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Abstract—Although several research teams have focused on bi-
nary code injection, it is still an unsolved problem. Misuse-based
detection lacks the flexibility to tackle unseen malicious code
samples and anomaly-based detection on byte patterns is highly
vulnerable to byte cramming and blending attacks. In addition,
it is desperately needed to correlate newly-detected code injection
instances with known samples for better understanding the attack
events and tactically mitigating future threats. In this paper, we
propose a technique for modeling shellcode detection and attribu-
tion through a novel feature extraction method, called instruction
sequence abstraction, that extracts coarse-grained features from
an instruction sequence. Our technique facilitates a Markov-
chain-based model for shellcode detection and support vector
machines for encoded shellcode attribution. We also describe
our experimental results on shellcode samples to demonstrate
the effectiveness of our approach.

I. INTRODUCTION

Malicious binary code injection is still an unsolved problem
that threatens critical net-centric production systems. Even
though research efforts have been invested on such a devastat-
ing issue, production systems, where known vulnerabilities are
not mitigated and potential vulnerabilities are introduced with
newly-deployed modules, remain highly vulnerable to these
threats. The injected malicious binary code is also known as
shellcode since they used to return a command shell to the
attackers.

Misuse of informational data as executable code is the root
cause of code injection attacks. Sanitization techniques that
remove and escape reserved characters in the corresponding
programming language are proven to be effective and efficient
in scripting languages. However, these techniques are less
successful in defending against binary code injection attacks
due to the fact that there is no special meaningful token in
binary to differentiate code from data. For instance, in IA-32
instruction set, the only invalid byte to start an instruction is
0xF1 and all other 255 possible values could be interpreted
as the starting byte of a valid encoding [7].

Although signature-based methods remain the most effective
ways to defeat known malware, they could be effective only
when malicious samples have been acquired and signatures
have been obtained. It is less useful against new samples
and may be vulnerable to code encoding techniques, such
as polymorphism and metamorphism. Several static analysis
solutions [27], [8], [7], [30] construct some distinguishable
criteria, such as the length of the instruction sequence, to iden-
tify previously unknown malicious code. Since the heuristics

in these methods are dependent on the existing knowledge
of shellcode, they fail to accommodate the new trends of
shellcode evolution. There also exist some discussions about
utilizing both sequential and distributional byte patterns to
model malicious code [28], [15]. However, statistically mod-
eling the byte patterns is vulnerable to deliberate byte cram-
ming [12] and blending attacks [13]. Moreover, quantitative
analysis of the byte strength of different shellcode engines
presented in [26] concludes that modeling the byte patterns in
shellcode is infeasible.

Besides all the investments on binary code detection, it is
important to discover binary code attribution that automati-
cally attributes binary code to its originating tools. Encoded
shellcode attribution that tells whether the newly-captured
shellcode sample is generated by a known shellcode engine
provides security analysts and practitioners with more intelli-
gence about the attack event and the adversaries behind the
scene than simplistic detection approaches. However, existing
work on this topic [16] that utilize byte characteristics still
face the same challenges as binary code detection with byte
anomaly analysis does.

Consequently, systematic techniques that can confront the root
cause of code injection, detect unseen malicious attacks and
attribute newly-detected malicious code samples are imper-
ative to cope with emerging rogue code threats and gather
tactical intelligence for a more comprehensive knowledge
base on cyberattacks. These solutions should be resilient to
known attacks, such as byte cramming and blending, that
undermine existing techniques. To achieve these goals, in this
paper, we propose a novel solution based on static analysis
and supervised machine learning techniques. Instead of using
byte patterns, we propose instruction sequence abstraction
to extract coarse-grained but distinguishable features from
disassembled instruction sequence.

We design a Markov-chain-based model and apply support
vector machines for unknown shellcode detection and classi-
fication. The contributions of this paper are summarized as
follows:

• We propose instruction sequence abstraction, a
coarse-grained feature extraction method on the in-
struction sequence that reduces the size of input data
dimension, removes confusing byte characteristics,
and keeps distinguishable instruction features.

• We design a Markov-chain-based model for shell-



code detection. Our detection approach is location-
independent and length-independent, hence it supports
on-line shellcode detection on suspicious data streams.

• We apply support vector machines to capture distri-
butional patterns shown in the instruction sequence
abstraction for understanding encoded shellcode attri-
bution.

• The experimental evaluation with our proof-of-
concept system shows that our solution could (i) de-
tect all types of unencoded shellcode from our dataset
and (ii) attribute encoded shellcode to its originating
engines with high accuracy.

The rest of this paper is organized as follows. Section II
discusses the background and motivation of our solution.
In Section III, we present our approach by illustrating the
instruction sequence abstraction and proposing two learning
models for shellcode detection and attribution. We show our
experimental results in Section IV and discuss some research
issues in Section V. Section VI overviews the related work
and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we address the theoretical limit in differentiat-
ing code from data in IA-32 architecture. Then, we discuss
why byte pattern analysis on this architecture is difficult.
Also, we address some motivating examples observed in
instruction sequences and discuss the challenges in using these
characteristics.

A. Differentiating Code from Data

Accurate and robust methodology for differentiating code
from data in a static way has a profound value for both
programming language and computer security research. Disas-
sembler and decompiler could use such technique to determine
the boundary between code and data in file and memory
for better understanding of programs without source code.
Intrusion detection system could also make use of it to alert
unseen cyberattack. For some computer architectures, this
problem is trivial due to their instruction representations and
memory alignments. However, some CISC architectures, such
as IA-32, adopt variable-length instruction sets and permit
interleaving of code and data. That is, instructions and data
are stored together in the memory and have indistinguishable
representations. The problem is even harder to solve when we
consider self-modifying code and indirect jump (jmp eax)–
a control transfer approach whose destination can only be
calculated at execution time–in binary. Therefore, statically
separating code from data in such architectures may lead to
the halting problem that is undecidable in general [10], [31],
[14], [18].

