able, by means of the return-into-libc
techniques we introduce, to cause the exploited program to undertake arbitrary computation.”

2017

The test-of-time award winners for CCS 2017 are as follows:

> Hovav Shacham:
The Geometry of Innocent Flesh on the Bone: Return-into-libc without

Function Calls (on the x86). Pages 552-561, In Proceedings of the 14th ACM
conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA. ACM 2007, ISBN: 978-1-59593-703-2

Return-Oriented Programming: Systems, Languages,
and Applications

RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM, and STEFAN SAVAGE,

University of California, San Diego

We introduce return-oriented programming, a technique by which an attacker can induce arbitrary behavior
in a program whose control flow he has diverted, without injecting any code. A return-oriented program
chains together short instruction sequences already present in a program’s address space, each of which
ends in a “return” instruction.

Return-oriented programming defeats the W&X protections recently deployed by Microsoft, Intel, and
AMD; in this context, it can be seen as a generalization of traditional return-into-libc attacks. But the
threat is more general. Return-oriented programming is readily exploitable on multiple architectures and
systems. It also bypasses an entire category of security measures—those that seek to prevent malicious
computation by preventing the execution of malicious code.

To demonstrate the wide applicability of return-oriented programming, we construct a Turing-complete
set of building blocks called gadgets using the standard C libraries of two very different architectures:
Linux/x86 and Solaris/SPARC. To demonstrate the power of return-oriented programming, we present a
high-level, general-purpose language for describing return-oriented exploits and a compiler that translates
it to gadgets.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection
General Terms: Security, Algorithms

Additional Key Words and Phrases: Return-oriented programming, return-into-libc, W-xor-X, NX, x86,
SPARC, RISC, attacks, memory safety, control flow integrity

ACM Reference Format:

Roemer, R., Buchanan, E., Shacham, H., and Savage, S. 2012. Return-oriented programming: Systems,
languages, and applications. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages.

DOI =10.1145/2133375.2133377 http://doi.acm.org/10.1145/2133375.2133377

1. INTRODUCTION

The conundrum of malicious code is one that has long vexed the security commu-
nity. Since we cannot accurately predict whether a particular execution will be benign
or not, most work over the past two decades has focused instead on preventing the
introduction and execution of new malicious code. Roughly speaking, most of this

(32-bit) Return to functions with one argument?

1. Before 2. After 3. after 4. after 5. after
epilogue of epilogue of prologue of epilogue of prologue of
vulfoo vulfoo f1 f1 f2

0,
., e R R sy
B ..
%ebp =P %ebp
BB oo Peang | Pesdng | wop | Pesdng
L

(32 bit) Return to multiple functions?

Finding: We can return to a chain of unlimited number of functions

1. Before 2. After 3. after 4. after 5. after
epilogue of epilogue of prologue of epilogue of prologue of
vulfoo vulfoo f1 f1 f2

%esg

%esg

%ebE

%ebp %ebp

%ebE

%eip %eip

ROP

Chain chunks of code (gadgets; not functions; no function prologue and
epilogue) in the memory together to accomplish the intended objective.

The gadgets are not stored in contiguous memory, but they all end with
a RET instruction or JMP instruction.

The way to chain they together is similar to chaining functions with no
arguments. So, the attacker needs to control the stack, but does not
need the stack to be executable.

RET?

x86 Instruction Set Reference

RET

Return from Procedure

m Mnemonic Description
C3 RET Near return to calling procedure.
CB RET Far return to calling procedure.
C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes from stack.
CA iw RET imml6 Far return to calling procedure and pop imm16 bytes from stack.
—
Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the stack by a CALL instruction, and the
return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; the default is none. This operand can be
used to release parameters from the stack that were passed to the called procedure and are no longer needed. It must be used when the CALL instruction
used to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

Are there really many ROP Gadgets?

X86 ISA is dense and variable length

ROPGadget

Git clone https://github.com/JonathanSalwan/ROPgadget on your
box or VM.

Install captone (sudo pip install capstone or sudo pip3 install
capstone)

Python or python3 ./ROPgadget.py --binary binaryname

https://github.com/JonathanSalwan/ROPgadget

ROP

e Automated tools to find gadgets
o Pwntools
o ROPgadget
o Ropper

e Automated tools to build ROP chain
o ROPgadget

e Pwntools

ret2libc: code/overflowret4 32-bit (./or4dnxnc)

int vulfoo()

{
char buf[30];

gets(buf);
return O;

}

int main(int argc, char *argv[])
{

vulfoo();

printf("I pity the fool'\n");
}

Use “echo 0 | sudo tee /proc/sys/kernel/randomize_va_space” on
- Ubuntu to disable ASLR temporarily

ret2libc: code/overflowret4 32-bit (./or4dnxnc)

- 000011ed <vulfoo>: .

* 11ed:f30f1efb endbr32 .

o 11f1:55 push %ebp system_arg

. 11f2:89e5 mov %esp,%ebp -)

* 11f4: 53 push %ebx exit

. 11f5:83ec34 sub $0x34,%esp .

. 1118:e8 64 00 00 00 call 1261 <_x86.get_pc_thunk.ax> . RET = system

= 11fd: 05 d7 2d 00 00 add $0x2dd7,%eax

- 1202:83 ecOc sub $0xc,%esp . 0 0

. 1205:8d 55 dO lea -0x30(%ebp),%edx : _/oe_bp_> Saved %ebp

= 1208:52 push %edx :

. 1209:89 c3 mov %eax,%ebx .

