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Abstract

Fingerprint authentication has gained increasing popularity

on mobile devices in recent years. However, it is vulnera-

ble to presentation attacks, which include that an attacker

spoofs with an artificial replica. Many liveness detection solu-

tions have been proposed to defeat such presentation attacks;

however, they all fail to defend against a particular type of pre-

sentation attack, namely puppet attack, in which an attacker

places an unwilling victim’s finger on the fingerprint sensor.

In this paper, we propose FINAUTH, an effective and efficient

software-only solution, to complement fingerprint authenti-

cation by defeating both synthetic spoofs and puppet attacks

using fingertip-touch characteristics. FINAUTH characterizes

intrinsic fingertip-touch behaviors including the acceleration

and the rotation angle of mobile devices when a legitimate

user authenticates. FINAUTH only utilizes common sensors

equipped on mobile devices and does not introduce extra

usability burdens on users. To evaluate the effectiveness of

FINAUTH, we carried out experiments on datasets collected

from 90 subjects after the IRB approval. The results show

that FINAUTH can achieve the average balanced accuracy

of 96.04% with 5 training data points and 99.28% with 100

training data points. Security experiments also demonstrate

that FINAUTH is resilient against possible attacks. In addition,

we report the usability analysis results of FINAUTH, including

user authentication delay and overhead.

1 Introduction

In recent years, fingerprint sensors have been widely inte-

grated into smartphones and tablets. Combined with Fast

IDentity Online (FIDO) [11] and other protocols, a fingerprint

sensor enables applications [71], such as mobile banking, to

locally authenticate end users instead of asking them to type

passwords on a small touchscreen [1, 7]. It is estimated that

920 million global shipments of smartphones (about 64%)

∗The corresponding authors are Kun He and Jing Chen.

were equipped with a fingerprint sensor in 2017, and the num-

ber will increase to 1.25 billion (about 75%) by 2020 [8].

However, fingerprint authentication is vulnerable to presen-

tation attacks [70], where attackers bypass the authentication

using artificial crafts, e.g. gummy fingers that have fingerprint

impressions, or human-based instruments [39]. To defend

against presentation attacks, hardware-based solutions rely

on additional hardware to acquire biological traits, such as

blood pressure [42], odor [15], oxygen saturation [59], heart-

beat [10], and electrocardiograph [40]. And, software-based

solutions utilize image processing to extract more discrimi-

native physical characteristics, such as the size of fingerprint

ridges [55], density [26], continuity [58], texture [27], and

train the detection model via machine learning methods to

enhance the security against fingerprint spoofs [30, 56].

Unfortunately, existing methods to enhance the security of

fingerprint authentication only focus on liveness detection,

which determines whether the input fingerprint comes from

a live human being. These systems are powerless against

puppet attacks, in which an attacker places an unwilling but

legitimate victim’s finger on the fingerprint sensor, e.g., the

victim is sleeping or passed out. Puppet attack was highlighted

in ISO/IEC 30107 [39], and of increasing concern because

it is easy to perform [2]. Because the fingerprint and other

biological traits are collected from the real and legitimate

user in puppet attacks, existing liveness detection methods all

fail [4].

Even though combining fingerprint with behavioral biomet-

rics is a promising approach in defeating puppet attacks, exist-

ing behavioral biometrics, including keystroke dynamic [34],

gesture pattern [65], and gait pattern [49], are not suitable

to enhance the security of fingerprint authentication due to

the following reasons: i) these methods place extra usability

burdens on users by requiring additional gestures; ii) these

methods rely on behavioral biometric information collected

in a relatively long time, e.g. more than 1 second [65], while

fingerprint authentication happens in 0.29 seconds on average

based on our experiments (Section 7.4). The key challenge

in designing a practical puppet-attack-resistant fingerprint
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authentication is to detect impostors promptly without under-

mining the usability of fingerprint authentication.

To overcome this challenge, we utilize the intrinsic

fingertip-touch characteristics to model users’ movements

in legitimate authentications to defend against all presentation

attacks, including the puppet attack. The term of fingertip-

touch in this paper refers to the behavior completed in an

instant when a user gets the mobile device in hand and applies

his/her finger to fingerprint sensors. We model these move-

ments with acceleration and rotation angle, which can be

retrieved from built-in sensors, such as accelerometer, magne-

tometer, and gyroscope. This is inspired by the fact that users

place their fingers on a fingerprint sensor to perform authen-

tication repeatedly (average 50 times a day [72]) and these

habitual behaviors form stationary and unique muscle mem-

ory [9, 63]. We identify latent time- and frequency-domain

features, and use the convolutional neural network (CNN) to

extract discriminative features from characterized behavior,

i.e., accelerations and rotation angles. We develop an effective

and efficient authentication system named FINAUTH, which

can be easily deployed on mobile devices as auxiliary authen-

tication for fingerprint authentications without introducing

additional hardware or gestures.

Attack Models. We consider the following three types of

attacks: i) Artificial replica attack: the attacker can forge fake

fingerprints to spoof the fingerprint system [17]; ii) Puppet
attack: the attacker can put an unwilling victim’s finger on the

fingerprint sensor [39]; iii) Mimicry attack: the attacker knows

how our approach works and attempts to defeat our approach

by mimicking the victim’s movements in authentication [34].

FINAUTH can defeat the first two types of attackers. Also, it

is difficult for the third type of attackers to bypass FINAUTH.

The contributions of this paper are summarized as follows:

• We propose FINAUTH to complement fingerprint au-

thentication for defending presentation attacks, includ-

ing the puppet attack. FINAUTH models a user’s intrinsic

fingertip-touch behavior during fingerprint authentica-

tion. FINAUTH uses built-in sensors and does not require

additional hardware.

• To evaluate the performance of FINAUTH, we collected

a dataset of fingertip-touch behavior data from 90 sub-

jects. Our experimental results show that FINAUTH can

achieve a balanced accuracy of 96.04% with only 5 train-

ing data points, while the balanced accuracy can be im-

proved to 99.28% with 100 training data points.

• We demonstrate the security of FINAUTH in defeating

three types of attacks, including artificial replica attacks,

puppet attacks, and mimicry attacks. Experiment results

show that attack success rates are all below 0.3% under

the authentication model trained using 100 data points.

The rest of this paper is organized as follows. Section 2

presents the overview of FINAUTH. In Section 3, we intro-

Figure 1: The workflow of FINAUTH.

duce the data preprocessing and the method to characterize

fingertip-touch behaviors. Sections 4 and 5 illustrate feature

processing and classification approaches. We describe details

of experiment design and data collection in Section 6. Sec-

tion 7 reports experimental results of reliability, security, and

usability. We review related work in Section 8, and discuss

our study in Section 9. Section 10 concludes this paper.

2 Overview of FINAUTH

Similar to most authentication schemes, FINAUTH consists

of two phases: enrollment and authentication. In enrollment,

FINAUTH builds a user profile from the first successful finger-

print authentications. After a user profile is built, FINAUTH

enters the authentication phase, in which FINAUTH assists

the fingerprint sensor to authenticate a user.

FINAUTH only employs built-in sensors on smart devices,

including accelerometer, gyroscope, and magnetometer, to

sense phone movements incurred by fingertip-touch behav-

iors. The accelerometer and gyroscope are motion sensors,

which can monitor device movement. The magnetometer is

a position sensor to determine a device’s physical position

in the real frame of reference, which is leveraged for data

calibration to acquire more precise motion information.