A major reason for the failure of byte pattern analysis on
binary code is that even a slight change on assembly syntax
would cause tremendous changes in byte syntax. Conse-
quently, pattern detection and recognition on byte level is
not resilient to assembly-level syntax change that is preva-
lent in shellcode encoding. For example, different shellcode
instances from the same metamorphic engine could use dif-
ferent general registers to perform semantically equivalent

operations. While one could use two instructions pop edx;
mov ebx, [edx] (byte sequence: 5A8B1A) to move a
value from memory to register for computing, another may use
pop eax; mov esi, [eax] (byte sequence: 588B30).
Even though the instruction sequences look similar, the byte
sequences only share one single byte (8B). With more sophis-
ticated encoding technique, this shared byte could be further
avoided.

B. Motivating Examples

Different from previous solutions that concentrate on byte
patterns, we pay more attention on the instruction patterns
shown in disassembly. We address instruction patterns of both
sequences and distributions. Note that these patterns only serve
as the motivation of our approach that is not dependent on any
specific pattern mentioned in this section, but has the ability to
extract human-observable and unobservable patterns in binary
disassembly. A push-call sequential pattern consists of several
push instructions followed by a call instruction. In IA-
32 architecture, the parameters to a function call are stored
temporarily on stack usually by a push operation. Therefore,
in a valid sequence of instructions, the subsequent instruction
of push is more likely to be another push or call. A
alphabet pattern is mostly found in shellcode generated by
English shellcode [22] and alpha mixed encoder engines,
whose outputs only consist of displayable ASCII values,
such as English letters, blank space and punctuation marks.
Because of the narrow choices these engines have, generated
shellcode have significantly more unconditional jumps, stack
and arithmetic operations than samples generated by other
encoders.

However, there are several obstacles in using these instruction
observations directly in statistical models. For example, the
trained model may overfit instruction patterns shown in the
training set. Adversaries and encoding engines could easily
choose other semantically-equivalent instructions to replace
existing ones which render the modeling of any specific
instruction ineffective. In order to solve these challenges, we
propose instruction sequence abstraction, a coarse-grained
feature extraction method, to tackle the problem of overfitting
by mapping high-dimensional byte sequence representations
to low-dimensional instances.

III. OUR APPROACH
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Fig. 1. Our Approach Overview

A. Overview

Our approach is based on static analysis and supervised
machine learning as shown in Figure 1. Our solution consists



of three major components: i) input processor preprocesses bi-
nary code or suspicious data with customized linear disassem-
bly that outputs the instruction sequence; ii) feature extractor
reveals distinguishable features from the instruction sequence
and outputs its two corresponding data representations named
opcode mnemonic sequence and binary finite-dimensional
representation; and iii) trainer utilizes Markov-chain-based
model and support vector machines to train detection and
classification models based on training set and classifiers that
use trained models to detect and classify suspicious data.

B. Customized Linear Sweep Disassembly

The first step of our approach is to disassemble binary,
a method that extracts semantics out of binary code and
outputs machine-understandable disassembly. There exist two
basic disassembly algorithms: i) linear sweep disassembly and
ii) recursive descent disassembly. Linear sweep disassembly
decodes new instruction at the location where the previous
one ends. If the current byte could not be decoded as a valid
starting byte of the instruction, linear sweep disassembly stops.
The disadvantage of linear sweep disassembly is that it may
mistakenly disassemble data as code if the starting location
is wrong. Recursive descent disassembly determines whether
a location should be decoded with the references by other
instructions. In other words, recursive descent disassembly
follows the control flow of the instruction sequence. Recursive
descent disassembly stops when it could not determine the
location of the next instruction, such as when an indirect jump
is encountered. The major disadvantage of recursive descent
disassembly is that it cannot cover the entire code section.

In our solution, we need the most comprehensive coverage of
disassembly. Therefore, we modify linear sweep disassembly
and propose a customized linear sweep disassembly CLSD :
(b1, ..., bn) → (i1, ..., im). Unlike linear sweep disassembly,
CLSD does not stop when it reaches an undecodable address.
Instead, it moves to the next address and perform linear sweep
until it reaches the end of file. The complexity of this algorithm
is O(n). Although CLSD may mistakenly decode some data
section, such as encrypted payload in polymorphic shellcode,
and incorrectly disassemble some instructions with a wrong
starting location, this algorithm would disassemble the major
portion of code over the data stream with the help of the self-
repairing ability of IA-32 instruction set [21].

C. Features

In this section, we present our coarse-grained feature ex-
traction method to reveal representative features from the
instruction sequence (i1, ..., im) generated from CLSD. We
try to introduce as many features as possible to reduce the
possibility that the learned model is over-fitting the training
dataset. We inspect both opcode and operand of an instruction
as the sources for features. The opcode part of an instruction
reveals the functionality of the disassembly statement, while
operand part tells which object the effect is enforced on. We
design opcode features based on two aspects: functionality and
origin. Functionality captures the basic behavior and effect of a
given opcode, and origin describes the source of instruction set
that a given opcode was first introduced. Although the operand
part of an instruction includes several fields such as addressing

form and immediate, for simplicity, we only analyze the
usage of eight general purpose registers in an instruction as
representative characteristics for operand features. We also
use the length of instruction as a feature that represents the
instruction in general.

