
Prime+Count: Novel Cross-world Covert Channels on ARM
TrustZone

Haehyun Cho
Arizona State University

haehyun@asu.edu

Penghui Zhang
Arizona State University

pzhang57@asu.edu

Donguk Kim
Samsung Research

donguk14.kim@samsung.com

Jinbum Park
Samsung Research

jinb.park@samsung.com

Choong-Hoon Lee
Samsung Research

choonghoon.lee@samsung.com

Ziming Zhao
Rochester Institute of Technology

zhao@mail.rit.edu

Adam Doupé
Arizona State University

doupe@asu.edu

Gail-Joon Ahn
Arizona State University

Samsung Research
gahn@asu.edu

gailjoon.ahn@samsung.com

ABSTRACT

The security of ARM TrustZone relies on the idea of splitting
system-on-chip hardware and software into two worlds, namely
normal world and secure world. In this paper, we report cross-
world covert channels, which exploit the world-shared cache in
the TrustZone architecture. We design a Prime+Count technique
that only cares about how many cache sets or lines have been occu-
pied. The coarser-grained approach significantly reduces the noise
introduced by the pseudo-random replacement policy and world
switching. Using our Prime+Count technique, we build covert
channels in single-core and cross-core scenarios in the TrustZone
architecture. Our results demonstrate that Prime+Count is an ef-
fective technique for enabling cross-world covert channels on ARM
TrustZone.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures; Mobile platform security; Trusted computing;

KEYWORDS

Cache side-channel, Covert channels, ARM TrustZone

ACM Reference Format:

Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-Hoon
Lee, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. 2018. Prime+Count:
Novel Cross-world Covert Channels on ARM TrustZone. In 2018 Annual
Computer Security Applications Conference (ACSAC ’18), December 3–7, 2018,
San Juan, PR, USA. ACM, San Juan, Puerto Rico, USA, 12 pages. https:
//doi.org/10.1145/3274694.3274704

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274704

1 INTRODUCTION

ARM Security Extensions, marketed as TrustZone, have been intro-
duced in ARMv6 and later profile architectures, including Cortex-A
(mobile) and Cortex-M (IoT) [2–4]. The idea of TrustZone is to
split the system-on-chip hardware and software into two security
states or worlds, namely normal world and secure world. Hardware
barriers are established to prevent normal world components from
accessing secure world resources.

Two legitimate channels exist at the hardware level that a nor-
mal world component and a secure world component can use to
communicate with each other. The first channel is that either world
can put messages in the general registers when a world switching
is performed. The second channel is the secure world can directly
read and write to a region of physical memory that normal world
can also access.

Previous studies have shown that these legitimate channels are
vulnerable to an attacker who has the normal world kernel privi-
leges and keeps sending crafted arguments to probe the vulnera-
bilities of the secure world [18, 19, 26, 33]. There are two ways to
protect these channels from being abused:

(1) Prior work, SeCReT [18], has aimed at restricting the access to
the communication channels and secure world resources to normal
world components on an access control list (ACL). SeCReT ensures
only predefined and legitimate normal world components can com-
municate and access secure world resources. To this end, SeCReT
authenticates a normal world component by verifying its code
and control integrity when it initiates communication with secure
world. Consequently, unauthenticated normal world components
cannot access the cross-world communication channels.

(2) It is possible to deploy a strong monitor, similar to a network
intrusion detection or deep packet inspection system, in legitimate
communication channels, including parameters passed by registers
and shared memory, between the normal and secure world to in-
spect all transmitted data and block illegal communication when it
is detected. Even though how to design such strong monitors is a
research problem itself, and no practical solutions exist to the best
of our knowledge, we assume that they could exist in the future.

https://doi.org/10.1145/3274694.3274704
https://doi.org/10.1145/3274694.3274704
https://doi.org/10.1145/3274694.3274704

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H. Cho et al.

In this paper, we are interested in building cross-world covert
channels in the TrustZone architecture that (1) enable unauthenti-
cated normal world and secure world components to communicate
even when solutions like SeCReT are deployed; (2) enable normal
world and secure world components to communicate even when
strong monitors that can inspect all transmitted data in legitimate
channels are deployed in the future. As a result, a secure world
component can always smuggle sensitive information that is not
supposed to leave the secure world to the normal world, such as
private keys, user passwords, etc. And, a normal world component
can send secret messages (e.g., command and control messages) to
secure world.

The emergence of downloadable Trusted Applications (TAs)
gives such covert channels even more practical use-scenarios [39],
where a malicious TA can steal sensitive information that does not
belong to it in the secure world and send to its counterpart in the
normal world, hence circumventing SeCReT and strong monitor.

We propose to build covert channels using a trade-off between
performance and cost in the TrustZone hardware, which are not
governed by any software solution built on top of TrustZone, such
as SeCReT or strong monitors. We notice that even though many
system-on-chip resources are separated in the TrustZone architec-
ture, there is only one copy of cache in the system that is shared
between the two worlds.

Even though it is easy to assume covert channels must exist given
that cache is shared between worlds, there is no comprehensive
study on the practicality and bandwidth of cross-world covert chan-
nels in the TrustZone architecture. In this paper, we identify several
challenges in building such cross-world covert channels: (1) the
pseudo-random replacement policy on ARM makes Prime+Probe
less reliable [21]; (2) the cross-world context switching also in-
troduces much noise. Our work confirms that Prime+Probe is
not reliable in the cross-world scenario; (3) low noise and fine-
grained cache line-level attacks, such as Flush+Reload [43] and
Flush+Flush [12], require sharing memory objects between the
Sender and the Receiver, which does not fit in a practical attack
model.

To cope with these challenges, we need a novel cache attack
approach that does not require memory sharing and introduces
less noise in the cross-world scenario. In this paper, we leverage an
overlooked ARM Performance Monitor Unit (PMU) feature named
“L1/L2 cache refill events” and design a Prime+Count technique
that only cares about how many cache sets or lines have been occu-
pied instead of determining which cache sets have been occupied
as in Prime+Probe. The coarser-grained approach significantly
reduces the noise introduced by the pseudo-random replacement
policy and world switching. Even though some performance coun-
ters in PMU, such as cycle counter, have been used to carry out
and detect cache-based side-channel attacks in the ARM and Intel
architecture [10, 42], to the best of our knowledge it is novel to use
“L1/L2 cache refill events” to perform attacks.

We leverage the Prime+Count technique to build covert chan-
nels in single-core and cross-core scenarios in the TrustZone ar-
chitecture. To evaluate the efficacy of the covert channels, we test
our implementations on two devices, one of which is a Samsung
Tizen TV with ARMv7 CPU and the other is a Hikey board with
ARMv8 CPU. The evaluation results show that the bandwidth could

be as high as 27 KB/s in the single-core scenario and 95 B/s in the
cross-core scenario.

2 BACKGROUND

2.1 ARM Architecture and TrustZone

Processor Modes. An ARM processor has up to 9 different modes
depending on if some optional extensions have been implemented.
The user (usr) mode has a privilege level 0 and is where user space
programs run. The supervisor (svc) mode has a privilege level 1
and is where most parts of kernel execute.
TrustZone and Processor States. TrustZone is a hardware secu-
rity extension of the ARM processor architecture, which includes
bus fabric and system peripherals. When TrustZone is implemented,
a processor has two security states or worlds, namely the secure
world (s) and the normal world (ns). The distinction between the
two states is orthogonal to the processor modes. The partitioning
of all the System on Chip (SoC)’s hardware and software into two
worlds may be physical and/or virtual. For instance, a processor
core is shared by the normal and secure world in a time-sliced
fashion. World switching is done in the monitor mode after calling
the secure monitor call (SMC) instruction in either world. The SMC
instruction forces the running core to enter the monitor mode.

2.2 Legitimate Channels between the Normal

and Secure Worlds

At the hardware layer, there are two ways for a normal world and
a secure world component to communicate with each other. Firstly,
messages can be stored in the general registers when aworld switch-
ing happens, which is triggered by the SMC instruction. For instance,
secure monitor call calling convention [5] defines how parameters
are passed through the general registers, and it is implemented in
firmware, such as ARM Trusted Firmware [6]. Previous projects,
such as SeCReT [18], attempted to add extra layers of authentica-
tion and verification to make sure only predefined and legitimate
components can use this channel.