As shown in Figure 1, FINAUTH consists of three mod-

ules, including data preprocessor, feature extractor, and au-
thenticator. The data preprocessor runs in the background

to monitor fingerprint authentication events. Upon detecting

fingerprint-inputting, data preprocessor starts to collect ac-

celerometer, gyroscope, and magnetometer data. Then, data

preprocessor uses wavelet denoising method to reduce noise.

FINAUTH characterizes fingertip-touch behaviors using ac-

celerations and rotation angles. For the feature extractor,

FINAUTH generates power spectral density for characterized

fingertip-touch behavior information using short-time Fourier

transform (STFT), and then uses CNN-based feature extractor

to extract features. To profile legitimate users with only suc-

cessful login data points, FINAUTH trains a machine learning

model based on a one-class classifier, which is later used for

authentication.

2220    29th USENIX Security Symposium USENIX Association



y
z
Yaw

Pitch

Roll x

Figure 2: Roll, pitch, and yaw.

3 Data Preprocessing

In this section, we present the data collection and preprocess-

ing approaches adopted by FINAUTH. We also illustrate how

FINAUTH characterizes fingertip-touch behaviors.

3.1 Data Collection and Denoising

Data collection. Once a user places her finger on the finger-

print sensor, FINAUTH starts to collect accelerometer, gyro-

scope, and magnetometer data for a short period t with the

sampling rate fs. For each authentication attempt, FINAUTH

collects n (n = t × fs) samples of sensor data. Each sample is

9-dimensional denoted as (ar
x, ar

y, ar
z, gr

x, gr
y, gr

z, mr
x, mr

y, mr
z),

where r stands for raw data, a, g, m represent accelerome-

ter, gyroscope, and magnetometer data respectively, and x,

y, and z represent the three axes. We use a row vector, e.g.

aaar = (ar
x,a

r
y,a

r
z), to denote a data sample from a sensor and

use a column vector, e.g. aaar
x = (ar

x,1, ...,a
r
x,n)

T , to represent all

n samples at one axis (e.g. x-axis).

Denoising. Because slight vibrations, even sounds, can in-

troduce measurable noise to the built-in sensors [43], it is

important to reduce the noise from the sensed data. We apply

wavelet denoising [79], which is widely used in signal pro-

cessing, on the column vectors of the sensed data (e.g. aaar
x). A

denoised sample is represented as (ax, ay, az, gx, gy, gz, mx,

my, mz).

3.2 Characterizing Fingertip-touch Behaviors

From the denoised data, we use accelerations and rotation

angles to characterize fingertip-touch behaviors.

Accelerations. Accelerations of a device can represent the

dynamic force acting upon a device from a user. We use the

accelerations along the three axes at the device coordinate sys-

tem (ax,ay,az) and the net acceleration (a′ =
√

a2
x +a2

y +a2
z )

to model fingertip-touch characteristics. The coordinate sys-

tem of a smartphone is shown as Figure 2.

Rotation angles. A fingertip-touch behavior also causes

a device to rotate slightly. As shown in Figure 2, we use

the classical Euler angle parameterization to represent the

rotations, which are denoted as roll (φ), pitch (θ), and yaw
(ψ). We compute the rotation angles using the sensed data

through the following steps [16, 73]:

1) the coarse angles (φc,θc,ψc) are computed us-

ing accelerometer and magnetometer data as shown in

Eq. 1, 2, and 3 [75].

φc = arctan(
−ay√−a2

x +a2
z
) (1)

θc = arctan(
−ax

az
) (2)

ψc = arctan
sin(φc)sin(θc)mx + cos(φc)my + sin(φc)cos(φc)mz

cos(θc)mx + sin(θc)mz
.

(3)

2) to get more accurate angles, we then use the gyroscope

data to get the partial derivatives of φ, θ, ψ with respect to time

(
∂(φ)
∂(t) ,

∂(θ)
∂(t) ,

∂(ψ)
∂(t) ). The gyroscope measures the angular velocity,

and the dynamic angle can be obtained by integrating the

angular velocity, which is given in Eq. 4 [57].

⎡
⎢⎢⎣

∂(φ)
∂(t)
∂(θ)
∂(t)
∂(ψ)
∂(t)

⎤
⎥⎥⎦=

⎡
⎣

1 sin(φc)tan(θc) sin(φc)tan(θc)
0 cos(φc) −sin(φc)
0 sin(φc)/cos(θc) cos(φc)/cos(θc)

⎤
⎦
⎡
⎣

gx
gy
gz

⎤
⎦

(4)

3) we then use extended Kalman filter (EKF) to perform

sensor data fusion, which is widely used for state estimation

and tracking due to its robustness in nonlinear dynamic en-

vironments [52]. The EKF method takes time-varying drift

into account via defining an error metric and updating covari-

ance metric iteratively to minimize this error. Specifically, the

system state vector xxx of EKF in our work is given as Eq 5.

xxx = [qqqT ,wwwT ]T = [q0,q1,q2,q3,
∂(φ)
∂(t)

,
∂(θ)
∂(t)

,
∂(ψ)
∂(t)

]T (5)

where T denotes the transpose operator, wwwT =

[ ∂(θ)
∂(t) ,

∂(ψ)
∂(t) ,

∂(ψ)
∂(t) ], which are estimated values with Eq. 4.

qqq is the quaternion (four-element vector), which can be

acquired based on the relationship between Euler Angles and

quaternion as shown in Eq. 6.

qqq =

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

cos φc

2 cos θc

2 cos ψc

2 + sin φc

2 sin θc

2 sin ψc

2

sin φc

2 cos θc

2 cos ψc

2 − cos φc

2 sin θc

2 sin ψc

2

cos φc

2 sin θc

2 cos ψc

2 + sin φc

2 cos θc

2 sin ψc

2

cos φc

2 cos θc

2 sin ψc

2 − sin φc

2 sin θc

2 cos ψc

2

⎤
⎥⎥⎥⎦ (6)

where φc, θc, and ψc are estimated with the fusion of both

accelerometer and magnetometer based on Eq. 1, 2, and 3.

q1, q2, q3, q4 are elements of the unit quaternion.
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Table 1: Time- and frequency-domain features and their normalized fisher’s scores.

Domain Feature Description Normalized Fisher Score of

(aaax,aaay,aaaz,aaa′,φφφ,θθθ,ψψψ)
T

im
e

Mean The mean of the time series. (0.45,0.01,0.22,0.68,0.86,0.84,0.84)
Standard deviation The standard deviation of the time series. (0.24,0.56,0.31,0.41,0.58,0.32,0.74)
Relative standard deviation The extent of variability in relation to its mean. (0.34,0.15,0.12,0.56,0.71,0.64,0.82)
Sum of absolute differences The sum over the absolute value of consecutive changes in

the time series.

(0.32,0.27,0.72,0.52,0.53,0.72,0.78)

Absolute energy The absolute energy of the time series. (0.63,0.98,0.85,0.57,0.72,0.57,0.37)
Autocorrelation The autocorrelation of the time series. (0.00,0.14,0.15,0.21,0.94,0.62,0.64)

F
re

q
u
en

cy

Spectral centroid The center of mass of the spectrum is located. (0.34,0.21,0.38,0.12,0.78, 0.98,0.78)
Spectral spread The average spread of the spectrum in relation to its cen-

troid.

(0.66,0.36,0.32,0.78,0.46,0.82,0.96)

Spectral skewness The measurement of the asymmetry of the probability dis-

tribution of a real-valued random variable about its mean.