Opcode functionality: We categorize each opcode into one
of the following ten groups in terms of its functionality: 1)
Arithmetic. Opcodes that provide arithmetic operations, such
as addition, multiplication, and some miscellaneous conver-
sion instructions; 2) Shift, rotate and logical. Opcodes that
provide shift, rotate and logical operations, such as bitwise
and left shift with the carry-over ; 3) Unconditional data
transfer. Operations that move data among memory locations
and registers without querying flag register. Examples include
mov, in, and out; 4) Conditional data transfer. Operations
that move data among memory locations and registers based on
the status indicated in a flag register. Examples include seta
and setnl; 5) Processor control. Opcodes that manipulate
the status of processor by modifying flag, loading and saving
system registers, and synchronizing external devices. Exam-
ples include arpl, hlt, and lgdt; 6) Stack operation.
Opcodes that manipulate a program stack. Examples include
push, pop, enter, and leave; 7) Unconditional pro-
gram transfer. Opcodes that change the program counter reg-
ister without querying flag register. Examples include call,
int, jmp, and ret; 8) Conditional program transfer.
Opcodes that make transfer decisions based on specific bit
combinations in flag register. Examples include ja, jne,
and loopw; 9) Test and compare. Opcodes that compare the
values of operands and store the result in some predefined
register. Examples include test, cmp, and scas; and
10) Other operation. Opcodes that are not included in the
aforementioned categories.

Opcode origin: We also categorize each opcode into one of
the following six instruction sets: 1) 8086 set, a group of
instructions that were introduced with 8086 family CPUs [2];
2) 80286, 80386, and 80486 sets. We combine these three
instruction sets together because there do not exist many
instances in each of these instruction sets; 3) Pentium and
Pentium II sets; 4) 80387 and MMX, instruction sets that
control and manipulate floating point coprocessors and MMX
processors; 5) Pentium III and Pentium IV; and 6) Other sets.

General register usage: For each instruction i in the instruction
sequence, we analyze whether any of the eight general regis-
ters or any part of them is explicitly used in this instruction.
These eight general registers are: 1) eax; 2) ebx; 3) ecx; 4)
edx; 5) esi; 6) edi; 7) ebp; and 8) esp. For instance, in an
instruction pop eax, the only explicitly mentioned general
register is eax. We do not count the usage of esp because
it is not explicitly mentioned in the operand part. For an
instruction mov esi, [eax], both esi and eax appear
in this statement. For an instruction add al, ch, we count
one occurrence for both eax and ecx in this statement for
the reason that al is part of eax and ch is part of ecx.

Length of instruction: For each instruction i in the instruction
sequence, we calculate its length. This feature is necessary
because even instructions with the same opcode may vary in
length. We split instructions into eight categories: Instructions



are categorized into the first seven categories by using the
length as an identifier if their lengths are not greater than
seven bytes and instructions with longer than seven bytes
fall into the eighth category. For example, mov ebp, esp
(8BEC) is 2-byte long and classified in category ‘two’,
and mov dword ptr [eax+ebp+14h], 0CCCCCCCCh
(C7442814CCCCCCCC) is 8-byte long and falls into category
‘eight’.

D. Instruction Sequence Abstraction

We now present instruction sequence abstraction which in-
cludes two representation methods to model instruction se-
quence: opcode mnemonic sequence (OMS) and binary finite-
dimensional representation (BFR). Since both methods map
n-byte data sequence into much lower dimensional space as
coarse-grained feature extraction approaches, they are abstrac-
tions of the original byte and the instruction sequence. While
OMS maps instances in 256n byte sequence space to their
counterparts in am space (a is the number of mnemonics in
IA-32 instruction set and m is the length of the instruction
sequence), BFR represents instances in Z32 space. For the
mathematical notations, we use lower case bold roman letters
such as f to denote vectors, subscript such as fi to denote
the i-th component of f , superscript such as f (i) to denote the
i-th sample in dataset, and f

(i)
j to denote the i-th sample’s

j-th component. We assume all vectors to be column vectors
and a superscript T to denote the transposition of a matrix or
vector.

Definition 1: Opcode Mnemonic Sequence (OMS). For a given
instruction sequence i = (i1, ..., im), its opcode mnemonic
sequence is represented as oT = (o1, ..., om), where ok ∈
{aaa, aad, ...}, which is the valid opcode mnemonic set of
IA-32 architecture.

Definition 2: Binary Finite-dimensional Representation (BFR).
For a given instruction sequence i = (i1, ..., im), its binary
finite-dimensional representation is a 32-dimensional vector
fT = (f1, ..., f32), where fi, i ∈ {1, ..., 10}, is the number
of instructions in the i-th opcode functionality category, fi,
i ∈ {11, ..., 16}, is the number of instructions from the corre-
sponding opcode origins, fi, i ∈ {17, ..., 24}, is the occurrence
of corresponding general register, and fi, i ∈ {25, ..., 32},
is the number of instructions with the corresponding length.
Figure 2(b) shows the CLSD output of the byte sequence
shown in Figure 2(a), and Figures 2(c) and 2(d) show the
OMS and BFR representations of the example.

E. Detecting Shellcode

Based on the observation that certain instruction sequences are
more likely to exist in some binary code rather than others, we
propose to use the existence possibility of opcode mnemonic
sequence to identify whether the suspicious byte stream con-
tains shellcode. We choose first-order Markov chain, which
is a discrete random process, to model the opcode mnemonic
sequence by assigning each opcode mnemonic as a Markov
state and computing the transition matrix of this Markov chain.

