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ABSTRACT

Emulator-based dynamic analysis has been widely deployed
in Android application stores. While it has been proven
effective in vetting applications on a large scale, it can be
detected and evaded by recent Android malware strains that
carry detection heuristics. Using such heuristics, an applica-
tion can check the presence or contents of certain artifacts
and infer the presence of emulators. However, there ex-
ists little work that systematically discovers those heuristics
that would be eventually helpful to prevent malicious ap-
plications from bypassing emulator-based analysis. To cope
with this challenge, we propose a framework called Mor-
pheus that automatically generates such heuristics. Mor-
pheus leverages our insight that an effective detection heuris-
tic must exploit discrepancies observable by an application.
To this end, Morpheus analyzes the application sandbox and
retrieves observable artifacts from both Android emulators
and real devices. Afterwards, Morpheus further analyzes the
retrieved artifacts to extract and rank detection heuristics.
The evaluation of our proof-of-concept implementation of
Morpheus reveals more than 10,000 novel detection heuris-
tics that can be utilized to detect existing emulator-based
malware analysis tools. We also discuss the discrepancies in
Android emulators and potential countermeasures.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—In-

vasive software; D.2.5 [Software Engineering]: Testing
and Debugging—Emulators
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1. INTRODUCTION
Recent years have witnessed an explosive growth of mo-

bile applications. According to the Gartner report [18], there
were 64 billion application downloads worldwide in 2012 and
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it was increased to 102 billion in 2013. The growth should
partially give credit to application stores such as Apple App-
Store and Google Play. With these services, users enjoy a
centralized and trusted source for browsing and purchas-
ing applications. Meanwhile, developers also get chances
to reach a wider audience and more profits. Unfortunately,
such advantages also make application stores an appealing
place for distributing malicious mobile applications. To in-
fect more unsuspecting users, adversaries would attempt to
publish their malware in application stores without being
detected.

To effectively mitigate such attempts, the security com-
munity and the application stores have deployed emulator-
based dynamic analysis. Compared with static analysis that
can be thwarted by obfuscation and encryption [15], emulator-
based dynamic analysis can vet runtime behaviors of ap-
plications on a large scale. As a result, researchers have
launched such systems [3, 4, 6, 23] to inspect file, network,
and cellphone operations. Moreover, Google Bouncer [17]
vets applications using QEMU-based emulators in its cloud
infrastructure [20]. And Bouncer helped drop the number
of malware downloads in Google Play by 40% in 2011 [17].

Despite the apparent success, a flaw of emulator-based dy-
namic analysis lies in the discrepancies between emulators
and real devices. Such discrepancies, if observable by appli-
cations, may lead to detection heuristics (a.k.a., “red pills”)
that indicate the fabricated reality of Android emulators.
Taking advantage of these heuristics, Android malware can
build split personalities and circumvent dynamic analysis as
previously observed in PC malware [8]. Indeed, the security
community has already discovered Android malware samples
that use such heuristics to evade dynamic analysis [9, 11].

The heuristics in newly discovered Android malware sam-
ples, unlike their ancestors in PC malware, exploit the pe-
culiarities of Android. Such heuristics check the presence or
contents of certain artifacts (e.g., files, APIs) in Android em-
ulators. They do not depend on native code because native
code has been of particular interest to some malware analysis
systems [30]. Furthermore, they can be integrated into An-
droid applications with simple algorithms. For example, the
presence of a file /sys/qemu_trace indicates QEMU-based
emulators [19]. A full-zero string returned by the Android
API getDeviceId indicates Android SDK emulators [21].
Meanwhile, researchers have demonstrated the effectiveness
of similar heuristics [21, 25]. This alarming trend calls for a
comprehensive study of these detection heuristics to better
understand their magnitude and accuracy.



Regrettably, all known detection heuristics that target
Android emulators are discovered piece by piece in an ad-
hoc fashion. For example, some heuristics are discovered
through dissecting malware samples [9, 11]. Such a reactive
approach cannot predict unknown heuristics. Other known
heuristics are derived from manual analysis on specific com-
ponents of Android emulators [19,24,25]. Even though this
approach is proactive, manual analysis inevitably cannot ad-
dress the multitude of components in Android emulators.
To convey the severity of the problem and get ahead of ma-

licious adversaries, we propose a framework called Morpheus
that proactively and automatically generates Android emu-
lator detection heuristics. Unlike existing approaches, Mor-
pheus retrieves and analyzes Android system artifacts ob-
servable by Android applications in their sandboxes, called
observable artifacts. In particular, Morpheus starts from
an analysis of the current Android application sandbox to
identify sources of observable artifacts. Afterwards, Mor-
pheus employs a probe application to automatically retrieve
observable artifacts from both Android emulators and real
devices. Morpheus then analyzes the artifacts and their con-
tents to produce candidate heuristics. Finally, Morpheus
ranks the candidates as its output.
We evaluate Morpheus with two steps. First, we apply