(0.85,0.45,0.58,0.84,0.56,0.85,1.00)

Spectral kurtosis The shape of a probability distribution. (0.34,0.17,0.70,0.86,0.62,0.51,0.42)
Power spectral density Average of distribution of power into frequency compo-

nents.

(0.90,0.71,0.86,0.26,0.85,0.68,0.82)

Spectral entropy The complexity of the signal in the frequency domain. (0.94,0.32,0.82,0.21,0.96,0.82,0.89)

We compute accurate quaternions, where the detailed steps

are presented in Appendix B due to the page limit. Finally,

rotation angles can be computed based on Eq. 7.

⎧⎪⎨
⎪⎩

γ = arctan( 2q2q3+2q0q1

2q2
0+2q2

3−1
)

θ = −arcsin(2q1q3 −2q0q2)

ψ = arctan( 2q1q2+2q0q3

2q2
0+2q2

1−1
)

(7)

The outcome of characterizing fingertip-touch behaviors is

represented as (aaax,aaay,aaaz,aaa′,φφφ,θθθ,ψψψ), where each of element

is an n-dimensional vector.

4 Feature Extraction

We present two methods to extract discriminative features

from fingertip-touch behaviors.

4.1 Time- and Frequency-domain Features
We extract features in the time- and frequency-domain from

(aaax,aaay,aaaz,aaa′,φφφ,θθθ,ψψψ). As shown in Table 1, we extract six sta-

tistical features in the time domain, including mean, standard

deviation, relative standard deviation, sum of absolute differ-

ences, absolute energy, and autocorrelation. In addition, we

apply fast Fourier transform and extract another six features

in the frequency domain. These features include spectral cen-

troid, spread, skewness, kurtosis, power density, and entropy.

These time- and frequency-domain features are widely used

for time series analysis [24, 44, 46].

Selected Features. We computed the Fisher’s scores [35] for

all aforementioned 84 features with 45,000 data points col-

lected from 90 users to select the most discriminative features.

As the results show in Table 1, the features from rotation an-

gle have higher Fisher’s score than features from acceleration.

Features with a normalized Fisher’s score higher than 0.6 are

selected. The output of features extraction and selection in

time and time-domain is a 43-dimensional feature vector.

4.2 CNN-based Feature Learning

Besides the extracted time- and frequency-domain features,

we also resort to CNN-based feature learning. To this end, we

first apply STFT and convert the time series data (e,g., aaax) to

a two-dimensional power spectral density matrix. Then, we

concatenate these matrices and rely on CNN models to extract

features from them. Figure 3 shows three users’ spectrograms

from aaax, aaay, aaaz, aaa′, θθθ, φφφ, ψψψ, which are visual representations

of power spectral density matrices.

The basic idea of feature learning with CNN is to lever-

age the output of the model’s intermediate layer as features

thanks to the powerful feature representation of deep learning

method [13, 67]. In particular, we train the CNN model to

distinguish different users with collected FINAUTH data, and

employ the first k layers of the trained model as the feature

extractor. Even though the model is trained from a limited

dataset, it can be used to extract generalized features because

of the feature learning ability of CNN, which is also known

as transfer learning [77].

Table 2 shows the structure of our used CNN model. We

use leaky rectified linear units (Leaky ReLu) as the activation

functions for two-dimensional convolution (Conv2d) layers

and fully connected (FC) layers, since it can tackle the van-

ishing gradient problem during the model training phase [50].

For the pooling layers, we use the max-pooling method to

down-sample the input, which controls over-fitting and saves

computational costs by reducing the number of parameters

for training. To avoid over-fitting, we add dropout layers af-

ter each pooling layer. Furthermore, we also consider batch

normalization (BN) layers to normalize the output of the pre-

vious layer, which accelerates model training and increases
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(a) User A.

(b) User B.

(c) User C.

Figure 3: Characterized fingertip-touch behaviors of three users under STFT. From left to right, spectrograms of aaax, aaay, aaaz, aaa′, θθθ,

φφφ, ψψψ.

the stability of the model. The softmax layer is added as the

last layer for prediction, which outputs the categorical proba-

bility distribution of each class. Specifically, the kernel size

of Conv2d and pooling layers is set as 3×3 and 2×2 respec-

tively, because of their better non-linear feature representation

gaining popularity in start-of-art models [36, 38, 67]. The de-

tailed output shape and the number of parameters of each layer

are given as Table 2. The total model contains 202,974 pa-

rameters, including 202,438 trainable and 536 non-trainable

parameters.

5 Authentication With One-class Classifiers

In real-world fingerprint authentication settings, the training

dataset only contains the legitimate user’s data points. There-

fore, it is a one-class classification problem. We use four

methods to profile the legitimate user: i) Pearson correlation

coefficient-based similarity comparison (PCC), ii) one-class

support vector machine (OC-SVM), iii) local outlier factor

(LOF), and iv) isolation forest (IF).

PCC is a similarity metric to measure the linear correla-

tion between two variables. The coefficient is between +1

and -1, where +1/-1 denotes a total positive or negative linear

Table 2: The structure of base CNN model.

# Layer Layer Type Output Shape # Para

1 Conv2d + LeakyReLu 62×126×24 1,536

2 Conv2d + LeakyReLu 60×124×24 5,208

3 Pooling + Dropout +BN 30×62×24 96

4 Conv2d + LeakyReLu 28×60×48 10,416

5 Conv2d + LeakyReLu 26×58×48 20,784

6 Pooling + Dropout +BN 13×29×48 192

7 Conv2d + LeakyReLu 11×27×16 6,928

8 Conv2d + LeakyReLu 9×25×16 2,320

9 Pooling + Dropout +BN 4×12×16 64

10 Flatten 768 0

11 FC+LeakyReLu 180 139,140

12 FC+ Softmax 90 16,290

correlation, and 0 represents none linear correlation. Specif-

ically, after feature extraction, we compute the mean PCC

between the extracted feature vector and fingertip-touch tem-

plates (i.e., saved feature vector during the register phase).

The computed mean PCC is then used to decide whether the

user is authorized.

OC-SVM, an extended algorithm of SVM, maps data points

into high-dimensional feature space with the kernel func-
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Table 3: Summary of the compiled datasets

Dataset Week of Collection # of Subjects / Attackers Postures Device # of Data Points

1 1 †, 8 and 9 ‡ 90 Sitting, standing, lying,

walking, running

OnePlus3 63,000

2A 2, 3, 5, 7 † 24, 24, 22, 21
Sitting OnePlus3

18,200

2B 10, 11, 12, 13 ‡ 62, 61, 59, 53 47,000

3 Added Aug. 2019 64 Sitting Xperia XZ1, Oneplus5,

Vivo X21

3,200

4A

2 †, 10 and 11 ‡ 15 Sitting OnePlus3

3,600

4B 3,600

4C 3,600

†: Data collected at the university; ‡: data collected at the company.

tion and finds the surface of a minimal hyper-sphere which

contains the objective data points as many as possible. The

distance between data points and the hyper-sphere is the clas-

sification score, which is leveraged to conduct prediction.

OC-SVM has been successfully applied to many anomaly de-

tection problems, such as utterance verification [37], malware

detection [31], and online fault detection [78].

LOF measures the local deviation of the data point to its

neighbors [18]. It decides whether a data point is an outlier us-

ing the anomaly score depending on the local density. Specif-

ically, locality density is estimated by k-nearest neighbors

based on a given distance metric. A data point with a substan-

tially lower density than their neighbors will be regarded as

an outlier.