Like other supervised machine learning techniques, our
method has training and evaluation phases. Given OMSs of
l shellcode training samples {o(i)}, i = {1, ..., l}, a transition
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8BEC
8B7608
85F6
743B
8B7E0C
09FF
7434
31D2

(a) Byte sequence

push ebp
mov ebp, esp
mov esi, dword ptr [ebp+08]
test esi, esi
je 401045
mov edi, dword ptr [ebp+0c]
or edi, edi
je 401045
xor edx, edx

(b) Instruction sequence

oT = (push, mov, mov, test, je,mov, or, je, xor)
(c) OMS

fT = (0, 2, 3, 0, 0, 1, 0, 2, 1, 0, 9, 0, 0, 0, 0, 0,
0, 0, 0, 2, 3, 3, 4, 1, 1, 5, 2, 0, 0, 0, 0, 0)

(d) BFR

Fig. 2. Instruction Sequence Abstraction Example

matrix P ∈ Ra×a can be trained, with the (i, j)-th element
of P implies pij = Pr(ok+1 = j|ok = i) indicating the
probability of opcode state transition from ok to ok+1. In the
evaluation phase, we calculate shellcode probability score (S-
score) of suspicious data stream, which is defined in Definition
3 and determine whether it contains shellcode based on a
threshold value t, which is also learned from the training set.

Definition 3: Shellcode Probability Score (S-score). Given
the transition matrix P trained from shellcode dataset and a
suspicious OMS oT = (o1, ..., om), the S-score of this OMS
is defined as follows:

S-score(o) = k

√√√√ max
i=1,...,m−k

i+k∏
j=i

Pr(oj+1|oj) (1)

where k is the length of calculation window. To calculate the
S-score of o, a value for each of m−k opcode mnemonic sub-
sequences with k-length is computed as the multiplications of
the transition probabilities. Then, the maximum value among
all m − k opcode mnemonic subsequences is chosen whose
k-th root is defined as the S-score of o. If S-score(o) > t, we
say the byte sequence where o is generated from is a shellcode
and vice versa.

Our shellcode detection approach is length-independent and
location-independent on the byte sequence for two reasons:
i) CLSD outputs the most comprehensive coverage of code,
hence it has the ability to disassemble most shellcode bytes
in a package, no matter where it is started; and ii) only the
subsequent k instructions are used to calculate the S-score,
hence the length of the byte sequence is not vital. Therefore,
our approach is able to monitor on-line data stream, where the
length and location of interesting points are unknown.

F. Attributing Encoded Shellcode

We propose to use support vector machines (SVM) to at-
tribute encoded shellcode’s BFR to its originating encoding
engine. SVM maps feature vectors into a higher dimensional
space and computes a hyperplane to separate instances from
different groups by maximizing the margin between them.
Therefore, SVM is the largest margin classifier. The problem
of attributing shellcode to its originating engine is a multi-
class classification problem. However, the basic SVM only
supports binary classification problems. Therefore, we use



algorithms that supports a one-vs-all approach to extend SVM
for classifying multi-class problems. Here, we only discuss
how to use SVM for the binary classification problem that
checks whether a shellcode sample is from a specific engine
e.

Given l shellcode training samples {f (i), y(i)}, i = 1, ..., l,
where each sample is denoted by its BFR that has 32 features,
represented as f (i), and a class label yi with one of two values
{-1|1}. -1 means it is not generated by an engine e, while 1
confirms a specific engine. The SVM requires the solution of
the following optimization problem [4], [11], [6]:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

Subject to yi(w
Tϕ(f (i)) + b) ≥ 1− ξi,

ξi ≥ 0 (2)
where feature vectors f (i) are mapped to higher dimensional
space by a function ϕ and C is the penalty parameter of the
error term. In SVM, K(f (i), f (j)) = ϕ(f (i))Tϕ(f (i)), called the
kernel function, determines how the feature vector maps data
to higher dimensional space. It can be noted that the kernel
function maps feature vectors into higher dimensional space
only to search for a separate hyperplane so it does not rebuild
more complicated features. Hence, it does not conflict with our
approach to abstract features from the instruction sequence.

IV. EXPERIMENTAL EVALUATION

We first discuss the data collection and implementation de-
tails of our proof-of-concept system. Then, we present the
shellcode detection and attribution results followed by the
analysis approach for measuring the strength of 14 popular
shellcode encoding engines. We conclude our evaluation with
the performance of our system.

A. Data Collection and Implementation

We utilized Metasploit [23]–a penetration framework that
hosts exploits and tools from a variety of sources–to collect
shellcode samples. We collected 140 unencoded shellcode
samples, all of which are executable on IA-32 architecture,
across different operating system platforms including Win-
dows (85), Unix (11), Linux (21), FreeBSD (10), OSX (12),
and Solaris (1). These samples are used to train our Markov-
chain-based model and test the effectiveness of our approach.
For the evaluation of encoded shellcode attribution, we chose
21 different payloads that are targeted at Windows, then used
14 different engines to encode these payloads (see Table II
for the full list of engines). We tried to generate 50 unique
shellcode instances for each pair of payload and encoder.
Even though some payloads are not compatible with specific
encoders, we successfully collected 13,176 encoded shellcode
samples for attribution analysis. Compared with existing re-
search bodies in both shellcode detection and attribution [7],
[30], [26], [29], [16], our shellcode dataset covers a more
comprehensive set of samples in term of underlying platform,
payload functionality, and encoder class.