Morpheus against widely deployed QEMU-based Android
emulators and emerging VirtualBox-based emulators. The
results are more than 10,000 novel detection heuristics that
can be used to detect both types of emulators as a whole or
either of them. We also investigate them to reveal and char-
acterize the discrepancies between Android emulators and
real devices. Second, we assemble a group of the top-ranked
detection heuristics and evaluate their accuracies against 9
emulator-based Android malware analysis tools and 128 real
devices. This group of heuristics could accurately detect the
evaluated emulators and real devices. To better mitigate
threats of emulator detection, we will release our discovered
heuristics to the security community at http://honeynet.

asu.edu/morpheus/1.
We summarize the contributions of this paper as follows:

• New techniques. We develop new techniques that make
the first step towards proactive and automated gener-
ation of Android emulator detection heuristics. We in-
tegrate these techniques into a framework, called Mor-
pheus, to systematically generate heuristics that offer
low false-positives and low false-negatives.

• New findings. We discover a large number of novel de-
tection heuristics and reveal the underlying discrepan-
cies between Android emulators and real devices. Our
experiments against existing malware analysis tools
and a large number of real devices demonstrate high
accuracy of our discovered heuristics.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides the background of emulator detection and
the threat model for our work. Section 3 describes the de-
sign of Morpheus and its components. Section 4 elaborates
our discovered heuristics and their exploited discrepancies.
Section 5 presents our experiments with a group of the top-
ranked detection heuristics. Section 6 discusses countermea-
sures and limitations of our approach. Section 7 describes
the related work. Section 8 concludes this paper.
1To prevent misuse, we may require verifying user identi-
ties before the dataset can be downloaded. Please visit our
project website for further information.

2. BACKGROUND AND THREAT MODEL
In this section, we first describe the background of emu-

lator detection in Android malware. We then present the
attack model that this work is based on.

2.1 Detection Heuristics
Due to the peculiarities of Android, we argue that An-

droid malware would be reluctant to reuse previous PC em-
ulator detection heuristics. First, Android malware faces a
unified runtime environment whose underlying implementa-
tion details (e.g., hardware differences) are concealed by the
Android middleware and APIs. At the same time, Android
malware has been deprived of many capabilities that allow
accessing low-level system artifacts by the Android appli-
cation sandbox. In addition, Android malware would pre-
fer detection heuristics implemented with Java code rather
than native code. As native code is used by only a small
fraction of benign Android applications but most malicious
root exploits [30], native code would draw attention of anal-
ysis tools, breaking a detection heuristic’s basic purpose of
evading analysis.

The detection heuristics found in newly discovered mal-
ware samples seem to be in line with our argument. They
allow an application to detect emulators without bypassing
the application sandbox and without the assistance of native
code. For example, a popular detection heuristic involves
an Android API getDeviceId that returns the IMEI of an
Android device. This heuristic calls getDeviceId and tests
whether “000000000000000” is a substring of the returned
value of getDeviceId. It can be implemented with only two
lines of Java code and thus leaves relatively small footprints.
Despite that researchers have discovered similar detection
heuristics and evaluated their effectiveness against Android
SDK emulators, the magnitude and accuracy of such heuris-
tics remain unknown, which results in an impediment to the
development of comprehensive countermeasures.

2.2 Threat Model
In our threat model, we assume emulators that run An-

droid with default configurations. We also assume the pres-
ence of passive anti-detection techniques, which do not proac-
tively instrument the application to suppress the execution
of detection heuristics. This is also the common setup of the
existing deployed emulator-based dynamic analysis systems.

In addition, we assume a malicious Android application
that does not bypass the application sandbox or carry any
native code. Meanwhile, we allow this application to request
any Android permission. In other words, this application’s
capabilities are no more than those of the benign applica-
tions in application stores. Afterwards, it applies detection
heuristics that check the presence or contents of certain ar-
tifacts. Based on the result, it determines whether it is
running in an emulator or not.