IF is a rapid one-class classification method for high-

dimensional data based on ensemble learning, which assumes

that abnormal data points are easier to isolate from given

one-class instances [47]. IF detects abnormal data points by

subsampling the dataset to construct iTrees, and further in-

tegrate multiple iTrees into a forest to detect abnormal data.

A data point is seen as abnormal when these random trees

collectively produce shorter path lengths for it.

6 Experiment Design and Data Collection

To collect the experiment data, we develop a prototype sys-

tem on Android 7.1 (API level 25). Specifically, our im-

plementation hooks the authenticate() method from the

FingerprintManager class. We set the data collection time

(t) as 0.5 seconds and the sampling rate ( fs) as 200 Hz.

After receiving the IRB approval from our university in

June 2018, we started recruiting subjects for the data collec-

tion, which lasted for 5 months. To qualify for the experiment,

a subject must self-identify as a frequent smartphone user

who had been using fingerprint authentication for more than

a year. 90 subjects were involved in finger-tip behavior data

collection, who were aged from 22 to 45. 39 subjects were

female, and 51 were male. 24 of them were students in our

university, and the rest were employees in a company. Another

15 subjects (4 from our university, 11 from the company), in-

cluding 4 females and 11 males, were recruited to play the

role of an attacker to carry out artificial replica attack, puppet

attack and mimicry attack on the 90 subjects.

We explained to each subject the purpose of this research

project, the data we collect, and the steps we take to protect

their personal identifiable information. During the data col-

lection, we asked each subject to hold a smartphone in hand

as they normally unlock their own devices. To help collect

more distinct data points, we also suggested that they hold the

device in different angles and directions. Table 3 summarizes

the compiled 4 datasets:

1) Dataset-1. For this dataset, we used one smartphone

(OnePlus 3 with 6G RAM) to eliminate factors that could be

introduced by different phones. This device has a capacitive

fingerprint sensor that is integrated with the home button.

In week 1, the 24 subjects from our university were first

asked to enroll their fingerprints on the phone. Then, a subject

needed to perform successful fingerprint logins for 500 times

while sitting (stationary), and for 50 times while standing

(stationary), lying (stationary), walking (moving), and running

(moving), respectively. Note that we only collect the finger-tip

behavior data when a login is successful. In week 8 and 9, the

66 subjects from the company went through the same data

collection procedure. Each subject spent 13 - 17 minutes to

finish this task. As a result, we collected 90×700 = 63,000

data points for the dataset-1.

2) Dataset-2. To evaluate the consistency of the fingertip-

touch behavior features over the long term, we compiled the

dataset-2 with the same subjects after some time intervals: i)

dataset-2A. The 24 subjects from our university came in week

2, 3, 5, 7 to perform 50 successful fingerprint authentications

while sitting; ii) dataset-2B. The subjects in the company did

the same thing in week 10, 11, 12 and 13. Some subjects did

not show up for all the collections. As a result, we collected

65,200 data points in total for the dataset-2.

3) Dataset-3. To evaluate the generalization of FINAUTH

on different devices, we collected the dataset-3 on 3 smart-

phones: Xperia XZ1 (side fingerprint sensor), Oneplus 5 (back

fingerprint sensor), and Vivo X21 (in-screen fingerprint sen-

sor). The 22 subjects from our university were assigned to

Xperia XZ1, while the 42 subjects from the company were
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Figure 4: Artificial fingerprint replica. The left is the mold

used to capture fingerprint; the right is a fake fingerprint

crafted using silicone rubber.

assigned to the other two devices randomly. Each subject was

asked to conduct 50 authentications while sitting. As a result,

we collected 3,200 data points for the dataset-3.

4) Dataset-4. We used artificial replica attack, puppet attack

and mimicry attack to evaluate the effectiveness of FINAUTH.

It is infeasible to ask each attacker to attack all 90 subjects in

all three experiments. To increase the chance of successful at-

tacks, we collected the fingertip-touch data of the 15 attackers

and used Pearson correlation distance matrix to compute the

distance between each attacker and each subject. Then, we

assign each attacker 6 subjects as his/her targets on the basis

of fingertip-touch behavioral similarity:

i) Dataset-4A: artificial replica attack. We crafted a finger-

print spoof using the silicone rubber, as shown in Figure 4,

for each of the 85 subjects (5 dropped out). The spoofs were

tested to make sure they can spoof the original fingerprint au-

thentication. After the experiments, the molds and synthetic

spoofs were destroyed. Each attacker was asked to spoof the

fingerprint sensor while sitting for 50 attempts per subject.

We collected 50×85 = 4,250 data points for the dataset-4A;

ii) Dataset-4B: puppet attack. Each attacker was asked to

hold the device in her/his hand and place a subject’s finger on

the fingerprint sensor 50 times while both of them in sitting.

We collected 4,250 data points for the dataset-4B. Note that

the unwillingness for this study is a subset of all possible

puppet attacks since we do not have data on other kinds of

unwillingness, e.g. the victim is sleeping or passed out;

iii) Dataset-4C: mimicry attack. Each attacker was asked

to carefully observe a subject’s hand and device movement in

a close distance (no more than 2 feet). After the attacker was

confident about what they observed, she/he would mimick the

subject’s fingertip-touch behavior with the crafted fingerprint

spoofs for 50 times. We collected 4,250 data points for the

dataset-4C.

7 Evaluation

In this section, we report the evaluation results of the pro-

posed system. Section 7.1 presents the metrics we used in

measuring the performance. Section 7.2 shows evaluation on

how distinguishable users’ fingertip-touch behaviors are un-

der different conditions using dataset-1, 2, and 3. Section 7.3

evaluates FINAUTH’s effectiveness against presentation at-

tacks using dataset-4. Section 7.4 presents system perfor-

mance of FINAUTH. Section C reports user acceptance of

FINAUTH. Section 7.5 illustrates other design considerations

behind FINAUTH.

Specifically, the base CNN was trained using cross-entropy

as the loss function based on half (22,500) data points of

dataset-1 (collected while sitting) containing fingertip-touch

behavior data from 90 classes (subjects). We pre-trained base

model on a PC with Intel i5-8300 CPU, 16GB RAM, GTX

1060 GPU, and the training process took 42 minutes. Keras

with TensorFlow backend was used for training. The size of

the total model is 1.54 MB, which is lightweight on mobile

devices.

7.1 Evaluation Metrics
We use the following metrics to evaluate the effectiveness

of FINAUTH. True acceptance (TA) means fingertip-touch

behaviors from legitimate users are correctly identified. True

rejection (TR) means fingertip-touch behaviors not from le-

gitimate users are correctly declined. False acceptance (FA)

means fingertip-touch behaviors not from legitimate users are

incorrectly identified as legitimate. False rejection (FR) means

fingertip-touch behaviors from legitimate users are incorrectly

rejected. False acceptance rate (FAR) is defined as FA
FA+T R ,

which measures the proportion of illegal users who gain ac-

cess. False rejection rate (FRR) is defined as FR
FR+TA , which

measures the proportion of legitimate users who are denied

access. Balanced accuracy (BAC) is a metric used for evaluat-

ing models trained from unbalanced data [19]. It is defined as

the average between true rejection rate (T RR = T R
T R+FA ) and

true acceptance rate (TAR = TA
TA+FR ). We also use receiver op-

eration characteristic (ROC) curves to show dynamic changes

of TAR against FAR at a varying decision threshold for per-

formance comparison. The area under the ROC curve (AUC)

is used to estimate the probability that prediction scores of

authorized users are higher than unauthorized users. While in

presentation attacks resistance evaluation, we leverage FAR,

i.e., attack success rate, as the evaluation criteria, which is the

ratio between the number of incorrectly identified data points

and the number of all attack data points. It implies the proba-

bility of attackers bypassing the authentication system. Note

that, FAR is more important in fingerprint authentication, e.g.,

achieving FAR as low as 10−6 while still maintaining an FRR

of 1% [5].