We implemented the customized linear sweep disassembly
algorithm and feature extractor as an IDA Pro [1] plug-in that

TABLE I. TOP 50 OPCODE TRANSITION PATTERNS

Top 1 - 17 Top 18 - 34 Top 35 - 50
Pr(xor|aaa) 1.00 Pr(adc|fst) 1.00 Pr(push|jp) 0.71
Pr(push|aam) 1.00 Pr(cmps|fistp) 1.00 Pr(cld|in) 0.67
Pr(sal|cwde) 1.00 Pr(cmp|fadd) 1.00 Pr(into|iret) 0.67
Pr(std|clc) 1.00 Pr(in|fsubr) 1.00 Pr(outs|jbe) 0.67
Pr(sbb|cmps) 1.00 Pr(in|fdivp) 1.00 Pr(cdq|sal) 0.67
Pr(jmp|hlt) 1.00 Pr(fstenv|fldpi) 1.00 Pr(jmp|sti) 0.67
Pr(std|idiv) 1.00 Pr(xor|fstenv) 1.00 Pr(xchg|stos) 0.67
Pr(dec|jecxz) 1.00 Pr(add|ror) 0.92 Pr(push|xchg) 0.66
Pr(add|jg) 1.00 Pr(sub|jl) 0.89 Pr(pop|popa) 0.64
Pr(outs|jge) 1.00 Pr(xor|movzx) 0.87 Pr(push|shl) 0.62
Pr(outs|jle) 1.00 Pr(push|lea) 0.86 Pr(push|push) 0.61
Pr(cli|loope) 1.00 Pr(push|jns) 0.86 Pr(in|retf) 0.61
Pr(push|mul) 1.00 Pr(call|out) 0.80 Pr(jnz|scas) 0.60
Pr(loope|neg) 1.00 Pr(mov|pusha) 0.78 Pr(jz|test) 0.57
Pr(push|or) 1.00 Pr(add|nop) 0.78 Pr(cld|retn) 0.57
Pr(cli|sgdt) 1.00 Pr(push|jno) 0.75 Pr(jnz|cmp) 0.56
Pr(cmc|fcomip) 1.00 Pr(push|loop) 0.72

outputs the OMS and BFR in separate files for each byte
sequence input. We also developed the shellcode detection
module with Matlab and shellcode attribution module with
LIBSVM [6].

B. Detecting Shellcode

In the learning phase, we trained our Markov model with
aforementioned shellcode samples to generate the transition
matrix of opcode. The top 50 highest opcode transition
probabilities are shown in Table I. Some transition pat-
terns, such as Pr(xor|aaa)= 1.00, Pr(push|push)= 0.61,
Pr(jz|test)= 0.57, and Pr(jnz|cmp)= 0.56, can be
human-observable as we mentioned in Section 2.3 but other
patterns cannot be easily identified. The results show that our
approach is able to extract underlying and implicit machine
code characteristics.

In the detection phase, S-score uses a calculation window k
to compute the shellcode probability of the given input. A
threshold value t is also used to determine if a given byte
sequence is executable or not. To find out the appropriate
length of calculation window and threshold value, we tested
140 shellcode samples, 1,280 random data samples, 250 gif
files, 250 png files, and 660 benign code pieces (we split
ntoskrnl.exe which is the kernel image of Windows NT
into 660 pieces). For a given sample, its S-score decreases
as the calculation window increases, because Pr(oj+1|oj) is
always less than or equal to 1. We calculated the S-score of
all of the collected samples with the length of calculation
windows from 8 to 40 to find the appropriate value.

Figure 3 presents the S-score distribution of each sample
category with three different values of the calculation window
length. Figure 3(a) shows that if the length of calculation
window k is set to 8, all shellcodes’ S-score is greater than
0.1, and a significant portion of shellcode have S-score greater
than 0.3. However, only a small number of random data
samples have S-score greater than 0 as shown in Figure 3(d).
Figures 3(g),(j) show the S-score distribution of gif and png
files, where only a small portion of samples have S-score
greater than 0.1. By comparing Figure 3(a) and Figure 3(m),
it is clear that benign code samples have much lower S-
score than shellcode. Figure 3(b) shows that if the length
of calculation window k is set to 20, the S-score of every
shellcode reduces. But, most shellcode samples still have S-
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(a) Shellcode, k = 8
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(b) Shellcode, k = 20
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(c) Shellcode, k = 28
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(d) Data, k = 8
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(e) Data, k = 20
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(f) Data, k = 28
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(g) Gif, k = 8
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(h) Gif, k = 20
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(i) Gif, k = 28
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(j) Png, k = 8
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(k) Png, k = 20
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(l) Png, k = 28
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(m) Benign code, k =
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Fig. 3. The S-score Distribution with Different k

score greater than 0.1. However, as shown in Figure 3(c), if the
length of calculation window is set to 28, 3 shellcode samples
have S-score with ‘null’. On the other hand, the S-score of all
other samples are reduced close to 0 if k is greater than 20, as
shown in Figure 3, . The results suggest that the combination
of calculation window length k = 28 and threshold t = 0.1
be sufficient to identify shellcode with 97.9% accuracy and
0.82% false positive rate in our dataset.

C. Attributing Encoded Shellcode

We evaluate our shellcode representation and attribution anal-
ysis technique from several different aspects including visual-
ization, correlation analysis of selected features, accuracy of
attributing, and quantification of encoder strength.