Once this application detects emulators, it could stay dor-
mant or exhibit legitimate behaviors. Furthermore, this ap-
plication can use dynamic external code loading to evade
both static and dynamic analysis, because it only downloads
the malicious payload when it is in a real device. Alter-
natively, it can perform reconnaissance within the emulator
and phone home to facilitate generation of up-to-date detec-
tion heuristics for future attacks. We attempt to understand
whether the detection heuristics can be successful in terms
of detecting Android emulators and real devices.

http://honeynet.asu.edu/morpheus/
http://honeynet.asu.edu/morpheus/
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Figure 1: Morpheus: System Architecture

3. DESIGN AND SYSTEM COMPONENTS
In this section, we describe our framework Morpheus which

is equipped with a suite of techniques for supporting auto-
matic generation of detection heuristics. Despite the fact
that Android emulators may contain plenty of discrepan-
cies, a malicious application cannot exploit them unless it
can observe them from within the application sandbox. Here
we define observable artifacts as artifacts (e.g., files, APIs)
whose presence can be probed or whose contents can be
read by any Android application in its sandbox. For exam-
ple, suppose a file is not readable but its parent directory is
listable, this file is still an observable artifact. The key idea
of Morpheus is to retrieve and analyze observable artifacts.
As depicted in Figure 1, Morpheus consists of four compo-

nents. The sandbox analyzer analyzes the default configura-
tions of the Android application sandbox to identify sources
of observable artifacts. For respective sources, the artifact
retriever enumerates observable artifacts and retrieves their
contents. The retrieved observable artifacts are uploaded to
two pools for both emulators and real devices, respectively.
The heuristic extractor then analyzes the pools by finding
the artifacts or substrings of their contents that appear in
most emulators but a small fraction of real devices, and vice
versa. These artifacts and substrings constitute candidate
detection heuristics. Finally, the heuristic selector ranks the
candidates as the output of Morpheus. We next describe
each component in detail.

3.1 Sandbox Analyzer
Applications’ accesses on artifacts are regulated by the

Android application sandbox, which is based on discretionary
and mandatory access control (DAC and MAC). The Linux
kernel provides DAC, which grants accesses by checking per-
missions of objects. Security-Enhanced Linux (SELinux)
adds MAC over DAC starting from Android 4.3. SELinux
grants accesses by checking domains of subjects (e.g., un-
trusted_app), types of objects (e.g., wallpaper_files), and
SELinux permissions (e.g., open, read)2.
To identify sources of observable artifacts, we need to ac-

cess all the objects in the Android OS. However, it is in-
feasible to do so in off-the-shelf Android devices due to the
application sandbox and lack of root privileges. Instead,
we propose the sandbox analyzer that analyzes the refer-
ence SELinux policy in Android and the security attributes
(e.g., owners, permissions, xattr) of objects in rooted ref-
erence Android devices (e.g., Nexus devices). Specifically,

2We ignore users, roles, and security levels for brevity be-
cause they are rarely used in the context of Android.

we attempt to identify the objects whose security attributes
expose themselves to third-party applications. Given that
third-party applications are automatically assigned into the
untrusted_app domain during installation, we simulate DAC
and MAC checks to identify the following objects: (1) ob-
jects that are world-readable or under world-listable direc-
tories; and (2) objects that are accessible by untrusted_app

using read-like SELinux permissions (e.g., read, recv_msg,
ioctl). From such objects, we then distill the sources of ob-
servable artifacts based on their owners and SELinux types,
along with proper methods to retrieve them. For exam-
ple, /dev/binder has the SELinux type binder_device. Its
SELinux type indicates that it belongs to the Binder IPC
subsystem that allows an application to access remote arti-
facts in system services. Such artifacts would require Binder-
specific methods to retrieve. As variations in the hierarchy
of objects across different Android versions are insignificant,
the sources of observable artifacts derived from the reference
inputs should be applicable in emulators and real devices.

We stress that the sandbox analyzer is much more conser-
vative compared with the current Android application sand-
box. SELinux in Android 4.3 is configured to permit every
access. Even in Android 4.4, SELinux only protects several
critical system daemons and does not confine third-party ap-
plications (i.e., untrusted_apps). With that said, the true
amount of observable artifacts in current Android devices
could be much larger. However, considering the possibility
that SELinux may extend its coverage in the upcoming ver-
sions of Android, we choose to be conservative for the future
effectiveness of our detection heuristics.

3.2 Artifact Retriever
The artifact retriever is essentially a probe application.

It requests all the available Android permissions to maxi-
mize its capabilities within the confinement of the applica-
tion sandbox. Based on the identified sources of observable
artifacts, we implement the corresponding methods in the
artifact retriever to automatically retrieve the observable ar-
tifacts as well as their contents.

To address the various sources of observable artifacts, we
propose three foundation modules in the artifact retriever:
a directory walker, a Java function caller, and a Binder IPC
caller. They are tailored to the peculiarity of Android and
can be easily adapted and combined. Specifically, the direc-
tory walker traverses file-like artifacts. The Java function
caller enumerates and manipulates both public and hidden
Android APIs. The Binder IPC caller directly triggers re-
mote system services (e.g., TelephonyManagerService) with
dynamically constructed Binder IPC messages.