7.2 Reliability Analysis
To find out how distinguishable each user’s fingertip-touch

behaviors are, we randomly split each user’s data points, train
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Table 4: BAC (%) under different k for CNN-based feature

learning.

# Layer k PCC OC-SVM LOF IF

3 86.72 78.69 84.96 86.15

6 91.27 82.67 87.28 88.91

9 93.53 84.32 94.34 90.09

11 94.65 90.69 97.99 93.63

a model for each of them, and use her/his remaining data

points and other users’ data points to evaluate the model.

We report the performance of using different feature sets,

classifiers, training dataset size, and datasets in the rest of this

section.

7.2.1 Different Feature Sets and Classifiers

CNN-based Feature Learning. We trained the base CNN with

22,500 sitting data points in the dataset-1, and then leveraged

the output of the base model’s intermediate layer (kth layer)

as extracted features. To find the optimal k, we evaluated each

classifier’s performance with 30 training data points from

the first pooling layer (3rd layer) to the first fully-connect

layer (11th layer). Table 4 shows the averaged BAC when

using features extracted with different layers under different

classifiers. As the results show, with the features from the

11th layer, classifiers achieve higher BAC.

Results. After determining the best k for the CNN-based

feature learning, we obtained three feature sets: i) time- and

frequency-domain features (TFF) extracted via feature ex-

traction and selection (Section 4.1); ii) CNN-based features

(CNF) extracted with the pre-trained model (Section 4.2); and

iii) the union of feature sets of the aforementioned two (UnF).

We used the grid search to find the best parameter com-

binations for each classifier. For OC-SVM, we found radial

basis function works best with γ = 0.25 and ν = 0.1. For IF,

the optimal parameter of n_estimators was 20. For LOF,

we used Minkowski distance as the distance metric with the

optimal parameter of n_neighbors as 5.

Figure 5 shows ROC curves of using the three feature sets

under different one-class classifiers. The results indicate that

CNN-based features are more discriminative than time- and

frequency-domain features. Specifically, for PCC and LOF,

the BAC of models using CNN-features is significantly higher

than using time- and frequency-domain features. However,

the performance of OC-SVM and IF of CNN-based features

is poorer. Another observation is that the union of two fea-

ture sets brings slight improvement over only one feature

set. Table 5 shows the BAC, FAR, FRR, and AUC under dif-

ferent feature set and classifier combinations. Even though

UnF + LOF has the best BAC, CNF + LOF is the most reliable

model with low FAR. For the rest of the evaluations, we use

the CNF + LOF approach.

Table 5: BAC (%), FAR (%), FRR (%), and AUC under three

different feature sets and four different one-class classifiers.

Feature Set + Classifier BAC FAR FRR AUC

TFF + PCC 84.41 11.85 19.34 0.9169

TFF + OC-SVM 91.49 5.56 11.45 0.9656

TFF + LOF 93.28 4.32 9.13 0.9767

TFF + IF 96.07 2.51 5.35 0.9915

CNF + PCC 94.65 3.30 7.40 0.9871

CNF + OC-SVM 90.69 6.41 12.21 0.9532

CNF + LOF 97.99 0.86 3.16 0.9974

CNF + IF 93.63 3.72 9.02 0.9789

UnF + PCC 94.76 2.86 7.62 0.9888

UnF + OC-SVM 93.78 4.06 8.37 0.9806

UnF + LOF 98.02 1.52 2.43 0.9975

UnF + IF 96.88 2.03 4.21 0.9938

Table 6: Mean BAC (%), FAR (%), FRR (%), and AUC with

non-overlapping subjects in training base CNN and testing.

Feature Set + Classifier BAC FAR FRR AUC

CNF + LOF 95.34 4.20 5.10 0.9805

UnF + LOF 95.59 3.35 5.47 0.9867

7.2.2 Performance with Non-overlapping Subjects

We also evaluated the performance of FINAUTH when us-

ing non-overlapping subjects in training the base CNN and

evaluating the authentication models. We split these 90 sub-

jects into two groups randomly and evenly. One was used to

train the base CNN as the feature extractor, and the other was

used to evaluate the performance of authentication models.

5-fold cross-validation was used in the testing phase. We used

CNF + LOF and UnF + LOF on the sitting data points in

dataset-1.

Table 6 shows the BAC, FAR, FRR, and AUC with non-

overlapping subjects in training base CNN and testing. The

mean BACs under CNF + LOF and UnF + LOF are 95.34%

(compared with 97.99% in Table 5) and 95.59% (compared

to 98.02%).

7.2.3 Impact of Different Postures

To find out how postures and moving affect the performance

of FINAUTH, we used all of the 63,000 data points of dataset-
1. For each user and each posture, we train a classifier using

30 data points in the training dataset. Specifically, for each

participant, the authentication model was trained with regard

to five different postures respectively. Next, the model was

leveraged to evaluate the performance of different postures.

Figure 7 shows the BAC when using data points collected

in different postures to train authentication models (x-axis)

and evaluate performance (y-axis). The results indicate that

FINAUTH achieves better performance in stationary postures

(e.g., sitting, standing, and lying) than moving (e.g., walking

and running). Authentication models trained in stationary pos-
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(a) Time- and frequency-domain features (b) CNN-based features (c) The union of two feature sets

Figure 5: ROC curves of different feature sets under different one-class classifiers.

(a) Time- and frequency-domain features (b) CNN-based features (c) The union of two feature sets

Figure 6: BAC under different classifiers and different feature sets at varying training set sizes.

tures can be transferred to other stationary postures without

downgrading obviously. If we ignore ‘running’, which is rare

in real-life, FINAUTH achieves over 94% BAC when profiling

a user with 30 data points collected while sitting.

7.2.4 Impact of Training Dataset Sizes

To investigate the impact of training set sizes, we changed the

training set size from 5 to 100 in a step of 5 or 10 to profile

the legitimate users. Figure 6 shows the BAC for different

classifiers with different training set sizes. As expected, the

results show that training with more data achieves a higher

BAC. Using CNN-based features or the union of two feature

sets, LOF outperforms the other three classifiers. With only 5

training data points and CNN-based features, LOF achieves

the BAC of 96.04%, where its FAR is 1.12% and FRR is

6.80%. With 100 training data points, LOF achieves the BAC

of 99.28%, where its FAR and FRR are 0.045% and 1.39%

respectively.

7.2.5 Consistency Over Time

To find out how consistent users’ fingerprint behaviors are

over a long period, we used dataset-2 and the 45,000 sitting

data points of dataset-1. The training data points were se-

lected from dataset-1 (the first week of data collection), and

test data points were from dataset-2.

Figure 7: BAC of FINAUTH under different postures.