Secondly, the secure world kernel can directly map a memory
region that is accessible by the normal world. Hence, this shared
memory region can be used by the normal and secure world to
communicate. Secure world OSes, such as OP-TEE [28], have imple-
mented shared memory. Usually, a physical memory region is first
allocated by the normal world kernel. The physical address, the size
of the shared memory, and other important information are then
transferred to the secure world OS through the SMC interface, so
the secure world can configure its MMU table entries to access the
region directly. Since important information is still passed through
the SMC interface, solutions such as SeCReT can also monitor this
channel. Besides SeCReT, we can assume strong monitors can be
implemented in the future to inspect all transmitted data in these
channels.

2.3 ARM Cache Architecture

A cache is a relatively small but fast array of memory, which is
usually placed between a CPU core and the main memory. In the
ARM architecture, each core has its own dedicated L1 cache, which

Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

is separated into instruction cache (I-cache) and data cache (D-
cache). The separation of instruction and data cache allows transfers
to be performed simultaneously on both instruction and data buses
and increases the overall performance of L1 caches. In the ARM
architecture, a unified L2-cache is shared among the cores in a core
cluster.
Inclusiveness. Depending on if a high-level cache holds the data
of a lower level cache, a cache architecture can be categorized into
the following three classes: (1) inclusive cache: a line in L2 cache
will be evicted when new data is fetched even even though the line
is in L1 cache; (2) strict inclusive cache: a cache line in L2 cache
cannot be evicted by new data if the data is stored in L1 cache,
which is known as AutoLock by a prior work [11]; (3) exclusive
cache: a cache line will only be stored in one of the cache levels.
Inclusiveness of a cache is important for cross-core cache attacks. In
the ARM architecture, cache is not exclusive mostly, which enables
cross-core cache-based attacks.
Set Associativity. For efficiency reasons, multiple adjacent words
in memory are moved in or out from the cache in a single cache load
or eviction. And, the smallest unit in a cache is called a cache line.
In the modern cache architecture, a cache is organized in multiple
cache sets. And, adjacent memory data with the size of a cache line
can be stored into any cache line in the same set. If a cache set has
N cache lines, the cache is called an N -way associative cache.
Replacement Policies. In set-associative caches, to decide which
specific cache line to use in a particular set several policies can be
utilized: (1) Least-recently-used replacement policy: the least recently
used cache entry in a cache set will be replaced. Intel architecture
uses this policy [22]; (2) Round-Robin replacement policy: the cache
lines that are first filled will be cleared first; (3) Pseudo-random
replacement policy: a random cache line will be evicted. In the ARM
architecture, a pseudo-random replacement policy is used, which
usually makes cache-based attacks harder to implement [21, 31].
Cache in TrustZone Architecture. Unlike some banked system
registers, there is only one copy of cache that is shared between
normal and secure world. Each cache line has one bit to indicate
if its content is from a secure or normal world memory region.
Even though this extend bit can prevent normal world components
from accessing cache contents of secure world, the design of shared
cache still makes some cross-world cache attacks possible.

2.4 Previous Cache Attacks

Previous cache attacks utilize time differences between a cache
hit and a cache miss to infer whether specific code/data has been
accessed. We briefly overview several attacks that have been widely
exploited on both Intel and ARM architectures.

Both Evict+Time and Prime+Probe can be used to determine
which cache sets have been accessed by a victim [29]. Both of them
have been used to reconstruct cryptography key in a victim pro-
gram [15, 22, 29] and perform cross-VM attacks [24, 44–46]. In these
two approaches, attackers can only achieve set-level granularity,
but they do not need to map objects in the memory space of the
victim into their own memory space. Previous research effort also
showed that the pseudo-random replacement policy on ARMmakes
Prime+Probe much harder than it is on Intel architectures [21, 42].

The objective of Flush+Reload is to determine which specific
cache lines are accessed by a victim program. First, the attacker
maps objects in the victim’s address space into its own. The attacker
then flushes specific cache lines, schedules the victim program,
and checks which the cache lines that were flushed have been
reloaded. This technique was first implemented using the CLFLUSH
instruction provided in the Intel architecture [41], and it has been
used to extract cryptographic keys [14, 16, 17]. Evict+Reload was
proposed for ARM by replacing the flush action with eviction [13,
43].

Because the cache references andmisses caused by Flush+Reload
and Prime+Probe could be monitored by hardware performance
counters, Gruss et al. [12] proposed Flush+Flush that only relies
on the execution time of the flush instruction to detect if a cache
line has been loaded by a victim program.

Even though Flush+Reload, Evict+Reload and Flush+Flush
provide finer-grained attacks at the cache line level, they all need
shared memory between an attacker program and a victim program.
In this paper, we assume the secure world and normal world commu-
nication parties do not share memory. Therefore, these techniques
cannot be adopted.

3 ASSUMPTIONS AND ATTACK MODEL

We assume a solution, such as SeCReT [18], that only allows au-
thenticated normal world components to use the communication
channel, is running in secure world monitor mode. Such a solution
safely maintains a list of predefined normal world components
that are allowed to use the legitimate channels. We also assume
that there is a strong monitor that can understand all transmit-
ted data between the normal and secure world and block illegal
communications.

The goal of an attacker is to smuggle sensitive information that
is only accessible in the secure world to the normal world. To this
end, the attacker runs a component, namely Receiver in the normal
world and another component, namely Sender in the secure world.
Because legitimate communication channels, including parameters
passed by registers and shared memory, between the normal world
and the secure world are under inspection by a SeCReT or a strong
monitor, it is impossible for the Sender and the Receiver to transfer
sensitive data from the secure to the normal world using such
channels without being detected. To bypass this kind of cross-world
communication monitoring, the Sender and the Receiver need to
use channels that are not governed by the sentries implemented in
the monitor mode.

We assume the attacker has kernel privileges in the normal world,
so the Receiver can use privileged instructions to access the PMU.
This constraint can be loosened if the perf_event_open system call
is provided to monitor “L1/L2 cache refill events” in userland. The
Sender can simply be a secure world application (trusted applica-
tion), and it is not necessary for it to have kernel privileges. This
is because the Sender will only need to influence cache by read-
ing/writing memory regions and does not need to access the PMU.
However, having the Sender running in the kernel space enables
it to steal information that is not available for userland processes.
Running an application in the secure world is very feasible for
the attacker who can either leverage vulnerabilities of the secure

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H. Cho et al.

Device SoC CPU (cores) L1 Cache L2 Cache Inclusiveness Secure World OS Normal World OS

Samsung N/A 32-bit 32KB, 4-way, 1024KB, 16-way, Inclusive SecureOS Tizen OS
Tizen TV Cortex-A17 (4) 128 sets 1024 sets on Linux 4.1.10

Hikey board HiSilicon 64-bit 32KB, 4-way, 512KB, 16-way, Inclusive ARM Trusted Linux 4.1.0
Kirin 620 Cortex-A53 (8) 128 sets 512 sets Firmware, OP-TEE

Table 1: Test Environments.

world interfaces as shown in [20, 27] or bypass application vetting
mechanisms [9]. The use of downloadable TAs, which are predicted
to be used widely [39], would increase the chance as well.

In summary, in our attack model attackers are not stronger than
their counterparts in previous events [26, 33] or in the attack model
presented in SeCReT [18], except that the Sender, which can be a
userland application, is a must. Our implementation suggests such
an application could be implemented in hundreds of lines of C code.
Moreover, our attack can be carried out even when mechanisms,
such as strong monitors, that are more powerful than normal world
component authentication, such as SeCReT, are deployed between
the two worlds.

Depending on the hardware the attack is performed on and
resources the attacker possesses, we articulate two attack scenarios:
single-core and cross-core.