We launch the artifact retriever into both Android emula-
tors and real devices. It probes the surrounding observable
artifacts with its carried modules. It technically captures
the first 1KB of each artifact’s contents if readable. Upon
explicit errors (e.g., denied access), it records the error mes-
sages as the retrieved contents. Upon implicit errors (e.g.,
blocking read), it uses a timeout to ensure that it does not
hang there infinitely. We note that, the artifact retriever
must upload artifacts to the correct pool according to where
the artifacts are observed. For example, artifacts collected
from emulators should never go into D-Pool. This is critical
for the heuristic extractor to work effectively, because arbi-
trary noises could make the problem of heuristic generation
NP-hard [16].

3.3 Heuristic Extractor
The inputs of the heuristic extractor are two pools, namely

E-Pool and D-Pool, which contain instances of observed em-
ulators and real devices, respectively. Each instance is a
collection of key-value pairs that map retrieved artifacts to
their contents. A key (artifact) occurs in an instance once
at most, although it can occur in multiple instances. And
a value (content) can be null if the artifact retriever fails to
read the contents. Next, we describe two categories of detec-
tion heuristics that generate decisions based on the artifacts
and their contents, respectively.

3.3.1 Artifact-based Heuristics

We start from a category of heuristics that make decisions
based on the presence of artifacts. First, we attempt to dis-
cover the artifacts that are exclusively used by emulators,
such as emulator-specific hardware, software, and configura-
tions. As we use their presence to imply emulators, we refer
to them as Type E artifacts. Furthermore, we also look for
the artifacts that appear in most real devices, which become
our Type D artifacts.
We propose two metrics, COVE(a) and COVD(a) to de-

note the fractions of instances in E-Pool or D-Pool that con-
tain artifact a, i.e., COVE(a) =

|Ea|
|E|

, and COVD(a) = |Da|
|D|

.

Intuitively, our heuristics should at least perform better than
a 50/50 guess. Thus, we choose Type E and Type D arti-
facts from all the artifacts in both pools according to their
values of COVE(a) and COVD(a) as follows:

• Type E artifacts: COVE > 50%, COVD < 50%

• Type D artifacts: COVE < 50%, COVD > 50%

3.3.2 Content-based Heuristics

However, there are plenty of artifacts that are prevalent
in both emulators and real devices. For example, Android
APIs would have both COVE and COVD larger than 50%.
Inspired by Hamsa [16], we propose a category of detec-
tion heuristics whose decisions are based on tokens, where
token is a contiguous byte subsequence in the contents of
an artifact. Similar to what we introduce for artifact-based
heuristics, we attempt to find Type E and Type D tokens.
Specifically, for an artifact a and its retrieved contents

in E-Pool, we extract a set of tokens by computing com-
mon substrings among the contents. We then extract an-
other set of tokens for D-Pool. Combining these two sets
of tokens as a token set T , we compute COVE(a, t) and
COVD(a, t), which are the fractions of instances in E-Pool
and D-Pool whose contents of artifact a contain token t, i.e.,

COVE(a, t) =
|Ea,t|

|E|
and COVD(t) =

|Da,t|

|D|
. Based on the

values of COVE(a, t) and COVD(a, t), we select two type of
tokens as our content-based heuristics as follows:

• Type E tokens: COVE > 50%, COVD < 50%

• Type D tokens: COVE < 50%, COVD > 50%

There are various algorithms that effectively compute com-
mon substrings. We opt for a suffix array in our heuristic
extractor. Constructing a suffix array runs in O(nlogn) time
in worst case scenario and consumes 5n bytes of memory,
where n is the total size of the contents of an artifact in a
pool. Extracting tokens from the constructed suffix array
can be implemented using a binary search. Furthermore, as
we prefer longer tokens in the context of generating detec-
tion heuristics, we add one more step to prune tokens that
are substrings of the other tokens as long as they share the
same COVE and COVD.

The output of the heuristic extractor is a set of Type E and
Type D heuristics. Each heuristic is represented as a 3-tuple
(artifact, token, type). token can be null for artifact-based
heuristics. type implies the decision to be made once the ob-
served artifact/token matches the artifact/token specified in
the heuristic. The matched Type E heuristics indicate em-
ulators and the unmatched ones indicate real devices. Con-
versely, Type D heuristics imply the opposite decision.