Figure 8 shows the mean BAC, FAR, and FRR over dif-

ferent weeks with regard to dataset-2A and dataset-2B. As

the results show, behavior variability has an impact on the

usability of FINAUTH, but little impact on security. In particu-

lar, as shown in Figure 8(a), the BAC decreases from 96.34%

to 90.13% under dataset-2A, where its FRR increases from

6.20% to 15.46% in 7 weeks. While in Figure 8(b), the BAC

decreases from 96.19% to 93.96% under dataset-2B, where

its FRR increases from 6.50% to 9.69% in 5 weeks. The

FAR is almost stable in dataset-2A&B. This demonstrates

that FINAUTH is resilient against behavioral variability in a

short period. In particular, we assume that, in real applica-

tions, the problem of behavioral variability can be tackled by
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(a) Dataset-2A

(b) Dataset-2B

Figure 8: BAC of FINAUTH evaluated in different weeks

using two datasets with different intervals.

Table 7: Mean/standard deviation of BAC (%), FAR (%),

and FRR (%), tested on four smartphones (RAM/Snapdragon

CPU) with the training set size as 30.

Device Mean/Std BAC FAR FRR

Oneplus3 (6G/ 820) 97.99/0.37 0.87/0.07 3.16/0.74

Oneplus5 (6G/ 835) 98.41/0.56 0.27/0.04 2.91/1.13

XperiaXZ1 (4G/ 835) 96.83/0.52 1.69/0.11 4.65/0.99

VivoX21 (6G/ 660AIE) 98.64/0.18 0.58/0.05 2.13/0.36

retraining the authentication model with newly collected data,

namely model updating mechanism, which was adapted in

Face ID [3].

7.2.6 Impact of Different Devices

To find out how the fingertip-touch data on different devices

would affect the robustness of FINAUTH, we evaluated with

the 45,000 sitting data points of dataset-1 and dataset-3. As

shown in Table 7, the BAC on Oneplus3, Oneplus5, Xpe-

ria XZ1, and Vivo X21 are 97.99%, 98.41%, 96.83%, and

98.64%, respectively. There exist variances among different

devices in terms of BAC. It achieves the best performance

with a BAC of 98.64%, where its FAR and FRR are 0.58%

and 2.13% respectively. The worst result on Xperia XZ1

achieves the BAC of 96.86%, where its FAR and FRR is

1.69% and 4.65% respectively.

Table 8: Mean/standard deviation of FAR (%) and prediction

score under three types of attacks when tested using models

trained with 100 legitimate data points to profile users.

Type Artificial Replica Attack Puppet Attack Mimicry Attack

FAR 0.08/0.06 0.12/0.08 0.25/0.14

Score −0.29/0.15 −0.62/0.13 −0.37/0.10

‘

7.3 Evaluation of Presentation Attacks
To investigate the defense against presentation attacks, we

utilize dataset-4. We report the FAR under CNF + LOF at

varying training dataset sizes.

Figure 9(a) shows FAR under artificial replica attack using

dataset-4A with varying training dataset size. The overall

BAC is less than 3%. Specifically, the FAR is 2.01% when

the model is trained with 10 data points, and it improves to

0.08% using 100 data points.

Figure 9(b) shows the FAR under puppet attack using

dataset-4B with varying training dataset size. The results in-

dicate that FINAUTH resists against puppet attack with mean

FAR below 2%. Specifically, the mean FAR is 1.93% under

the model trained with only 5 data points, and it is enhanced

to 0.12% under the model trained using 100 data points.

Figure 9(c) shows the FAR under mimicry attack using

dataset-4C. The results show that it is very difficult for attack-

ers to mimic the fingertip-touch behavior of users. The attack

success rate is 3.10% under models trained with 5 data points,

and it improves to 0.25% with 100 data points.

As the results show, FINAUTH is effective in defeating all

three kinds of presentation attacks. Using more legitimate data

points to train the authentication model can strengthen the

defense against various attacks. FAR, and prediction scores

under authentication models trained using 100 data points

are shown in Table 8. In particular, for prediction scores of

all attack data points, the distribution and its kernel density

evaluated under Gaussian kernel are shown in Figure 10.

7.4 System Performance
We analyzed the system performance of FINAUTH on One-

plus 3, Redmi Note 4X, Xperia XZ1, and Vivo X21. On each

device, we performed authentication with the prototype for

50 times to evaluate the authentication delay, memory usage,

and power consumption.

Authentication Delay. The delay is defined as the interval

between the time when the authentication system detects the

fingerprint authentication event to the time when the system

generates the result. It consists of the time for data collection,

data processing, and classification. Table 9 shows the delay

of four smartphones. The average delay is 713.34 ms, 722.93

ms, 630.72 ms, and 692.15 ms of our method under the four

smartphones respectively. Figure 11 shows cumulative dis-
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(a) Artificial replica attack (b) Puppet attack (c) Mimicry attack

Figure 9: The FAR, i.e., attack success rate, under the authentication trained with different training set sizes.

(a) Artificial replica attack (b) Puppet attack (c) Mimicry attack

Figure 10: The kernel density of attack data points’ prediction score under authentication models trained with 100 data points.

tribution function (CDF) of delay on different smartphones

with and without FINAUTH. For 90% attempts, the delay of

FINAUTH is less than 742.39 ms, 749.83 ms, 643.26 ms, and

714.54 ms for Oneplus 3, Redmi Note 4X, Xperia XZ1, and

Vivo X21, respectively. Overall, FINAUTH only requires an

average delay of 689.79 ms. In addition, the delay of our

method is lower than existing methods on smartphones, such

as PINs, pattern lock, and facial authentication. This implies

that FINAUTH can authenticate users timely.

Memory Usage. We used Trepn Profiler 1 and Android

Studio Profiler 2 to monitor the memory usage of FINAUTH.

Table 9 shows the memory usage of FINAUTH without con-

sideration of graphics on four smartphones. Specifically, the

memory usages on four different smartphones are 62.99 MB,

57.82 MB, 48.77 MB, 81.19 MB. The average memory usage

is 62.69 MB, which incurs additional 14.92 MB compared

with the original fingerprint authentication.

Power Consumption. Trepn Profiler was employed to pro-

vide mW -level power consumption estimation. Power con-

sumption is measured by subtracting screen power consump-

tion while the screen is on. The average power consumption

overhead is 23.13 mW , which incurs additional 6.90 mW com-

1https://developer.samsung.com/game/trepn
2https://developer.android.com/studio/profile/cpu-

profiler

pared with original fingerprint authentication (Table 9).

To sum up, FINAUTH achieves a low authentication de-

lay of 689.79 ms on commercial smartphones. It requires a

memory usage of 62.69 MB and power consumption of 23.13

mW . Compared with the original fingerprint authentication, it

introduces very little overhead and short delay.

7.5 Other Design Considerations
To verify if our feature extraction is effective, we also at-

tempted to construct another CNN-based feature extractor to

extract features from denoised sensor data directly without

characterizing fingertip-touch behavior. We employed a simi-

lar model structure as shown in Table 2 and pre-trained the

model with power spectral matrices of denoised sensor data

as input to distinguish different users. Then, we implemented

end-to-end feature learning by inputting power spectral matri-

ces of denoised sensor data to the model to extract features.

Figure 12(a) shows ROC curves when implementing end-

to-end feature learning with CNN. Its best BAC is 61.10%

with the training set size as 500. While under our designed

fingertip-touch behavior characterizing method (Section 3.2),

the BAC reaches 93.11% with only 50 training data points

to profiling the legitimate user. As the results show, the step

of fingertip-touch behavior characterizing significantly elimi-
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Table 9: Mean authentication delay (ms), memory usage (MB), and battery power consumption (mW ) of FINAUTH on four

different devices (CPU clock rate, GHz).