1) Data Visualization: The visualization of shellcode samples
could tell us the differences of shellcode generated from
various engines in an intuitive way. We propose to visualize
shellcode sample in BFR form with a radar chart graph, in
which a circle is equally divided by 32 invisible lines. Each
of these 32 lines represents an axis for each corresponding
feature in BFR form, where the center of circle represents
0 and the periphery represents 1. Since, in the BFR form, a
shellcode sample is represented as f ∈ Z32, we used data
scaling on all the samples in our dataset to transform each
feature into the range of [0, 1]. The value of each feature is
marked by a dot on its corresponding line. Then, the dots from
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(c) avoid utf8 tolower
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(f) fnstenv mov

Fig. 4. Shellcode Radar Charts

each pair of consequent features are connected together and
the contained area is marked black.

Figure 4 shows six radar charts of instances from six different
shellcode engines. As we can notice, the shellcode generated
by alpha mixed has strong similarity with the shellcode gen-
erated by alpha upper. They both generate shellcode with
longer instructions (features 25 to 32). Shellcode generated
by context time or fnstenv mov has more unconditional data
transfer instructions than others (feature 3). fnstenv mov tends
to use registers esi, edi and ebp more often (features
21, 22, and 23), while alpha mixed prefers eax, ecx, and
edx (feature 17, 19, and 20). Because the data scaling is
performed over the whole dataset, we could also notice that
the size of black area differs significantly. The major reason
behind this phenomenon is that some engines tend to generate
much longer data sequence even if the input payload is the
same. Obviously, the shellcode generated by call dword xor
or avoid utf8 tolower is smaller than its counterpart generated
by alpha mixed in size.

2) Effectiveness of Feature Selection: In order to prove our
feature selection approach in BFR is effective and the extracted
features are not redundant, we utilize Pearson product-moment
correlation coefficient to measure the linear relationships be-
tween each pair of features in BFR form. Given two features fi
and fj in BFR, the correlation coefficient ρfi,fj is a measure
of the linear dependency between them that is defined as
ρfi,fj =

E[(fi−µfi
)(fj−µfj

)]

σfi
σfj

, where µfi is the mean and σfi

is the standard deviation of this feature value over our dataset.

The maximum value for correlation coefficient, which is 1,
represents a perfect positive correlation between two variables,
and the minimum value -1 indicates a perfect negative corre-
lation. If |ρfi,fj | is close to 1, it means one of the selected
features could be linearly represented by another one, hence
it clearly indicates redundancy. We calculated the correlation
coefficient for each pair of features over our dataset, and
computed the average of their absolute values defined as
P =

∑
i ̸=j |ρfi,fj

|
496 , where 496 is the number of feature pairs

(32 × 31)/2. The result was P = 0.3428 that indicates our
feature selection is not redundant.
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Fig. 5. Attribution Accuracy with Four Kernel Functions

3) Parameter Tuning: In the SVM model, the factors that
affect the classification result include the penalty parameter C,
the kernel function, and corresponding parameters in the kernel
function. We randomly divided our shellcode dataset into a
training set and a testing set, which is a standard approach
in machine learning. The training set has 60% of samples
from each class and the testing set consists of the rest of
samples, 40% of samples. To find the best kernel function
and parameters, we used a grid-search for possible parameter
combinations on the training set to learn SVM model with four
popular kernel functions [6] and to evaluate it on the testing
set.

Radial basis function (RBF): A RBF kernel takes the form of
K(f (i), f (j)) = exp(−γ ∥ f (i) − f (j) ∥2), γ > 0. Therefore,
there are two parameters to tune: the penalty parameter C
and γ. We used a grid-search to test exponentially growing
sequence of C = 2−3, 2−2, ..., 28 and γ = 2−7, 2−6, ..., 25.
Figure 5(a) shows the accuracy of testing when different
parameter combinations are used. The results show that, when
C is fixed, the best r is in the range [2−4, ..., 2−2]. On the
other hand, when r is fixed, the best C is above 8. We
found the best (C, γ) combination (8, 0.25) with the accuracy
of 85.02% in attributing testing samples to its class; Linear
function: A linear function takes the form of K(f (i), f (j))
= f (i)T f (j). Therefore, the only parameter for tuning is C. We
tested C = 2−3, ..., 25 and found the best penalty parameter
C = 8 with 82.11% accuracy as shown in Figure 5(b);
Sigmoid function: A sigmoid function takes the form of
K(f (i), f (j)) = tanh(γf (i)T f (j) + r), γ > 0. We found the
best (C, γ, r) combination (2−4, 2−5,−2−3) with the accuracy
of 63.70% in attributing testing samples to its class as shown
in Figure 5(c); Polynomial function: A polynomial function
takes the form of K(f (i), f (j)) = (γf (i)T f (j) + r)d, γ > 0.
We evaluated the combinations of C = 2−1, ..., 23, γ =
2−5, ..., 2−1, r = 2−3, ..., 2−1 and d = 2, 3, 4. We found
the best (C, γ, r, d) combination (4, 0.25, 0.125, 3) with the
accuracy of 84.57% as shown in Figure 5(d). In summary,
our results suggest that RBF, linear, and polynomial kernels
be appropriate for attributing shellcode samples in terms of
accuracy. However, the computation cost for each kernel is

TABLE II. THE STRENGTH OF ENCODERS

Engine Variation Propagation Overall
Strength Strength Strength

alpha mixed 1.91 26.07 49.91
alpha upper 1.42 22.50 31.86
avoid utf8 tolower 1.29 14.53 18.70
call4 dword xor 2.17 25.82 55.96
context cpuid 0.27 4.66 1.25
context stat 0.93 12.53 11.65
context time 0.94 12.51 11.73
countdown 0.80 10.42 8.33
fnstenv mov 2.29 26.11 59.71
jmp call additive 1.46 15.74 22.91
nonalpha 0.74 9.91 7.36
nonupper 0.98 11.93 11.71
shikata ga nai 1.58 16.78 26.46
single static bit 1.22 15.87 19.34
random data generator 3.31 49.07 162.59

different. We discuss the system performance using different
kernels in Section IV-D.