(1) Single-core scenario: This scenario occurs when either the
targeted device only has a single-core CPU or the attacker can only
control one of the cores in a multi-core CPU. Because there is only
one core available to the attacker, the attacker needs to use the
SMC instruction to switch between the normal and secure world. In
addition, in this scenario the attacker can use either L1 cache or L2
cache. Note that even if the attacker can use the SMC instruction in
this scenario, it is not possible to send sensitive information directly
using the SMC instruction or shared memory due to the sentry in
the monitor mode;

(2) Cross-core scenario: In this scenario, the attacker can execute
the Receiver in the normal world and the Sender in the secure world
on two different cores at the same time. Because different cores
do not share L1 cache, the covert channel can only be constructed
using the L2 cache. Therefore, the inclusiveness of L2 cache affects
the result. In this scenario, there is no need for the attacker to use
the SMC instruction to switch between the worlds.

In this paper, we attempt to solve the challenges in building
cross-world covert channels in both aforementioned scenarios. All
experiments are performed on the two environments as listed in
Table 1. In addition, we use a TRACE32 hardware debugger1 to
trace cache operations on the Tizen TV.

4 CROSS-WORLD COVERT CHANNELS

At a high level, to build cache-based covert channels, the Receiver
first makes the whole cache or some specific cache lines enter
a known state. To this end, the Receiver can fill the cache with
contents from its own address space. In the second step, the Sender
carefully changes states of some cache lines by evicting the contents
of those lines and placing its own contents there. In the third step,
1http://www.lauterbach.com/

Algorithm 1: Prime+Count-based Cross-world Covert Chan-
nels. x is the message to be sent.
/* Receiver: Prime */

1 if Single-core covert channel then
2 for Each L1-D cache line do
3 Clean & Invalidate the L1-D cache line
4 Load data to fill the L1-D cache line
5 Yield control to the secure world by executing SMC
6 if Cross-core covert channel then
7 for Each L2 cache line do
8 Clean & Invalidate the L1-D cache line
9 Clean & Invalidate the L2 cache line

10 Load data to fill the L1-D & L2 cache lines
11 Clean & Invalidate the whole L1-D cache

/* Sender: Write to covert channel */

12 if Single-core covert channel then
13 Occupy x L1-D cache lines
14 Yield control to the normal world by executing SMC
15 if Cross-core covert channel then
16 Occupy x L2 cache lines

/* Receiver: Count */

17 Determine how many cache lines are changed by Sender
18 Apply bucket method for further noise reduction

the Receiver detects such changes to decipher the message the
Sender transmits. Note that, in almost all the platforms, neither the
Sender nor the Receiver can directly read the content of any cache
line. Therefore, the message is actually delivered using channels
such as which specific cache lines or sets have been changed in
previous projects [21, 32, 37]. To receive such information, the
Receiver accesses its own address space again and uses cache hit or
miss to detect how many cache lines have been changed.

Our approach follows this general idea with some changes that
are tailor-made for the TrustZone architecture. In particular, we
propose Prime+Count, it uses the number of changed cache lines
as the covert channel instead of which cache lines or sets. Algo-
rithm 1 demonstrates the overall workflow of building cross-world
covert channels using Prime+Count. As shown in Lines 2–4 and
7–11, the Receiver first Primes the cache. Because covert channels
are based on the number of cache misses, the results of the Prime
step can have a strong influence on the reliability and bandwidth of
the covert channel. Due to the pseudo-random cache replacement

Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

00 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980

10
00

10
20

10
40

10
60

10
80

11
00

11
20

11
40

11
60

11
80

12
00

12
20

12
40

12
60

Cache Set Index

0

20

40

60

80

100

120

Nu
m
be

r o
f C

ac
he

 m
iss

es

Figure 1: Cache misses introduced by world switching.

policy, an effective and efficient Prime method is not very straight-
forward. We discuss the Prime method in detail in Section 4.2.

In the single-core scenario, the Receiver then needs to yield
control to the secure world so the Sender can execute as shown
in Line 5. In the cross-core scenario, this step is omitted. Then,
as shown in Lines 13 and 16, the Sender writes data to the covert
channel by occupying x cache lines, where x is the message to be
sent. In this step, the cache replacement policy could be the obstacle
again. Consequently, a similar method in Prime is used for accurate
message writing. In the single-core scenario, the Sender then yields
control to the normal world so that the Receiver can decode the
message as shown in Line 14. Lastly, the Receiver Counts howmany
cache lines are changed as shown in Line 17 and uses a simple noise
reduction method to get the message as shown in Line 18.

The main difference in single-core and cross-core scenario is
that the L2 cache is used in the cross-core scenario instead of the
L1-D cache. We discuss the details of the differences in Section 4.5.

4.1 Prime+Count Overview

4.1.1 Why not Prime+Probe? Intuitively, Prime+Probe can be
used to build cross-world covert channels in our attack model. It is
not the best option due to the following reasons:

(1)Noisy:Due to ARM’s pseudo-random replacement policy, Lipp
et al. demonstrated that Prime+Probe is not reliable [21]. The world
switching introduced by TrustZone increases the ineffectiveness of
Prime+Probe. In addition, during the time when the normal world
part of the covert channel is working, other kernel code executing
on the same core can introduce extra noise.

We conducted several experiments on both devices to show how
much noise can be introduced on each set of the L1-D cache during
the world switching after the Prime. In the experiments, the secure
world simply yields control to the normal world after loading a
specific number of cache sets. Figure 1 shows how many cache
misses occurred for each cache set in 200 world switchings on the
Hikey board. The x-axis is the index of the cache sets from 0 to
127, and the y-axis is the accumulated number of cache misses. The
experiments suggest the noise is widely dispersed on the cache sets
and the average number of cache misses per world switching is
around 18 over 128 cache sets. Even though Figure 1 shows some
cache sets, such as cache set 1, are never used during the world
switching in our experiments on the Hikey board, it does not mean
that those cache sets are guaranteed to stay intact when other
hardware devices or different firmware and OS are used. Hence,
it is not feasible to use this observation to build generic covert
channels for a variety of hardware and software environments.

Algorithm 2: An Alternative Method.
/* The following lines replace Lines 2-4 in

Algorithm 1 */

1 for Each L1-D cache set do
2 Clean & Invalidate the L1-D cache set
3 for Each L1-D cache set do
4 Load data to fill the L1-D cache set

(2) Difficult to choose threshold: One way to tell a cache hit from a
cache miss is to use the Performance Monitors Cycle Count Register
(PMCCNTR) that increments from the hardware processor clock.
By subtracting a previously recorded PMCCNTR value (p1) from its
current value (p2), the number of elapsed processor cycles (∆ = p2−
p1) can be easily computed. To distinguish between cache hit and
miss for a memory access, PMCCNTR is read before and after the
memory access attempt. If the number of elapsed cycles is greater
than some predefined threshold (∆ > θ), the attempt is classified
as a cache miss; otherwise, it is considered as a cache hit. This
approach has been used in Prime+Probe and other cache attacks.
However, the thresholds used for decision making are contingent upon
the implementation of the CPU, which means there is no one-size-
fits-all threshold value for all available devices on the market. Even
though Lipp et al. proposed a mechanism to automatically compute
the threshold at run-time [21], it inevitably increases the size of the
attack code base and the chance to be discovered.

4.1.2 Why Prime+Count? Prime+Count counts how many
cache sets or lines have been occupied instead of determining which
cache sets have been occupied. Prime+Count, as a coarser-grained
approach than Prime+Probe, significantly reduces the noise intro-
duced by the random replacement policy and world switching. In
addition, Prime+Count does not require shared memory space or
shared memory objects with a victim. Prime+Count only cares
about how many cache sets/lines have been changed. Therefore,
it may be difficult to use it for some attacks other than building
covert channels, such as stealing cryptographic algorithm keys.

4.2 Prime the Cache

Ineffective Prime affects the accuracy of Count and adds noise to
the covert channel. It is suggested that the pseudo-random cache
replacement policy is a significant obstacle in Prime [21, 42]. Taking
a 4-way set associative cache as an example, based on the index of
the physical address newly fetched data can be loaded to any of the
4 ways. Therefore, even if we load as much data as the size of the
L1-D cache, there is no guarantee that the cache will be completely
occupied.

4.2.1 Previous PrimeMethod. Previous approaches to achieve
high cache coverage in Prime for userland programs load data
repeatedly using various access patterns [21, 42]. However, this
type of approach costs thousands of CPU cycles even when it is
only used to prime a small portion of the cache [21].