Device
With FINAUTH Without FINAUTH

Delay Memory Power Delay Memory Power

Oneplus 3 (2.15) 713.34 62.99 19.35 257.36 47.82 12.67

Redmi Note 4X (2.0) 722.93 81.19 28.41 342.83 43.56 19.25

Xperia XZ1 (2.45) 630.72 48.77 18.44 293.14 36.75 9.83

Vivo X21 (2.2) 692.15 57.82 26.32 271.16 62.94 23.18

Note that, the authentication delays for PIN, pattern lock, facial authentication are 1.25 [81], 3.14 [81], and 1.48 seconds [6].

(a) Original fingerprint authentication

(b) FINAUTH

Figure 11: Authentication delay on different devices

nates relying on deeper models and a larger number of training

data points.

We also evaluated an approach that utilizes a deep learning

classification model [23]. We utilized the ALOCC model [60],

which was proposed to combine a generative adversary net-

work and an autoencoder to achieve one-class classification.

This model combines these two networks to learn the self-

distribution of the input in the training phase. It determines

whether a data point is an outlier by comparing the distance

between its input and output with a threshold. In our experi-

ments, the input of this model is power spectral matrices of

accelerations and rotation angles.

Figure 12(b) shows ROC curves under different training set

size. The best BAC to recognize different subjects is 76.14%,

which is significantly poorer than our previous methods. We

suspect the reason is that ALOCC relies on a large number

of training data points to learn self-distribution from input

one-class data to enable the network robust.

(a)

(b)

Figure 12: (a): ROC curves when using CNN to learn fea-

tures from denoised sensor data, (b): ROC curves when using

ALOCC model as one-class classifier.

8 Related Work

Fingerprint Presentation Attack Detection. Fingerprint au-

thentication is vulnerable to presentation attacks, which can

be carried out easily at a low expense [39]. To enhance

its security, various methods have been proposed, including

the hardware-based and the software-based. Hardware-based

methods acquire life signs to determine the liveness of the in-

put fingerprint, such as blood pressure [42], odor [15], oxygen

saturation [59], heartbeat [10], and electrocardiograph [40].

These methods rely on dedicated hardware integrated with

fingerprint authentication systems. Software-based methods

leverage image processing methods to extract discriminative

features from fingerprint images and utilize machine learning

techniques to enhance the defense against fingerprint spoofs.

Some methods concentrate on the fine-grained characteris-
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tics of captured fingerprint images, such as skin perspiration

through the pores [54], skin deformation [12], and image

quality [33]. Other methods resort to powerful deep learning-

based approaches to learn features to distinguish between true

and synthetic fingerprints [30, 56]. Existing hardware-based

and software-based methods only focus on fingerprint live-

ness detection. They ignore the intended puppet attack, where

the adversary may approach the victim and apply the victim’s

finger to the fingerprint sensor when the victim is unwill-

ing, e.g., sleeping and fainting. The significantly overlooked

problem motivates us to enhance the widely used fingerprint

authentication method.

Behavioral Biometrics Authentication. Behavioral biomet-

rics authentication authenticates users based on inherent and

unique user’s behavior patterns, such as keystroke dynam-

ics [25,34,45,65], signature [64], gesture [28,65,68], and gait

patterns [49], where behaviors are captured through sensors

on mobile devices. However, they are vulnerable to behavior

variability in real applications. To handle this issue, behav-

ioral biometric was also designed to fuse with physiological

features to provide robust multi-touch authentication [69].

Besides, behavioral characteristics also served as comple-

mented authentication factor to enable traditional knowledge-

based authentication schemes (i.e. password/PINs, and pat-

tern locks) resilient against security threats in a highly usable

way [21,41,48]. Existing behavioral biometrics was designed

to authenticate users when performing specific behaviors,

such as typing or touching on a screen, writing a signature, or

taking a walk. However, it is extremely unnatural to perform

such behaviors during fingerprint authentication to enhance

its security. Moreover, these methods are necessary to collect

behavior data for a relatively long time (e.g., more than 1

second) [65], which will severely undermine the usability if

combining these methods with fingerprint authentication. Our

proposed system overcomes such challenges. We compare the

differences in research question, authentication delay, feature

extraction and classification methodologies of these systems

in Appendix A.

9 Discussion

9.1 Alternatives to CNN

We chose to use CNN in FINAUTH, because Bai et al. showed

that a simple convolutional architecture outperforms canon-

ical recurrent networks across a diverse range of sequence

modeling tasks and datasets [14]. Nevertheless, it is worth-

while to evaluate the performance of recurrent neural network

(RNN) and long short-term memory (LSTM) networks in

future work.

9.2 Limitations

Although we took great efforts to maintain our studies’ valid-

ity, there are some limitations in our studies and experiments.

For example, behavior variability and different postures may

incur additional false rejection, and undermine the usability

and robustness of our method. Also, FINAUTH requires the

user to hand-hold the device. If the device is placed on a

desktop stationarily, FINAUTH will fail to work. To solve this

issue, FINAUTH can be improved by reminding users to pick

the device during authentication if the device is detected not

being handheld. It is feasible to detect whether the device

is on-hand or on-table using the built-in accelerometer [29].

Also, FINAUTH may falsely reject a legitimate user if she/he

uses one hand to register while the other hand to perform

authentication. FINAUTH can also be enhanced by reminding

users to get the device in the right hand if the device is not.

The datasets we collected were from limited subjects,

in which demographic characteristics, e.g., genders, regions,

ages, were not perfectly balanced. Fingertip-touch behaviors

may differ between males and females, which we did not con-

sider. Older users, who have worked with their hands a lot and

even have fingerprints worn away, may also have different

fingertip behaviors from the general public. In data collec-

tion, even though each subject was told to hold the device in

different angles and directions to help collect more distinct

data points, they were not required to place the phone down

between attempts for their convenience. To enable FINAUTH

to work in real applications, it should further be tested to find

out other underlying influential factors, which might under-

mine the performance. As for these older users with their

fingerprints worn away, the behavior-based methods might be

effective for them. Another concern is user privacy security.

Since the sensor data in FINAUTH is related to user behav-

ior, preventing the sensor data from illegal access is of great

significance.

9.3 Advanced Attacks

Besides the aforementioned three types of presentation at-

tacks, there also exist the following advanced attacks:

1) Sensor data injecting attack. In FINAUTH, raw sensor

data are acquired by calling operating system APIs, then pro-

cessed and input into an authentication model. Due to the

imperfection of machine learning models, the adversary can

generate adversarial examples to fool and bypass the authen-

tication model by querying models repeatedly [22]. Next, the

attacker can inject adversarial data to the sensor dataflow by

hijacking OS APIs. In this paper, we did not consider this

type of attack.

2) Adversarial input. The following adversarial machine

learning attacks are possible: i) model reverse attack [32]: the

attacker aims to infer the training data points used to build

the authentication model by querying the model interactively;

USENIX Association 29th USENIX Security Symposium    2231



ii) membership inference attack [66]: the attacker aims to

infer whether the constructed data points belong to train set;

iii) model stealing attack [74]: the attacker aims to use as

few queries as possible to compute an approximation model

that closely matches the target authentication model; iv) gen-
erating adversarial examples [22, 53]: the attacker aims to

generate adversarial examples to fool and bypass the authen-

tication model by querying the target model interactively.