3.4 Heuristic Selector
We propose the heuristic selector to rank the candidate

detection heuristics generated by the heuristic extractor. In
general, we reduce the problem of ranking the candidates
to the problem of feature selection in supervised learning.
E-Pool and D-Pool comprise a training set consisted of in-
stances that are correctly labeled with “emulator” or “real
device.” Furthermore, we have extracted a set of detection
heuristics that can be considered as binary features. Now
we need to select the relevant and non-redundant detection
heuristics that would best classify future observations.

We propose to use a random forest [14], which is an ensem-
ble learning method that leverages a multitude of decision
trees for classification. Each individual decision tree covers a
random subset of the features and is trained with a random
subset of training samples. Afterwards, the random forest
fits the training set by letting each decision tree predict its
unseen samples and evaluate the errors. During this process,
an importance score for each feature is measured based on
how significant the error rate would change if the feature is
removed from the decision trees.

We use this importance score as a metric to rank the can-
didate heuristics. On one hand, relevant heuristics that
contribute much to classification naturally get higher im-
portance scores. On the other hand, redundant heuristics
that exploit the same artifact/token as other heuristics are
assigned zero or lower importance scores. As such, the final
output of the heuristic selector is a set of relevant and non-
redundant detection heuristics as sorted by their importance
scores derived from the random forest.

As the number of detection heuristics is much larger than
the number of instances in the pools, the random forest may
suffer from over-fitting, which overestimates the importance
level of some heuristics. To suppress over-fitting, we choose
to increase the number of decision trees in the random forest.
As more trees are added, its tendency to over-fit generally
decreases as no single feature can affect every decision tree.



4. FINDING DETECTION HEURISTICS
We ran our experiments with Morpheus against QEMU-

based Android SDK emulators [1], VirtualBox-based Geny-
motion emulators [2], and real devices. In this section, we
elaborate our experiments that lead to the findings of 10,632
detection heuristics. We then characterize the heuristics ac-
cording to the underlying discrepancies that they exploit.

4.1 Experimental Setup and Findings
To understand the observable artifacts in the reference

Android devices, we adopted an instance of the SDK emu-
lator and a Galaxy Nexus phone that both run Android 4.4.
We traversed their mounted file systems to obtain the secu-
rity attributes of objects. We then acquired a copy of the de-
fault SELinux policy from the Android Open Source Project
(AOSP). Using these as inputs, the sandbox analyzer iden-
tified 33 sources of observable artifacts. However, retrieving
all of them requires plenty of domain-specific knowledge for
tasks such as enumerating artifacts and constructing valid
inputs. In this work, we only retrieved 3 sources that could
possibly lead to discrepancies and cover a sufficient number
of observable artifacts.
Procfs and Sysfs: Procfs and sysfs are both pseudo

file systems that expose kernel objects to userspace pro-
grams. Specifically, procfs presents system information, such
as loaded kernel modules, mounted filesystems, and net-
work stacks. Sysfs exports hardware information such as
connected block devices, buses, and power states. Our im-
plementation of the artifact retriever traversed these two
file systems mounted at /proc and /sys. In particular, we
slightly adapted the directory walker to handle looped sym-
bolic links that are prevalent in procfs and sysfs.
Android APIs: A large number public and hidden

APIs are exposed by Android system services. For example,
TelephonyManagerService exposes APIs that return unique
device identifiers to applications. Actually, the APIs are
implemented with the underlying Binder IPC framework,
which handles the IPC between applications and system ser-
vices through a Binder device node located at /dev/binder.
To probe APIs behind Binder, we implemented two ap-

proaches in the artifact retriever. We used the reflection-
based Java function caller to enumerate and call APIs. We
also adapted the Binder IPC caller to construct and send
IPC messages to the remote system services. The returned
Java objects and Binder IPC messages were converted into
byte sequences as the retrieved artifacts’ contents. For Java
objects that are not of Java primitive types, we leveraged
their toString method to acquire more information about
them. In this paper, we are particularly interested in An-
droid APIs that do not have any input parameters. Ac-
cording to [22], such APIs are more likely to be “sources
that return non-constant values into application code.” As
a result, we covered approximately 15% of the 1,326 APIs
exposed by Android system services.
Android System Properties: Similar to the Win-

dows registry, Android includes a subsystem that centrally
stores system configurations and status. This subsystem,
usually dubbed as “property system,” has been extensively
used by Android system services. For example, a system
property ro.kernel.qemu is read by the Android debugging
bridge daemon (adbd) to determine the presence of emula-
tors. System properties also cover meta information about
the hardware, such as device models and manufacturers. De-

Table 1: Discovered Detection Heuristics

Pools
Detection Heuristics

File API Property Total
D-Pool + E-Pool 2,121 81 82 2,284
D-Pool + EQ-Pool 2,961 163 132 3,256
D-Pool + EV -Pool 4,782 150 160 5,092

Total 9,864 394 374 10,632

spite that SELinux in Android protects system properties,
we inspected the implementation of the property system and
found that the security check is only in the function prop-

erty_set(), meaning that SELinux does not prevent read-
ing system properties at all. Moreover, applications are al-
lowed to read /dev/__properties__, which is the interface
to system properties. Therefore, system properties are ob-
servable by every installed application. To retrieve system
properties, we adapted the artifact retriever to call a binary
executable located at /system/bin/getprop. It enumerates
system properties so that the Java function caller can read
the contents of each property. We note that this executable
is only for the artifact retriever. It is not required by the
detection heuristics that read system properties.