Also, our experiments confirm that repeating the data loading
at kernel level is costly. We perform a systematic analysis using
the TRACE32 hardware debugger to dump the content of cache on

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H. Cho et al.

a Samsung Tizen TV. To this end, we prepare 32 KB of memory
space, the same size of the L1-D cache. Then, we access the first
byte of the memory and keep accessing data at the address that
is 64 bytes (size of cache line) away from the one before. After
repeating this operation for 512 times (128 sets × 4 ways), we dump
the content of cache using the TRACE32 debugger. To minimize
possible interference, we use a spinlock to give our experiment
code exclusive use of the core. Our results show that, on average,
only 372 of 512 cache lines were occupied after accessing the 32 KB
memory once. Only by repeating this procedure for more than 50
times could it achieve around 95% cache occupation.

4.2.2 Our Prime Method. Obviously, a faster Prime method
could significantly increase the bandwidth of covert channels and
reduce the chance of being discovered. In this paper, as shown in
Lines 3–4 in Algorithm 1 we clean and invalidate each cache line
before only loading the data to cache once. Our experiments show
that this method achieves around 99% occupation on average.

This method operates as follow: (1) The starting address of a
memory block is assigned to the pointer; (2) We translates virtual
address to physical address. Once the physical address is obtained,
we can extract its set number; (3) After that, we select the target
cache line among the lines (ways) in the set using the DC CISW
instruction. The DC CISW instruction’s operands are a set number
and a way number, and thus, we can choose a specific cache line
(way) in a set to clean and invalidate it. We typically start from the
way 0 to the last way; (4) Lastly, we load the data to the cache line.
The pointer is increased by the length of a cache line so that we can
point to the next cache set of the way in the next round. If the way
has been fully filled by data, we fetch data to the next way. Steps
(1) – (4) are iterated until Prime is done.

We also conduct experiments with an alternative method shown
in Algorithm 2. In this method, we clean and invalidate all cache
lines of the L1-D cache before loading the data. Experiments show
that this method achieves around 95% occupation on average.

4.3 Count Using Cache Refill Events

The Performance Monitor Unit (PMU) includes logic to gather vari-
ous statistics on the operations of the processor and memory sys-
tem during runtime. We use overlooked PMU features called “L1/L2
Cache Refill Event” to count how many cache lines have been up-
dated. A cache refill event can be triggered by any access causing
data to be fetched from outside the cache. Therefore, every cache
miss can be counted by using the event.

After the secure world occupies some cache lines using the Prime
method, it yields control to normal world, and Count function will
execute. If a cache line is refilled while accessing the memory, the
counter will increment. Therefore, this function gives us how many
cache lines have been changed between Prime and Count.

4.3.1 Two Counting Modes. There are two counting modes we
use in the experiments:

Line-counting mode. The smallest unit for counting a cache refill
event is a line. For example, if the L1-D cache is a 128-set 4-way
cache, we can check each of the 512 lines to count how many refill
events occur. In this mode, the covert channel can transmit at most
9 bits (loд2512) every time.

Set-counting mode. Another option is to count the cache refill
events on only one way, so just 128 lines will be checked. A way
can be chosen by using the DC CISW instruction. In this mode,
the covert channel can transmit at most 7 bits (loд2128) every time.
However, we only need to Prime one way in this mode. Therefore,
this mode can achieve higher bandwidth than the line-counting
mode.

4.3.2 Defeating Data Prefetching. One of the challenges we en-
countered in implementingCount is the automatic data prefetcher [2,
4]. Data prefetching is a technique that fetches data into the cache
earlier than the instruction that uses the data is executed. To do
so, the prefetcher monitors data cache misses and learns an access
pattern. However, a data prefetching does not trigger a refill event.
So, the counter will not increment when a new cache line fill is
caused by data prefetching.

There are several methods to prevent data prefetching. One way
is to disable the prefetcher directly by changing the corresponding
bit in the auxiliary control register. However, it is only safe to do so
after the MMU is enabled, which does not fit in our attack model.
Moreover, disabling the prefetcher will downgrade the performance
of the system. Another way is to access memory locations in a
random and unpredictable order, so it is difficult for the prefetcher
to learn a pattern. However, this method increases the complexity
of implementing covert channels.

We solve the problem by employing the instruction synchro-
nization barrier (ISB). The ISB instruction flushes the pipeline of a
core and the prefetcher buffer as well. It is normally used when the
context or system registers are changed as well as after the branch
predict maintenance operations.

4.4 A Simple Message Encoding Method

Even though Prime+Count introduces significantly less noise than
Prime+Probe, noise is still inevitable due to the world switching
and other factors. One way to correct the errors introduced by
noise is to adopt error correction encoding methods, such as Reed-
Solomon error correction [30]. However, those encoding methods
significantly (1) increase the size of message, (2) are time consum-
ing to perform, and (3) increase the size of the code base. Hence,
adopting those methods could even further reduce the bandwidth
of the covert channel and increase the chances of being discovered.
A recent study also suggests that directly applying error-correcting
codes does not work due to cache-based covert channel noise char-
acteristics [25].

Fortunately, our empirical experiments show that the introduced
noise in Prime+Count (error in number of cache refill events)
is manageable. Therefore, we design a simple encoding method,
which essentially ignores the least significant bits of the received
data. We call this approach the bucket method.

The basic idea of the bucket method is to divide the numbers of
cache refill events into several groups. Table 2 illustrates one exam-
ple of using the bucket method when 2 bits of data are transferred
from the secure world using a 7-bit channel (128 sets in set-counting
mode). In this example, when the Sender wants to send message 2,
it will try to occupy 70 cache lines, which may result in 85 cache
refill events detected by the Receiver. The Receiver then uses the

Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Message to be Sent # of Cache Sets should be # of Cache Events Bucket Ranges Message decoded
Occupied by the Sender detected by the Receiver set by the Receiver by the Receiver

0 10 23 0 - 43 0
1 40 60 44 - 71 1
2 70 85 72 - 99 2
3 100 111 100 - 128 3

Table 2: An example of the bucket method. We assume there are 128 sets and set-counting mode is used. The channel can

transmit as most 7 bits (loд2128) every time. In this example, only 2 bits are transmitted.

bucket method to decode the message back to 2. The range of a
bucket should be decided empirically.

4.5 Cross-Core Covert Channels

Weuse the same Prime+Count approaches as the single-core covert
channel for cross-core covert channel except for the level of the
cache refill event. Besides that, as shown in Algorithm 1 Line 11,
the whole L1-D cache should be cleaned and invalidated after the
Prime. If the L1-D cache has data which was used to occupy the L2
cache after the Prime, the remaining data in the L1-D cache will
cause cache hits during Count even if the secure world the Sender
loads all cache lines of the L2 cache. Cleaning and invalidating the
L1-D cache using the DC CISW instruction does not affect the L2
cache.

Because the L2 cache is shared by many cores and the cache size
is much bigger than the L1-D cache, in practice it is impossible to
prevent other cores from changing the cache lines during the time
of Prime or after Prime. Therefore, the noise caused by other cores
makes line-counting mode infeasible for building cross-core covert
channels. Consequently, we design a modified set-counting mode.
The set-counting mode for the single-core environment counts
cache misses of one way. For the cross-core covert channel, we
check cache misses of all cache lines in a set spanning all ways.

5 IMPLEMENTATION

We implemented the Prime+Count method and covert channels
using Prime+Count on the two devices as listed in Table 1. Also,
we open source the prototype with the expectation that it will be
utilzed and extened by security researchers2.

The software implementation consists of a normal world module
(the Receiver) and a secure world module (the Sender) to simulate
the scenario that the Sender tries to smuggle sensitive data out to
the normal world. Note that with a simple implementation twist
the Prime+Count technique and covert channels based on it can
be used to send data from the normal world to the secure world as
well.

In the single-core scenario implementation, the normal world
module is a loadable kernel module (LKM) that can execute the SMC
instruction directly. In the case of the Samsung Tizen TV, the Sender
is a secure world application that does not have kernel privileges. To
invoke the application, a new SMC handler is added to the kernel of
the secureOS. Note that, in Samsung Tizen TV, only authenticated
trusted applications can be loaded on the secureOS, and only Root

2https://github.com/Samsung/prime-count

TA can load LKM to the kernel of secureOS. Therefore, in practice
a malicious kernel-level Sender needs to bypass Samsung’s code
vetting first. For the Hikey board implementation, we implemented
the Sender in kernel by modifying the tee_entry_fast function
in the entry_fast.c of the OP-TEE.