« 120b:e8 70 fe ff ff call 1080 <gets@plt> . 0x30 =48
= 1210:83c4 10 add $0x10,%esp byt

" 1213:b8 00 00 00 00 mov $0x0,%eax . buf ytes
. 1218:8b 5d fc mov -0x4(%ebp),%ebx =

* 121b:c9 leave

- 1213 ret

ret2libc: code/overflowret4 64-bit (./or464nxnc)

" 0000000000001169 <vulfoo>:

- 1169:
116d:
116e:
1171:
1175:
1179:
117c:
1181:
1186:
118b:
118c:

f3 0f 1e fa

55

48 89 e5

48 83 ec 30

48 8d 45 d0
48 89 c7

b8 00 00 00 00
e8 ea fe ff ff
b8 00 00 00 00

c9 leaveq
c3 retq

endbré4

push %rbp

mov %rsp,%rbp

sub $0x30,%rsp

lea -0x30(%rbp),%rax -

mov %rax,%rdi - %rbp
mov $0x0,%eax -

callq 1070 <gets@plt>

mov $0x0,%eax

RET
Saved %rbp

0x30 = 48

buf bytes

amd64 Linux Calling Convention

Caller

e Use registers to pass arguments to callee. Register order
(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) %rdi, %rsi, %rdx, %rcx,
%r8, %r9, ... (use stack for more arguments)

code/ret2libc64 64-bit

FILE* fp = 0;

int vulfoo()

{
char buf[4];

fp = fopen("exploit", "r");
if (!fp)
exit(0);

fread(buf, 1, 100, fp);
return 0;}

int main(int argc, char *argv[])
{

vulfoo();

return 0;}

code/ret2libc64 64-bit

0000000000401176 <vulfoo>:

401176: f30f1efa endbré4

40117a: 55 push %rbp

40117b: 48 89 e5 mov %rsp,%rbp

40117e: 48 83 ec 10 sub $0x10,%rsp

401182: 48 8d 35 7b 0e 00 00 lea Oxe7b(%rip),%rsi
401189: 48 8d 3d 76 0e 00 00 lea 0xe76(%rip),%rdi
401190: e8 db fe ff ff callg 401070 <fopen@plt>
401195: 48 89 05 ac 2e 00 00 mov %rax,0x2eac(%rip)
40119c: 48 8b 05 a5 2e 00 00 mov 0x2ea5(%rip),%rax
4011a3: 48 85 c0 test %rax,%rax

4011a6: 75 0a jne 4011b2 <vulfoo+0x3c>
4011a8: bf 00 00 00 00 mov $0x0,%edi
4011ad: e8 ce fe ff ff callg 401080 <exit@plt>

4011b2: 48 8b 15 8f 2e 00 00 mov 0x2e8f(%rip),%rdx
4011b9: 48 8d 45 fc lea -0x4(%rbp),%rax

4011bd: 48 89 d1 mov %rdx,%rcx

4011c0: ba 64 00 00 00 mov $0x64,%edx
4011c5: be 01 00 00 00 mov $0x1,%esi

4011ca: 48 89 c7 mov %rax,%rdi

4011cd: e8 8e fe ff ff callg 401060 <fread@plt>
4011d2: b8 00 00 00 00 mov $0x0,%eax
4011d7: 9 leaveq

4011d8: c3 retq

Y%rsp

Addr of system
Addr of “/bin/sh”
Addr “Pop rdi; ret;”
Saved %rbp

buf

Ox4 = 4 bytes

0000000000401176 <vulfoo>:

code/ret2libc64 64-hit

401176: f30f1efa endbr64

40117a: 55 push %rbp

40117b: 48 89 e5 mov %rsp,%rbp

40117e: 48 83 ec 10 sub $0x10,%rsp

401182: 48 8d 35 7b 0e 00 00 lea O0xe7b(%rip),%rsi
401189: 48 8d 3d 76 0e 00 00 lea 0xe76(%rip),%rdi
401190: e8 db fe ff ff callg 401070 <fopen@plt>
401195: 48 89 05 ac 2e 00 00 mov %rax,0x2eac(%rip)
40119c: 48 8b 05 a5 2e 00 00 mov 0x2ea5(%rip),%rax
4011a3: 48 85 c0 test %rax,%rax

4011a6: 75 0Oa jne 4011b2 <vulfoo+0x3c>
4011a8: bf 00 00 00 00 mov $0x0,%edi
4011ad: e8 ce fe ff ff callg 401080 <exit@plt>

4011b2: 48 8b 15 8f 2e 00 00 mov 0x2e8f(%rip),%rdx
4011b9: 48 8d 45 fc lea -0x4(%rbp),%rax

4011bd: 48 89 d1 mov %rdx,%rcx

4011c0: ba 64 00 00 00 mov $0x64,%edx
4011c5: be 01 00 00 00 mov $0x1,%esi

4011ca: 48 89 c7 mov %rax,%rdi

4011cd: e8 8e fe ff ff callg 401060 <fread@plt>
4011d2: b8 00 00 00 00 mov $0x0,%eax
4011d7: c9 leaveq

4011d8: 3 retq

%rsp

0x4 = 4 bytes

ROPGadget

e Automated tools to build ROP chain
o ROPgadget