Afterward, we ran the adapted artifact retriever against
16 instances of QEMU-based SDK emulators, 11 instances
of VirtualBox-based Genymotion emulators, and 25 real de-
vices. The SDK emulators covered three CPU architectures,
namely ARM, x86, and MIPS. The Genymotion emulators
covered x86, which is the only architecture they support.
Both emulator types covered Android versions from 2.3 to
4.4. The real devices covered four manufacturers (Samsung,
HTC, Motorola, and LGE), three ARM SoC families (Qual-
comm Snapdragon, Texas Instruments OMAP, and Nvidia
Tegra), and Android versions from 2.1 to 4.4. In particu-
lar, the real devices were borrowed from the participants we
recruited through university mailing lists under the study
protocol reviewed by our institution’s IRB. Anecdotally, it
took approximately 5-20 minutes for the artifact retriever to
retrieve and upload the observable artifacts on each device.

The retrieved artifacts contributed to four pools for QEMU-
based emulators (EQ-Pool), VirtualBox-based emulators (EV -
Pool), all the emulators (E-Pool), and real devices (D-Pool).
We then fed these pools to the heuristic extractor and the
heuristic selector. The heuristic selector ranked the candi-
date heuristics with 10,000 decision trees and pruned the
heuristics with zero importance scores. Table 1 shows a
breakdown of the discovered 10,632 detection heuristics. In
the remainder of this paper, we will respectively refer to
these three categories of heuristics as file heuristics, API

heuristics, and property heuristics, in the interest of brevity.

4.2 Characterizing Detection Heuristics
Next, we characterize the discovered heuristics based on

the discrepancies they exploit. We first discuss the common
detection heuristics that exploit the discrepancies shared by
both QEMU-based and VirtualBox-based emulators. We
then discuss the heuristics that leverage the QEMU-specific
or VirtualBox-specific discrepancies, respectively. Our dis-
cussion does not aim to be exhaustive, instead we attempt
to convey the scope of discrepancies in Android emulators.
Considering that an attacker can possibly use this section
as hints to craft detection heuristics, we suggest provisional
but deployable countermeasures in Section 6.



4.2.1 Common Detection Heuristics

Network. These detection heuristics exploit the dis-
crepancies in network interfaces, Netfilter modules, and ker-
nel modules. For example, we found that all the emulators
exclusively use eth0, whereas the real devices use wlan0 and
rmnet. The emulators also miss several IPv6-specific inter-
faces. In addition, the network interfaces in the emulators
are not tetherable, because the emulators are missing the Re-
mote Network Driver Interface (RNDIS) drivers that enable
tethering. Netfilter is another source of discrepancies. The
real devices include Netfilter modules for several network
protocols that are rarely used in the context of mobile de-
vices. Finally, Android introduces a kernel module to track
data usage of installed applications. This module does not
exist in the emulators.
Power management. This type of heuristics focuses on

the power management subsystem. For example, the emula-
tors lack the voltage and current regulators. The emulated
CPU does not support frequency scaling. Another heuristic
lies in the prevalence of multi-core CPUs in real devices. All
the emulators only have a single core, whereas 75% of the
real devices have at least two cores.
Audio. A handy feature of Android is headset detec-

tion, which allows the audio output to automatically switch
between speakers and headsets. This feature is supported
by GPIO/I2C buses. Notably, the emulators do not em-
ulate these buses, while 95.6% of the real devices in our
experiments have them. Furthermore, the differences in the
implementation of audio subsystems between the emulators
and real devices result in disparate audio drivers.
USB. Recently, USB On-The-Go (OTG) has been widely

adopted in popular Android phones and tablets. It allows
mobile devices to act as hosts and control USB peripher-
als. Intuitively, the mobile devices have to pre-install corre-
sponding drivers of USB peripherals. As a result, we found
that the real devices in our experiments carry drivers for
Apple Magic Mouse, joysticks, and external displays. On
the contrary, the emulators do not have such drivers and do
not support USB OTG.
Radio. The software-emulated radio can lead to de-