In the multi-core covert channel scenario, we implemented two
kernel threads in the normal world and assigned each of them to
a different physical core. One of the threads acting as the Receiver
stays in the normal world. The other kernel thread executes SMC
and invokes the Sender in the secure world. The Sender and the
Receiver use L2 cache to communicate.

The normal world kernel module consists of 1,134 SLoC for both
test environments. The secure world implementation on the Hikey
board consist of 84 SLoC, whereas the secure world application on
Samsung Tizen TV has 319 SLoC.

6 EVALUATION

In this section, we report the evaluation results of cross-world
Prime+Count-based covert channels on the TrustZone architec-
ture. In section 6.1, we evaluate how much noise our Prime+Count
method could reduce compared with previous approaches. Sec-
tion 6.2 discusses how we choose bucket ranges in the experiments.
Section 6.3 measures the bandwidth of covert channels under dif-
ferent conditions. In Section 6.4 shows images transferred using
covert channels.

6.1 Effectiveness of Prime+Count

6.1.1 Single-core Scenario. We designed four experiments to
demonstrate the effectiveness of our Prime+Count method under
the single-core scenario. In each experiment, the Sender tries to load
a specific number of lines/sets (x-axis), and the Receiver detects how
many lines/sets changes (y-axis). The configurations of experiments
are listed as follows: (1) Exp-1: Primewith repeated loading 50 times,
no instruction barrier, set-counting mode; (2) Exp-2: Prime with
repeated loading 50 times, no instruction barrier, line-counting
mode; (3) Exp-3: Our Prime method, with instruction barrier, set-
counting mode; (4) Exp-4: Our Prime method, with instruction
barrier, line-counting mode.

We repeated the experiment on each device 1,000 times. Figure 2
shows the evaluation results. The x-axis represents the number of
cache lines/sets loaded by the secure world Sender, whereas the
y-axis represents how many L1 cache refill events were detected by
the Receiver. The blue line indicates the maximum number of cache
fill events detected, whereas the green line shows the minimum

https://github.com/Samsung/prime-count

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H. Cho et al.

0000 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000 76000 80000 84000 88000 92000 96000 100000 104000 108000 112000 116000 120000 124000 128000
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

000

max
mean
min

(a) Exp-1 on Tizen TV

0000 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000 76000 80000 84000 88000 92000 96000 100000 104000 108000 112000 116000 120000 124000 128000
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

000

max
mean
min

(b) Exp-1 on Hikey

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(c) Exp-2 on Tizen TV

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(d) Exp-2 on Hikey

0000 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000 76000 80000 84000 88000 92000 96000 100000 104000 108000 112000 116000 120000 124000 128000
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

000

max
mean
min

(e) Exp-3 on Tizen TV

0000 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000 76000 80000 84000 88000 92000 96000 100000 104000 108000 112000 116000 120000 124000 128000
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

000

max
mean
min

(f) Exp-3 on Hikey

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(g) Exp-4 on Tizen TV

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(h) Exp-4 on Hikey

Figure 2: We conducted multiple experiments on both devices to demonstrate the effectiveness of our Prime method and in-

struction barrier under the single-core scenario. (1) Exp-1: Prime with repeated loading, no instruction barrier, set-counting

mode; (2) Exp-2: Prime with repeated loading, no instruction barrier, line-counting mode; (3) Exp-3: Our Primemethod, with

instruction barrier, set-counting mode; (4) Exp-4: Our Prime method, with instruction barrier, line-counting mode. By com-

paring the first row and the second row, we can clearly see that the variance of noise is significantly reduced using our Prime

method with instruction barrier.

00000000000000000000000000000000 320000000000000000000000000000000 640000000000000000000000000000000 960000000000000000000000000000000 1280000000000000000000000000000000 1600000000000000000000000000000000 1920000000000000000000000000000000 2240000000000000000000000000000000 2560000000000000000000000000000000 2880000000000000000000000000000000 3200000000000000000000000000000000 3520000000000000000000000000000000 3840000000000000000000000000000000 4160000000000000000000000000000000 4480000000000000000000000000000000 4800000000000000000000000000000000 5120000000000000000000000000000000 5440000000000000000000000000000000 5760000000000000000000000000000000 6080000000000000000000000000000000 6400000000000000000000000000000000 6720000000000000000000000000000000 7040000000000000000000000000000000 7360000000000000000000000000000000 7680000000000000000000000000000000 8000000000000000000000000000000000 8320000000000000000000000000000000 8640000000000000000000000000000000 8960000000000000000000000000000000 9280000000000000000000000000000000 9600000000000000000000000000000000 9920000000000000000000000000000000 10240
00000000000000000000000000000000

32
0000000000000000000000000000000

64

0000000000000000000000000000000

96

0000000000000000000000000000000

128

0000000000000000000000000000000

160

0000000000000000000000000000000

192

0000000000000000000000000000000

224

0000000000000000000000000000000

256

0000000000000000000000000000000

288

0000000000000000000000000000000

320

0000000000000000000000000000000

352

0000000000000000000000000000000

384

0000000000000000000000000000000

416

0000000000000000000000000000000

448

0000000000000000000000000000000

480

0000000000000000000000000000000

512

0000000000000000000000000000000

544

0000000000000000000000000000000

576

0000000000000000000000000000000

608

0000000000000000000000000000000

640

0000000000000000000000000000000

672

0000000000000000000000000000000

704

0000000000000000000000000000000

736

0000000000000000000000000000000

768

0000000000000000000000000000000

800

0000000000000000000000000000000

832

0000000000000000000000000000000

864

0000000000000000000000000000000

896

0000000000000000000000000000000

928

0000000000000000000000000000000

960

0000000000000000000000000000000

992

0000000000000000000000000000000

1024

0

max
mean
min

(a) Exp-5 on Tizen TV

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(b) Exp-5 on Hikey

Figure 3: Number of Loaded Cache Sets versus Detected L2

Refill Events under the Cross-core Scenario.

number of cache fill events detected. The orange line denotes the
average over the 1,000 experiments.

From the first row of Figure 2, which is the previous Prime
approach on both devices, we can see those approaches are far from
reliable and the gaps between the maximums and minimums are
large. It is particularly interesting to see the number of cache refill
events will even stay at around 256 on average no matter howmany
lines the Sender tries to load as shown in Figure 2-(d). We tried to
look for explanations and failed to find any answers in any official
specifications of Hikey or ARM documents.

By comparing the first row (previous Prime techniques) and the
second row (our Prime technique) of Figure 2, we can clearly see
that the variance of noise is significantly reduced using our Prime
method with an instruction barrier.

6.1.2 Cross-core Scenario. We also conducted cross-core experi-
ments on both devices using our Prime method, with instruction
barrier and set-counting mode (Exp-5). As Figure 3 shows, the noise
under the cross-core scenario is much stronger than it is under the
single-core scenario. Also, the results on Hikey is more stable than
the results on Tizen TV. This is because there are several applica-
tions running on the Tizen system when we were conducting the
experiments.

6.1.3 Under Extreme Conditions. We are interested in how our
approach performs under extreme conditions. To this end, we ran a
program in the normal world that creates many threads that exceed
the number of cores on each board. The threads stay in an infinite
loop in which they keep reading and writing data to memory after
allocating a memory region that has the same size as the L2 cache.

We conducted multiple experiments with three different config-
urations: (1) Exp-6: the set-counting mode under the single-core
scenario; (2) Exp-7: the line-counting mode under the single-core
scenario; (3) Exp-8: the set-v counting mode under the cross-core
scenario. Figure 4 suggests our approach performs well in the single-
core scenario even under extreme conditions. However, the error
rate is very high in the cross-core scenario.

6.1.4 Under a Real-world Condition. In addition, we also tested
our approach in the cross-core scenario under a more realistic con-
dition, where a YouTube application was running in the Samsung
Tizen TV (Exp-9). As shown in Figure 5-(a), the noise was alleviated
compared to Figure 4-(e) (Exp-8). However, Figure 5-(b) implies that
the cross-core covert channel is difficult to utilize because there are
many overlaps in the ranges of each bucket.

Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0000 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000 76000 80000 84000 88000 92000 96000 100000 104000 108000 112000 116000 120000 124000 128000
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

000

max
mean
min

(a) Exp-6 on Tizen TV

0000 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000 76000 80000 84000 88000 92000 96000 100000 104000 108000 112000 116000 120000 124000 128000
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

000

max
mean
min

(b) Exp-6 on Hikey

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(c) Exp-7 on Tizen TV

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(d) Exp-7 on Hikey

00000000000000000000000000000000 320000000000000000000000000000000 640000000000000000000000000000000 960000000000000000000000000000000 1280000000000000000000000000000000 1600000000000000000000000000000000 1920000000000000000000000000000000 2240000000000000000000000000000000 2560000000000000000000000000000000 2880000000000000000000000000000000 3200000000000000000000000000000000 3520000000000000000000000000000000 3840000000000000000000000000000000 4160000000000000000000000000000000 4480000000000000000000000000000000 4800000000000000000000000000000000 5120000000000000000000000000000000 5440000000000000000000000000000000 5760000000000000000000000000000000 6080000000000000000000000000000000 6400000000000000000000000000000000 6720000000000000000000000000000000 7040000000000000000000000000000000 7360000000000000000000000000000000 7680000000000000000000000000000000 8000000000000000000000000000000000 8320000000000000000000000000000000 8640000000000000000000000000000000 8960000000000000000000000000000000 9280000000000000000000000000000000 9600000000000000000000000000000000 9920000000000000000000000000000000 10240
00000000000000000000000000000000

32
0000000000000000000000000000000

64

0000000000000000000000000000000

96

0000000000000000000000000000000

128

0000000000000000000000000000000

160

0000000000000000000000000000000

192

0000000000000000000000000000000

224

0000000000000000000000000000000

256

0000000000000000000000000000000

288

0000000000000000000000000000000

320

0000000000000000000000000000000

352

0000000000000000000000000000000

384

0000000000000000000000000000000

416

0000000000000000000000000000000

448

0000000000000000000000000000000

480

0000000000000000000000000000000

512

0000000000000000000000000000000

544

0000000000000000000000000000000

576

0000000000000000000000000000000

608

0000000000000000000000000000000

640

0000000000000000000000000000000

672

0000000000000000000000000000000

704

0000000000000000000000000000000

736

0000000000000000000000000000000

768

0000000000000000000000000000000

800

0000000000000000000000000000000

832

0000000000000000000000000000000

864

0000000000000000000000000000000

896

0000000000000000000000000000000

928

0000000000000000000000000000000

960

0000000000000000000000000000000

992

0000000000000000000000000000000

1024

0

max
mean
min

(e) Exp-8 on Tizen TV

0000000000000000 16000000000000000 32000000000000000 48000000000000000 64000000000000000 80000000000000000 96000000000000000 112000000000000000 128000000000000000 144000000000000000 160000000000000000 176000000000000000 192000000000000000 208000000000000000 224000000000000000 240000000000000000 256000000000000000 272000000000000000 288000000000000000 304000000000000000 320000000000000000 336000000000000000 352000000000000000 368000000000000000 384000000000000000 400000000000000000 416000000000000000 432000000000000000 448000000000000000 464000000000000000 480000000000000000 496000000000000000 512000
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

max
mean
min

(f) Exp-8 on Hikey

Figure 4: Number of Loaded Cache Sets versus Detected Re-

fill Events under Extreme Conditions. We conducted mul-

tiple experiments. (1) Exp-6: the set-counting mode under

the single-core scenario; (2) Exp-7: the line-counting mode

under the single-core scenario; (3) Exp-8: the set-counting

mode under the cross-core scenario.

6.2 Choosing Bucket Ranges

Figure 6 shows the distributions of the number of cache refill events
when we select 16 buckets. We assumed that the covert channel is
employed to send 4 bits per time. The Sender tries to load a specific
number of cache lines/sets (x-axis), and the Receiver detects how
many events are occurred and decodes it to a message (y-axis).

The box and whisker diagram used in Figure 6 is to display the
distribution of data. Data from the first to the third quartiles is in
the box, and the red line inside the box represents the median. The
bottom line and the top line represent the minimum and maximum
value, respectively. The other small circles are outliers. As shown in
Figure 6, it is difficult to find overlapped ranges in the line-counting
mode after we applied our approaches. On the other hand, in the
set-counting mode, the available numbers of the event are smaller
than the line-counting mode, and thus, there are overlapping refill
event numbers between buckets.

00000000000000000000000000000000 320000000000000000000000000000000 640000000000000000000000000000000 960000000000000000000000000000000 1280000000000000000000000000000000 1600000000000000000000000000000000 1920000000000000000000000000000000 2240000000000000000000000000000000 2560000000000000000000000000000000 2880000000000000000000000000000000 3200000000000000000000000000000000 3520000000000000000000000000000000 3840000000000000000000000000000000 4160000000000000000000000000000000 4480000000000000000000000000000000 4800000000000000000000000000000000 5120000000000000000000000000000000 5440000000000000000000000000000000 5760000000000000000000000000000000 6080000000000000000000000000000000 6400000000000000000000000000000000 6720000000000000000000000000000000 7040000000000000000000000000000000 7360000000000000000000000000000000 7680000000000000000000000000000000 8000000000000000000000000000000000 8320000000000000000000000000000000 8640000000000000000000000000000000 8960000000000000000000000000000000 9280000000000000000000000000000000 9600000000000000000000000000000000 9920000000000000000000000000000000 10240
00000000000000000000000000000000

32
0000000000000000000000000000000

64

0000000000000000000000000000000

96

0000000000000000000000000000000

128

0000000000000000000000000000000

160

0000000000000000000000000000000

192

0000000000000000000000000000000

224

0000000000000000000000000000000

256

0000000000000000000000000000000

288

0000000000000000000000000000000

320

0000000000000000000000000000000

352

0000000000000000000000000000000

384

0000000000000000000000000000000

416

0000000000000000000000000000000

448

0000000000000000000000000000000

480

0000000000000000000000000000000

512

0000000000000000000000000000000

544

0000000000000000000000000000000

576

0000000000000000000000000000000

608

0000000000000000000000000000000

640

0000000000000000000000000000000

672

0000000000000000000000000000000

704

0000000000000000000000000000000

736

0000000000000000000000000000000

768

0000000000000000000000000000000

800

0000000000000000000000000000000

832

0000000000000000000000000000000

864

0000000000000000000000000000000

896

0000000000000000000000000000000

928

0000000000000000000000000000000

960

0000000000000000000000000000000

992

0000000000000000000000000000000

1024

0

max
mean
min

(a) Exp-9 on Tizen TV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
00000000000000000000000000000000

32
0000000000000000000000000000000

64

0000000000000000000000000000000

96

0000000000000000000000000000000

128

0000000000000000000000000000000

160

0000000000000000000000000000000

192

0000000000000000000000000000000

224

0000000000000000000000000000000

256

0000000000000000000000000000000

288

0000000000000000000000000000000

320

0000000000000000000000000000000

352

0000000000000000000000000000000

384

0000000000000000000000000000000

416

0000000000000000000000000000000

448

0000000000000000000000000000000

480

0000000000000000000000000000000

512

0000000000000000000000000000000

544

0000000000000000000000000000000

576

0000000000000000000000000000000

608

0000000000000000000000000000000

640

0000000000000000000000000000000

672

0000000000000000000000000000000

704

0000000000000000000000000000000

736

0000000000000000000000000000000

768

0000000000000000000000000000000

800

0000000000000000000000000000000

832

0000000000000000000000000000000

864

0000000000000000000000000000000

896

0000000000000000000000000000000

928

0000000000000000000000000000000

960

0000000000000000000000000000000

992

0000000000000000000000000000000

1024

0

(b) Exp-9 on Tizen TV

Figure 5: Experiment under a realistic condition, where a

YouTube application is running.