4) The Hardness of Multi-class Attributing: We tested a radius
basis function–the kernel function with the highest accuracy–
with parameter combination C = 8, γ = 0.25 in subsets of our
dataset to find out whether increasing the number of shellcode
engines for the classification makes the problem harder to
solve. We performed the same testing procedure mentioned
in the previous section to test the accuracy of our model
for 2, ..., 13 shellcode classes. Our model can achieve 100%
classification accuracy for up to 6 shellcode engines and 95.0%
classification accuracy for 11 classes, which is higher than
previous efforts [16]. Note that, compared with [16] in which
a specific model is built for each shellcode class, our approach
only use one model to classify instances from all kinds of
classes, hence does not need different parameter settings for
each model.

5) The Strength of Encoding Engines: In [26], the authors
introduced variation strength, propagation strength and over-
all strength on the byte sequence of shellcode to measure
polymorphic engines’ strength. We redefine these measures
to accommodate our binary representation form.

Variation strength: The variation strength of an encoding shell-
code engine measures the engine’s ability to generate shell-
codes that span a sufficiently large portion of 32-dimensional
BFR space. We make use of covariance matrix to recover the
hyper-ellipsoidal bound on the dataset of each engine. The ma-
trix is defined as Σ(e) = 1

N

∑N
i=1(f

(i)−µ)(f (i)−µ)T , where
N is the number of samples generated by an engine e in our
dataset. Σ ∈ R32×32 describes the shape of a 32-dimensional
ellipsoid. Then, the problem of calculating the spanned set is
transformed to an eigenvector decomposition problem. Thus,
v and λ, such as Σv = vλ, are recovered where λ is a
32-dimensional vector. We define Ψ(e) = 1

32

∑32
i=1

√
|λi| as

the variation strength of an encoder e; Euclidean distance:
Given two BFRs f (i) and f (j) which represent two samples
in our dataset, the Euclidean distance between these BFRs
is defined as δ(f (i), f (j)) =

√∑32
k=1(f

(i)
k − f

(j)
k )2; Propa-

gation strength: Given N samples labeled as outputs of an
engine e, the propagation strength of this engine describes the
average Euclidean distance between all sample pairs defined
as Φ(e) = 2

N(N−1)

∑
i ̸=j δ(f

(i), f (j)); Overall strength: The
overall strength of an encoder e is defined as the multi-



TABLE III. SHELLCODE ATTRIBUTION TIME COST (MILLISECOND)
Kernel Function Parameter Training1 Classification2

Combination Time Time
Radial Basis function C = 8, γ = 0.25 2,760 1,720
Linear function C = 8 1,840 1,320
Sigmoid function C = 2−4, γ = 2−5 15,640 7,240

r = −2−3

Polynomial function C = 8, γ = 0.25 3,120 1,230
r = 0.125, d = 3

1 Training set includes 7,906 shellcode samples
2 Testing set includes 5,270 shellcode samples

plication of its variation strength and propagation strength
Π(e) = Φ(e)×Ψ(e). The higher overall strength of an engine
indicates that its shellcode instances are more obscured and
harder to be correctly attributed.

In order to remove the differences introduced by different
payloads, we only took the shellcode instances generated by
different engines from the same payload into account. Table II
shows the strength of these engines based on our metrics.
random data generator refers to a generator that outputs a
group of randomly generated strings with the value of each
byte in {0, ..., 255}. The lengths of these strings are also
randomly generated with the value from 160 to 400 bytes,
which is the length range of shellcode we mostly observed.
It is not surprising to discover that random data generator
is the strongest ‘encoder’ with the overall strength of 162.59.
Among all the encoders, we also noticed that fnstenv mov and
call4 dword xor are two of strongest engines based on our
metrics, while context cpuid is the weakest one. alpha mixed
(49.91) is stronger than alpha upper (31.86), because it could
output both upper and lower case alphabets. However, the
strength is not doubled because the size of output character
set is doubled. Similar observation can be found between
nonalpha and nonupper where nonupper shows a little bit
stronger obfuscation.

D. Performance Evaluation

We conducted experiments on a machine with Intel Core2
Duo CPU 3.16 GHz 3.25 GB RAM running Windows 7,
IDA Pro 5.6 and Matlab R2010a. We used Windows API
GetTickCount to measure the performance of our program
in C language and cputime to measure the elapsed time in
Matlab program. The training phase of Markov-chain-based
model only took less than 15 milliseconds to learn from 140
shellcode samples. The detection phase with the calculation
window length of 20 took less than a second to calculate the
S-score of 1,200 data streams with variable-length from 160
bytes to 400 bytes.

Table III shows the time cost for shellcode attribution in
training and testing with different kernel functions. We eval-
uated the performance of the parameter combination with the
accuracy of each kind of kernel function. Linear function is
the most efficient kernel with 1,840 milliseconds in training
for 7,906 samples and 1,320 milliseconds in classifying 5,270
samples. Radial basis function that has 85.02% accuracy in
classifying 14 shellcode classes is also efficient, taking 2,760
milliseconds in training and 1,720 milliseconds in classifica-
tion.