tection heuristics as well. For instance, the name of the
baseband in all the emulators is “unknown.” Moreover, the
emulators use a default reference implementation of the ra-
dio interface layer (RIL), while the real devices typically use
customized ones with different names. Similarly, the phone
numbers, voicemail numbers, device serial numbers of the
emulators are also constants and can be fingerprinted.
Software components and configurations. Despite

that most of the discovered detection heuristics are related
to hardware, we also identified several heuristics that exploit
certain software components and their configurations. For
example, the emulators use unique input methods and search
interfaces. Regarding configurations, a prominent example
is the key that signs the Android OS. The emulators use test
keys while the real devices use release keys.

4.2.2 QEMU Detection Heuristics

QEMU. We found various observable artifacts that are
part of QEMU. For example, we found a device node that
accelerates the virtual graphics. In addition, there are sev-
eral system properties set by QEMU and read by Android
system services. An example is a property that stores the
pixel density of virtual screens.

Goldfish virtual hardware. Most existing QEMU-
based Android emulators are built upon a virtual hardware
platform called “Goldfish.” This platform introduces a set
of virtual hardware for QEMU to run Android as its guest
operating system. For instance, this set of virtual hardware
includes a framebuffer, an audio device, and a battery. They
are a must for QEMU-based emulators but never appear in
real Android devices.

Bluetooth, NFC, and vibrator. The current QEMU-
based emulators do not support these hardware. Their cor-
responding Android APIs return null if called from within
the emulators. In particular, the driver of the vibrator is
based on a Linux driver model called timed_output, which
is also missing from the emulators.

4.2.3 VirtualBox Detection Heuristics

VirtualBox. Similar to QEMU-based emulators, we
also found plenty of VirtualBox-specific artifacts. For exam-
ple, we found 4 kernel modules that belong to VirtualBox
Guest Additions. As stated in VirtualBox’s documentation,
these modules “optimize the guest operating system for bet-
ter performance and usability.” However, their presence also
indicates VirtualBox.

PC hardware. As we have discussed, QEMU-based
emulators lack support for some popular hardware, such as
Bluetooth and NFC. On the contrary, VirtualBox-based em-
ulators support many types of hardware that Android does
not need. We found hundreds of artifacts that indicate PC
hardware and obviously should not appear in mobile oper-
ating systems. For example, we found artifacts related to
ACPI, CPU fans, thermal sensors, CD-ROM drives, AC97
audio codecs, and PCI Express.

5. MEASURING DETECTION HEURISTICS
As we have demonstrated the magnitude of the detection

heuristic for Android emulators, we further measure their
accuracies. To this end, we assembled a group of the top-
ranked detection heuristics which are ranked by the heuris-
tic selector. We then tested them against emulator-based
malware analysis tools and real devices. In this section, we
describe our experiments along with an empirical study on
the average accuracies.

5.1 Experimental Setup
As the generated common detection heuristics were al-

ready ranked by the heuristic selector, we selected the top
10 heuristics out of the File, API, and Property detection
heuristics, respectively. Table 2 lists the artifacts, tokens,
and types of the 30 selected detection heuristics.

We created a synthetic application3 to simulate the An-
droid malware as we described in the threat model. Specif-
ically, this application integrated the 30 heuristics with a
heuristic matching engine based on Java’s substring search-
ing methods. It generated its decision using a majority vote
among the 30 heuristics. In other words, an Android device
is recognized as an emulator if more than half of the detec-
tion heuristics indicate so. Furthermore, it only needed four
permissions: READ_PHONE_STATE, ACCESS_NETWORK_STATE, AC-
CESS_WIFI_STATE, and INTERNET, which are also frequently
requested by benign applications in Google Play [29].

3https://play.google.com/store/apps/details?
id=edu.sefcom.devicetester and http://goo.gl/FXspKw

https://play.google.com/store/apps/details?id=edu.sefcom.devicetester
https://play.google.com/store/apps/details?id=edu.sefcom.devicetester
http://goo.gl/FXspKw


Table 2: Top 10 File, API, and Property Heuristics
Artifact Token Type

F1 /proc/misc “network throughput” E
F2 /proc/ioports “0ff\0:” E
F3 /proc/uid stat D

F4
/sys/devices/virtual/misc/
cpu dma latency/uevent

“MINOR=5” E

F5 /sys/devices/virtual/ppp D
F6 /sys/devices/virtual/switch D
F7 /sys/module/alarm/parameters D