6.3 Capacity Measurement

For the capacity measurement, we evaluated how many bytes can
be transferred per second using the channels. In particular, we
designed 4 experiments: (1) Exp-10: the Sender tries to load all cache
lines/sets (write all ones to the channel); (2) Exp-11: the Sender does
not loads anything (write zero to the channel); (3) Exp-12: the Sender
tries to load all cache lines/sets (write all ones to the channel) under
extreme conditions; (4) Exp-13: the Sender does not loads anything
(write zero to the channel) under extreme conditions; We ran all
four experiments 500 times on both devices using different counting
modes.

As shown in Table 3, the single-core set-counting mode of Exp-11
has the highest capacity and the cross-core of Exp-12 has the lowest
capacity for both Hikey board and Samsung Tizen TV. The results
may be surprising at the first glance since our experiments showed
line-counting mode has lower noise and 2 more bits to use than
set-counting mode. Further analysis reveals the reason behind this
phenomenon is that the code of line-counting mode takes much
longer time to run than its set-counting mode counterpart. This
finding demonstrates the importance of efficient code execution to
the covert-channel capacity.

6.4 Image Transfer

We used the covert channels to transmit images from the secure
world to the normal world under different conditions using both
devices. Figure 7 shows the results of experiments on the Tizen TV.
Column (a) shows the original images. The other images are all the
ones we retrieved from the normal world using covert channels.

Overall, the quality and accuracy of the transferred images de-
crease from left to right; and even under extreme conditions (Fig-
ure 7 column (f)), the covert channel can still transmit data with
some accuracy. The images illustrate that the covert channels we
built using Prime+Count are effective.

We especially can transfer data without noise in the single-core
scenario using the line-counting mode as shown in Figure 7-(b).
Because there is no overlapped region between the boxes in Figure 6-
(c) and (d), we set each bucket to have enough range so that the
receiver can decode correct message.

However, the cross-core covert channels have low accuracy par-
ticularly when YouTube was running and under extreme conditions
as illustrated in Figure 7-(e) and (f), Under these conditions where
we cannot avoid much noise, the number of cache refill events

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H. Cho et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

0

(a) Exp-3 on Tizen TV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000
4
000

8

000

12

000

16

000

20

000

24

000

28

000

32

000

36

000

40

000

44

000

48

000

52

000

56

000

60

000

64

000

68

000

72

000

76

000

80

000

84

000

88

000

92

000

96

000

100

000

104

000

108

000

112

000

116

000

120

000

124

000

128

0

(b) Exp-3 on Hikey

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

(c) Exp-4 on Tizen TV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000000000000000

16
000000000000000

32

000000000000000

48

000000000000000

64

000000000000000

80

000000000000000

96

000000000000000

112

000000000000000

128

000000000000000

144

000000000000000

160

000000000000000

176

000000000000000

192

000000000000000

208

000000000000000

224

000000000000000

240

000000000000000

256

000000000000000

272

000000000000000

288

000000000000000

304

000000000000000

320

000000000000000

336

000000000000000

352

000000000000000

368

000000000000000

384

000000000000000

400

000000000000000

416

000000000000000

432

000000000000000

448

000000000000000

464

000000000000000

480

000000000000000

496

000000000000000

512

000

(d) Exp-4 on Hikey

Figure 6: The chosen bucket ranges for different experiment configurations versus Detected Refill Events.

Attack Scenario Test Device Counting Mode Exp-10 Exp-11 Exp-12 Exp-13

Single-core
Samsung Tizen TV (Cortex-A17) Set-counting 10,330.97 27,408.13 4,868.28 12,971.03

Line-counting 5,293.62 8,216.97 2,517.62 3,892.50

Hikey Board (Cortex-A53) Set-counting 10,273.43 15,646.21 3,812.29 6,201.89
Line-counting 2,605.33 5,101.91 875.12 1,824.15

Cross-core Samsung Tizen TV (Cortex-A17) Set-counting 19.32 45.83 15.31 17.73
Hikey Board (Cortex-A53) 52.14 95.04 22.33 26.49

Table 3: Capacities of Covert Channels (Byte/Second).

increases unexpectedly as the Figure 4-(e), (f) and Figure 5 show.
Therefore, message sent by the Sender is likely to go other buckets
(to higher numbers) because of severe noise.

7 DISCUSSION

7.1 Limitations of Prime+Count

First off, it is worth noting that covert channelsmade by Prime+Count
could be detected by monitoring PMUs. To detect use of L1/L2 cache
refill events, a defender can check the performance monitors event
counter selection register (PMSELR) and the performance monitors
selected event type register (PMXEVTYPER) [4].

In addition, Prime+Count is not as fine-grained as other cache
attacks, including Prime+Probe and Flush+Flush, because it only
cares about how many cache sets/lines have been updated. Adopt-
ing Prime+Count for spying a victim program and even extract
cryptographic keys from another address space may be difficult if
not impossible, because Prime+Count cannot answer which cache
sets/lines have been used. However, due to the coarse-grained char-
acteristic of Prime+Count it can reduce noise introduced by world
switching, pseudo-random replacement policy, and other factors,
which makes it a better choice to build cross-world covert channels.

7.2 Cross-world Covert Channels without

Normal World Kernel Privileges

To loosen up the attack model and allow normal world applications
to use the covert channels, we can adopt the Prime approach pro-
posed in [21] that can be conducted in userland without using the
DC CISW instruction. As mentioned in Section 3, we can also utilize
the Linux perf_event_open system call to monitor “L1/L2 cache refill
events” in userland to implement Count.

7.3 Limitations of Our Experiments

While we took great efforts to maintain our experiments’ validity,
we could not consider some factors that may have affected the
bandwidth of the constructed covert channels. Specifically, SeCReT
is not openly available (in fact, the authors were unwilling to share
their code or system with us), therefore we were unable to run
our experiments with SeCReT enabled. It is unclear how much
SeCReT or similar solutions would impact the CPU load and even
the number of accesses to the cache. We want to emphasize that
the deployment of SeCReT or a strong monitor will not affect the
feasibility of the proposed covert channels but only downgrade the
bandwidth.

8 RELATEDWORK

Cache Side Channel Attacks: Cache side channel attacks exploit
the leakage of information caused by micro-architectural time dif-
ferences between a cache hit and a cache miss [47]. They have been
used to steal cryptographic keys in victim programs [22, 29, 40, 41,
45], trace the execution of programs [1, 7, 21], and extract other
sensitive information [32, 35, 44, 46]. Even though covert channels
can be built using various techniques [8, 34], cache-based covert
channel received a lot of attention in recent years [36]. Xu et al.
explored cross-VM L2 cache covert channels in Amazon EC2 [38].
Wu et al. designed a high-bandwidth and reliable data transmission
cache-based covert channel in the cloud [37]. Maurice et al. char-
acterized noise on cache covert channels and built a robust covert
channel based on established techniques fromwireless transmission
protocols [25].
The Security of TrustZone: SeCReT showed that TrustZone itself
cannot guarantee secure communication between normal and se-
cure world [18]. Machiry et al. presented vulnerabilities that permit
normal world user-level applications to read and write any memory
location in the kernel by tricking secure world into performing the

Prime+Count: Novel Cross-world Covert Channels on ARM TrustZone ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

(a) (b) (c) (d) (e) (f)

Figure 7: Transferred images using covert channels on Tizen TV. (a) Original images; (b) Single-core line-counting; (c) Single-

core set-counting; (d) Cross-core; (e) Cross-core when YouTube is running; (f) Cross-core under extreme conditions.

operations on its behalf [23]. ARMageddon demonstrated how to
use Prime+Probe to spy code executions on TrustZone [21]. TruSpy
demonstrated that it is possible for a normal world attacker to steal a
fine-grained secret from the secure world using timing-based cache
side-channel [42]. In this paper, we presented the first attempt to
build cross-world covert channels in the TrustZone architecture.

9 CONCLUSION

In this paper, we presented cross-world covert channel attacks on
ARM TrustZone, which is designed to provide hardware-assisted
isolation. We demonstrated that existing channel protection solu-
tions, such as SeCReT, or even more powerful mechanisms, such
as a strong monitor, can be bypassed. We discussed the reasons
why previous attacks, including Prime+Probe and Flush+Reload,
do not work for the cross-world scenario on ARM. And, we de-
signed a low noise, no shared memory needed cache attack named
Prime+Count by leveraging overlooked PMU “L1/L2 cache refill
events.” Our experiments showed that Prime+Count-based cross-
world covert channels could achieve bandwidth as high as 27 KB/s
under the single-core scenario and 95 B/s under the cross-core
scenario.