3) Robotic attack. Robotic attack is also a threat of behav-

ioral biometrics [51]. For instance, the attacker can program

the robotic arms, such as a Lego robot, to imitate legitimate

user’s fingertip-touch characteristics [61, 62]. In this attack

scenario, even though the attacker has none knowledge of

authorized user’s fingertip-touch characteristics, he/she could

conduct lots of trials. Eventually, it is possible for attackers

to find out the correct behavior patterns and drive the robotic

arms to perform this specific behavior. Defending against this

type of attack is also beyond the scope of our work.

9.4 Future Work
To make FINAUTH more reliable and secure, there are sev-

eral improvements to pursue in the future: i) enhancing the
CNN-based feature extractor. In our experiments, the CNN-

based feature extractor is pre-trained with limited data points.

Collecting data from more users will significantly generalize

the feature extractor; ii) mitigating the impact of postures.
Building the posture detection model using accelerometer

data seems a promising method to tackle this problem [80];

iii) eliminating the impact of behavioral variability. This prob-

lem can be tackled by retraining user authentication models

using newly collected data to update users’ profiles with time

elapsing. Similar approaches have been used in FaceID [3];

iv) investigating reliability using more data points. To make

FINAUTH more reliable in real-world scenarios, we can con-

tinue the evaluation with a more diverse population in the

long-term and improve its performance.

10 Conclusion

In this paper, we presented FINAUTH, which complements

fingerprint sensors to defend against presentation attacks, es-

pecially the puppet attack. FINAUTH models the fingertip-

touch characteristics when users apply their fingers to fin-

gerprint sensors. It relies upon common built-in sensors to

capture instant behavioral characteristics to authenticate dif-

ferent users. We designed effective methods to characterize

the fingertip-touch behaviors and demonstrated that fingertip-

touch behavior is distinguishable from person to person dur-

ing fingerprint authentication. To evaluate the performance

of FINAUTH, we compiled datasets from 90 subjects. The

evaluation results demonstrate that FINAUTH is robust and

can verify legitimate user with high BAC under minimum

computation efforts while successfully denying the access

requests from unauthorized users with a low false acceptance

rate.
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A Detailed Comparison with Other Methods

Besides the brief related work in Section 8, we also provide a

detailed comparison between FINAUTH and typical methods

published on top venues. The comparison consists of the

following aspects, including design goal, attack models, used

features, and classification, which is shown in Table 10.

B Sensor Fusion based on EKF

We present the method for sensor data fusion based on EKF:

1. Initialize quaternion as Eq. 6.

2. Define the system state vector xxx as Eq. 5.

3. Apply normalization to three sensor data.

zzza =
[ax,ay,az]

T

||aaa|| (8)

zzzm =
[mx,my,mz]

T

||mmm|| (9)

zzzg =
[gx,gy,gz]

T

||ggg|| (10)

4. Calculate the projection of the altitude vector along three

axes.

zzze =

⎡
⎣

2(q1q3 −q0q2)
2(q2q3 +q0q1)
1−2(q2

1 +q2
2)

⎤
⎦ (11)

5. Then calculate the estimate error.

eeea = zzza − zzze (12)

eeem = zzzm − zzze (13)

eeeg = zzzg − zzze (14)

6. Define the angle matrix HHH.

HHH =

⎡
⎣
−2q2 2q3 −2q0 −2q1 0 0 0

2q1 2q0 2q3 2q2 0 0 0

0 −4q1 −4q2 0 0 0 0

⎤
⎦ (15)
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Table 10: Comparison with other biometric authentication systems on mobile devices.

Paper Design goal Features Classification

[28] Using movements of devices when answering a phone call to au-

thenticate users

Time-domain features from accelerometer and orien-

tation sensor

DTW-D1

DTW-S2

[45] Using user’s finger sliding gesture patterns to authenticate users Sliding gesture behavioral features, such as moving

distance, duration, etc. from multi-touch screen, ac-

celerometer, orientation, and compass

Binary SVM

[68] Using hand movement, orientation, and grasp to authenticate users Time-domain features from accelerometer, orientation

sensor and magnetometer

SM3, SE4, OC-

SVM

[25] Using the sequence of rhythmic taps/slides to authenticate users Time-domain features from multi-touch screen Binary SVM

[69] Fusing hand geometry and hand gesture behavioral information on

screen to authenticate users

Hand-gesture related behavioral features including

velocity, pressure, angle, etc. from multi-touch screen

KNN,

OCSVM

[48] Using the physical vibration signal incurred by the finger-input to

authenticate users

Spectral point-based features, MFCC-based features

from vibration motor and receiver

DTW5, EMD6

[76] Using fitness data from wearable devices to authenticate users Time- and frequency-domain features from step

counts, heart rate, calorie burn, and metabolic equiva-

lent of task

Binary SVM

FINAUTH Defending against puppet attack in fingerprint authentication Time- and frequency-domain features, CNN-based

features from accelerations and rotation angles

OC-SVM,

PCC, LOF, IF

1 Dynamic Time Warping Distance. 2 Dynamic Time Warping Similarity. 3 Scaled Manhattan. 4 Scaled Euclidian. 5 Dynamic Time

Warping. 6 Earth Moving Distance.

7. Update the covariance matrix of the estimate error PPPe.

PPPek = PPPek−1
+HHHPPPHHHT (16)

where PPP is the covariance matrix of the system, k is the

timestamp. Both PPPe and PPP are initialized with small val-

ues. We initialize PPPe and PPP as diag(10−4,10−4,10−4) and

diag(10−4,10−4,10−4,10−4,10−4,10−4,10−4) respectively,

where diag denotes diagonal matrix.

8. Update the gain of EKF with the covariance matrix PPPek .

KKK = PPPHHHT PPP−1
ek

(17)

9. Update the state vector with the updated Kalman filter’s

gain.

qqqk = qqqk−1 +KKK(eeea + eeem) (18)

wwwk = wwwk−1 +KKKeeeg (19)

where k is the timestamp.

10. Update the covariance matrix of the whole system.

PPP = PPP−KKKHHHPPP (20)

11. According to the state vector, acquire the accurate an-

gles as Eq. 7.

C User Acceptance Study

To find out how users perceive FINAUTH, we recruited an-

other 43 subjects, including 12 females and 31 males. These

subjects did not participate in the data collections as shown

in 3. The subjects were asked to use FINAUTH to perform

authentication on their smartphones for one week, and then

rate our system. Instead of using system usability scale [20] to

measure usability, we focused on convenience, authentication

delay, and FRR by asking the following three questions to all

subjects:

Q1 Was it easy and convenient to use our system compared

to original fingerprint authentication? (-2: Not at all, -1: Little,

0: Neutral, 1: Somewhat, 2: Very.)

Q2 Did you feel obvious delay during authentication com-

pared to the original fingerprint authentication? (-2: Very, -1:

Somewhat, 0: Neutral, 1: Little, 2: Not at all.)

Q3 How often were you rejected by the FINAUTH? (-2:

Usually, -1: Often, 0: Seldom, 1: Rarely, 2: Never.)

For these questions, we employ 5 levels, from -2 to +2, to

represent different levels of user preferences, where +2 corre-

sponds to fully positive and -2 corresponds to fully negative

about the system experience. The average ratings of the three

questions are all positive at 1.93, 1.44, 1.81, respectively.
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