V. DISCUSSION

A. The Feasibility of Using One Model

It is possible to use one unified model to detect and attribute
encoded shellcode in a single step. However, we choose not
to adopt such an approach due to the following issues: i) the
problem of differentiating code from data and the problem
of attributing detected attack are two separate issues. By
separating these two research issues, we could achieve the
most accurate results for each group. However, we have to
balance the detection rate and attribution rate if these two
problems are mixed together; ii) we only consider sequential
information to detect and attribute shellcode and we use
Markov-chain-based model to fulfill this requirement. In the
training phase, we need to train a specific sequential model
for each shellcode class instead of modeling all shellcode
samples together. Correspondingly, in the detection phase,
the given suspicious data stream has to be evaluated by all
trained models. With the increased number of shellcode class,
the evaluation process will be slow and infeasible for on-
line detection; and iii) we also consider a standard classifier,
such as SVM and neural networks, to perform detection and
attribution. Most standard classifiers do not support modeling
of sequential knowledge that may render valuable ‘ordering’
information useless.

B. Using Opcode Functionality Sequence to Detect Shellcode

In our experimental evaluation, we also considered to use
opcode functionality sequence to detect shellcode instead of
opcode mnemonic sequence. For a given instruction sequence
i = (i1, ..., im), its opcode functionality sequence is repre-
sented as sT = (s1, ..., sm), where sk ∈ {1, ..., 10} that is
the set of the opcode functionality category. While opcode
mnemonic sequence maps encoded shellcode instances into a
am dimensional space, opcode functionality sequence maps
them into an even lower dimensional space, 10m. However,
the evaluation results show that both false negative and false
positive rate are high with this representation. We believe the
reason is that the 10m dimensional space is not sufficient to
capture the difference between code and data.

C. The Arms Race and Future Work

It is possible for malicious code distributors to disturb
our shellcode detection method by permutating the lo-
cations of instructions in a sequence. For instance, the
sequence 1: [mov eax, 1;] 2: [add eax, 1;] 3:
[mov ebx, 1;] 4: [add ebx, 1] has different transi-
tion probabilities from the sequence 3; 1; 2; 4. However, their
permutation choices are limited in which the semantics of
the instruction sequence has to be maintained. For example,
permutation to 2; 4; 3; 1 is not possible. To cope with
this potential arms race, we could integrate machine code
slicing [10] into our approach. The previous example could
be sliced into two independent pieces 1; 2 and 3; 4, and only
intra-piece transition probabilities are considered for learning
and detection. In addition, higher order Markov chain may be
utilized to enhance the accuracy of our approach but might
need to minimize unexpected performance overhead. For the
attribution part, attackers may deliberately cram garbage in-
structions to interfere the distribution patterns used in BFR.



Fortunately, this issue is easier to solve than byte cramming
attacks with the awareness of semantics in disassembly. We
could perform data flow analysis [30] on machine code first
to prune useless instructions in a sequence to handle this
challenge.

VI. RELATED WORK

Newsome et al. introduced Polygraph [24], a mechanism
that is robust to generate signatures for polymorphic code.
Li et al. [19] proposed Hamsa, a noise-tolerant and attack-
resilient network-based automated signature generation system
for polymorphic worms. Approaches to generate vulnerability-
based signatures [5], [20] were also proposed on the network
level without any host-level analysis of execution. However,
Chung et al. [9] showed that all of these signature generation
schemes are vulnerable to advanced allergy attacks.

APE [27] calculated the maximum execution length of a byte
sequence, and learned threshold for detecting possible mali-
cious packages. Stride [3] complemented the previous effort by
adding new criteria including non-privileged instruction in a
byte sequence to identify sled in shellcode. Chinchani et al. [7]
and Kruegel et al. [17] proposed to utilize the control and
data flow information in binary to detect polymorphic code.
Wang et al. [30] first used data flow anomaly to prune useless
instructions then compared the number of useful instructions
with a certain threshold to determine if it has any code.

Wang et al. [28] compared the byte frequency of normal
network packages with malicious ones to figure out the
byte patterns that could lead to attack detection. However,
their solutions were vulnerable to byte cramming [12] and
polymorphic blending attacks [13]. Recently, Kong et al. [16]
proposed to take advantage of semantic analysis and sequential
models on n-gram data bytes to analyze the attribution of
exploits. Wartell et al. [31] developed machine learning-based
algorithms to differentiate code from data. Rosenblum et
al. [25] proposed to use conditional random field to extract
compiler provenance from code. While most of these work
focus on the byte patterns identified in binary code, Song et
al. [26] presented quantitative analysis of the byte strength
of polymorphic shellcode and claimed that modeling the byte
patterns in shellcode is infeasible.

Besides the aforementioned research efforts, several new bi-
nary encoding schemes were proposed in recent years. Mason
et al. [22] proposed English shellcode engine that transforms
arbitrary shellcode to a representation that is similar to English
prose. Wu et al. [32] proposed mimimorphism to transform
binary into mimicry counterpart that exhibits high similarity to
benign programs in terms of statistical properties and semantic
characteristics.

VII. CONCLUSION

In this paper, we proposed a technique for modeling shellcode
detection and attribution through a novel feature extraction
method, called instruction sequence abstraction, that extracts
distinguishable features from suspicious data stream by reduc-
ing the size of input data dimension and removing ambiguous
byte patterns. We also presented a Markov-chain-based model
for shellcode detection and adopted support vector machines

for shellcode attribution. Our experiments showed that our
approach does not require any signature and is only based on
static analysis and supervised machine learning. The evalua-
tion results also suggested that our solution detect and attribute
shellcode to its originating engines with high accuracy and
lower false positive rate.
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