ACKNOWLEGMENT

Many thanks to the anonymous referees for their valuable and help-
ful comments. We would also like to thank our shepherd, Fengwei
Zhang.

This material is based upon work supported in part by Sam-
sung Research, Samsung Electronics, the Center for Cybersecurity

and Digital Forensics at Arizona State University, the National Sci-
ence Foundation (NSF 1651661), the Defense Advanced Research
Projects Agency (DARPAHR001118C0060), and the Global Research
Laboratory Program through the National Research Foundation
of Korea funded by the Ministry of Science and ICT under Grant
NRF-2014K1A1A2043029.

Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not neces-
sarily reflect the views of United States Government or any agency
thereof.

REFERENCES

[1] Onur Acıiçmez and Werner Schindler. 2008. A vulnerability in RSA implemen-
tations due to instruction cache analysis and its demonstration on OpenSSL. In
Proceedings of the Cryptographer’s Track at the RSA Conference (CT-RSA). 256–273.

[2] ARM. 2012. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/
index.html. (2012).

[3] ARM. 2012. ARMv6-M Architecture Reference Manual. https://silver.arm.com/
download/download.tm?pv=1102513. (2012).

[4] ARM. 2016. ARM Architecture Reference Manual ARMv8, for ARMv8-A archi-
tecture profile. http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487a.k/
index.html. (2016).

[5] ARM. 2016. SMC CALLING CONVENTION System Software on ARM
Platforms. http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_
DEN0028B_SMC_Calling_Convention.pdf. (2016).

[6] ARM. 2017. ARM Trusted Firmware. https://github.com/ARM-software/
arm-trusted-firmware. (2017).

[7] Billy Bob Brumley and Risto M Hakala. 2009. Cache-timing template attacks.
In Proceedings of the International Conference on the Theory and Application of
Cryptology and Information Security. 667–684.

[8] Serdar Cabuk, Carla E Brodley, and Clay Shields. 2004. IP covert timing channels:
design and detection. In Proceedings of the 11th ACM Conference on Computer
and Communications Security (CCS). Washington, DC, 178–187.

[9] Yue Chen, Yulong Zhang, Zhi Wang, and Tao Wei. 2017. Downgrade Attack on
TrustZone. arXiv preprint arXiv:1707.05082 (2017).

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
https://silver.arm.com/download/download.tm?pv=1102513
https://silver.arm.com/download/download.tm?pv=1102513
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA H. Cho et al.

[10] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection of
cache-based side-channel attacks using hardware performance counters. Applied
Soft Computing 49 (2016), 1162–1174.

[11] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann
Heyszl, and Thomas Eisenbarth. 2017. AutoLock:WhyCacheAttacks onARMAre
Harder Than You Think. In Proceedings of the 26th USENIX Security Symposium
(Security). Vancouver, BC, Canada, 1075–1091.

[12] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 279–299.

[13] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. ache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In Proceedings of
the 24th USENIX Security Symposium (Security). Washington, DC, 897–912.

[14] Berk Gülmezoğlu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. 2015. A faster and more realistic flush+ reload attack on AES. In
Proceedings of the International Workshop on Constructive Side-Channel Analysis
and Secure Design. 111–126.

[15] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing–and Its Applica-
tion to AES. In Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland). San Jose, CA, 591–604.

[16] Gorka Irazoqui, Mehmet Sinan IncI, Thomas Eisenbarth, and Berk Sunar. 2015.
Know thy neighbor: crypto library detection in cloud. Proceedings on Privacy
Enhancing Technologies 2015, 1 (2015), 25–40.

[17] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2016.
Lucky 13 strikes back. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security (ASIACCS). Singapore, 85–96.

[18] Jinsoo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon
Kang. 2015. SeCReT: Secure Channel between Rich Execution Environment and
Trusted Execution Environment. In Proceedings of the 2015 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

[19] laginimaineb. 2016. Exploit that extracts Qualcomm’s KeyMaster keys using
CVE-2015-6639. https://github.com/laginimaineb/ExtractKeyMaster. (2016).

[20] laginimaineb. 2016. Qualcomm TrustZone kernel privilege escalation using
CVE-2016-2431. https://github.com/laginimaineb/cve-2016-2431. (2016).

[21] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache attacks on mobile devices. In Proceedings
of the 25th USENIX Security Symposium (Security). Austin, TX, 549–564.

[22] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland). San Jose, CA, 605–622.

[23] Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. 2017. BOOMERANG: Exploiting the Semantic Gap in Trusted
Execution Environments. In Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS). San Diego, CA.

[24] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.
2015. C5: cross-cores cache covert channel. In Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
46–64.

[25] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from the
other side: SSH over robust cache covert channels in the cloud. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA.

[26] MITRE. 2013. CVE-2013-3051 Detail. https://nvd.nist.gov/vuln/detail/CVE-2013-
3051. (2013).

[27] Zhenyu Ning, Fengwei Zhang, Weisong Shi, and Weidong Shi. 2017. Position
Paper: Challenges Towards Securing Hardware-assisted Execution Environments.
In Proceedings of the Hardware and Architectural Support for Security and Privacy.

[28] OP-TEE. 2017. OP-TEE Trusted OS Documentation. https://www.op-tee.org/.
(2017).

[29] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Proceedings of the Cryptographer’s Track at the RSA

Conference (CT-RSA). 1–20.
[30] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[31] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. 2007. Timing
predictability of cache replacement policies. Real-Time Systems 37, 2 (2007),
99–122.

[32] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS). Chicago, IL, 199–212.

[33] Dan Rosenberg. 2013. Unlock the Motorola Bootloader. http://blog.
azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html. (2013).

[34] Gaurav Shah, Andres Molina, Matt Blaze, et al. 2006. Keyboards and Covert
Channels.. In Proceedings of the 15th USENIX Security Symposium (Security).
Vancouver, Canada, 59–75.

[35] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In
Proceedings of the 24th USENIX Security Symposium (Security). Washington, DC,
913–928.

[36] Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels due to
processor architecture. In Proceedings of the 22nd Computer Security Applications
Conference (ACSAC). 473–482.

[37] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In Proceedings of the 21st
USENIX Security Symposium (Security). Bellevue, WA, 159–173.

[38] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,
and Richard Schlichting. 2011. An exploration of L2 cache covert channels
in virtualized environments. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop. 29–40.

[39] Yongcheol Yang, Jiyoung Moon, Kiuhae Jung, and Jeik Kim. 2018. Downloadable
trusted applications on Tizen TV: TrustWare Extension: As a downloadable
application framework. In Proceedings of the 2018 IEEE International Conference
on Consumer Electronics (ICCE). Las Vegas, NV.

[40] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces
Using the FLUSH+ RELOAD Cache Side-channel Attack. IACR Cryptology ePrint
Archive 2014 (2014), 140.

[41] Yuval Yarom and Katrina Falkner. 2014. Flush+reload: a high resolution, low
noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX Security
Symposium (Security). San Diego, CA, 719–732.

[42] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas Hou. 2016.
TruSpy: Cache Side-Channel Information Leakage from the Secure World on
ARM Devices. https://eprint.iacr.org/2016/980.pdf. (2016).

[43] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. 2016. Return-Oriented Flush-
Reload Side Channels on ARM and Their Implications for Android Devices. In
Proceedings of the 23rd ACMConference on Computer and Communications Security
(CCS). Vienna, Austria, 858–870.

[44] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis. In Proceedings
of the 32nd IEEE Symposium on Security and Privacy (Oakland). Oakland, CA,
313–328.

[45] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM side channels and their use to extract private keys. In Proceedings of the 19th
ACM Conference on Computer and Communications Security (CCS). Raleigh, NC,
305–316.

[46] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS). Scottsdale, Arizona,
990–1003.

[47] YongBin Zhou and DengGuo Feng. 2005. Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security Testing. IACR
Cryptology ePrint Archive 2005 (2005), 388.

https://www.op-tee.org/
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
https://eprint.iacr.org/2016/980.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