F8
/sys/devices/system/cpu/

cpu0/cpufreq
D

F9
/sys/devices/virtual/misc/

android adb
D

F10
/proc/sys/net/ipv4/

tcp syncookies
E

A1 isTetheringSupported() “false” E

A2 getAuthenticatorTypes()
“AuthenticatorDescription

{type=com.g}”
D

A3 getSystemSharedLibraryNames() “com.g” D

A4 getGlobalSearchActivity()
“.android.quicksearchbox/

com.android.quicksearchbox”
E

A5 getWebSearchActivity()
“.android.quicksearchbox/

com.android.quicksearchbox”
E

A6 getTetherableWifiRegexs() “wlan0\n” D
A7 getTetherableUsbRegexs() “rndis” D

A8 getEnabledInputMethodList()
“.android.inputmethod

.latin/.”
E

A9 getDeviceId() via Binder “\0\0\03” D
A10 getTetherableIfaces() “wlan0” D
P1 qemu.hw.mainkeys E
P2 ro.build.description “release-keys” D
P3 ro.build.fingerprint “:user/release-keys” D
P4 net.eth0.dns1 E
P5 rild.libpath “/system/lib/libreference-ril.so” E
P6 ro.radio.use-ppp E
P7 gsm.version.baseband D
P8 ro.build.tags “release-key” D
P9 ro.build.display.id “test-” E
P10 init.svc.console E

Table 3: Evaluated Emulators and Real Devices

Emulators
(9)

DroidBox [5] 2.3 and 4.1,
Andrubis [6], CopperDroid [23],
SandDroid [3], TraceDroid [4],

Qihu 360, NVISO ApkScan, ForeSafe

Real Devices
(128)

Samsung, HTC, LGE, Huawei,
Motorola, Sony Ericsson, Lenovo,

ZTE, Hisense, Asus, Acer,
OPPO, BBK, Meizu, Gionee,
DOOV, YuLong, Haier, AMOI

We ran this application in 9 emulator-based malware anal-
ysis tools and 128 distinct real devices. As shown in Table 3,
the malware analysis tools covered two versions of an offline
tool called DroidBox and 7 online services. Among the on-
line services, 4 are derived from previous research work and
3 are security products. The 128 real devices were from
AppThwack, TestObject, and Baidu MTC, all of which are
online services that automatically test applications in real
phones and tablets. Note that we did not run our artifact
retriever on them due to their limited device minutes and
bandwidth quota.

5.2 Results and Empirical Analysis
We deem emulators as positive and real devices as neg-

ative. Given the measured true positives (TP), false neg-
atives (FN), false positives (FP), and true negatives (TN),
we attempt to evaluate the detection heuristics with three
metrics, namely sensitivity, specificity, and accuracy. For ex-
ample, a Type E detection heuristic is sensitive if it matches
all the emulator instances. And, it is specific if it does not

Table 4: Evaluation Results of the 30 Heuristics
TP FN FP TN Sens.(%) Spec.(%) Acc.(%)

F1 9 0 2 126 100.0 98.4 98.5
F2 9 0 0 128 100.0 100.0 100.0
F3 9 0 7 121 100.0 94.5 94.9
F4 9 0 4 124 100.0 96.9 97.1
F5 9 0 1 127 100.0 99.2 99.3
F6 9 0 1 127 100.0 99.2 99.3
F7 9 0 7 121 100.0 94.5 94.9
F8 9 0 0 128 100.0 100.0 100.0
F9 9 0 0 128 100.0 100.0 100.0
F10 9 0 8 120 100.0 93.8 94.2
A1 9 0 3 125 100.0 97.7 97.8
A2 7 2 82 46 77.8 35.9 38.7
A3 5 4 24 104 55.6 81.3 79.6
A4 7 2 48 80 77.8 62.5 63.5
A5 7 2 45 83 77.8 64.8 65.7
A6 9 0 37 91 100.0 71.1 73.0
A7 9 0 64 64 100.0 50.0 53.3
A8 9 0 37 91 90.0 71.1 72.5
A9 6 3 72 56 66.7 43.8 45.3
A10 9 0 82 46 100.0 35.9 40.1
P1 8 1 2 126 88.9 98.4 97.8
P2 8 1 17 111 88.9 86.7 86.9
P3 8 1 21 107 88.9 83.6 83.9
P4 9 0 5 123 100.0 96.1 96.4
P5 9 0 2 126 100.0 98.4 98.5
P6 9 0 11 117 100.0 91.4 92.0
P7 9 0 14 114 100.0 89.1 89.8
P8 8 1 10 118 88.9 92.2 92.0
P9 8 1 0 128 88.9 100.0 99.3
P10 9 0 20 108 100.0 84.4 85.4

match any non-emulator instances, i.e., real devices. Simply
put, we compute the values of the three metrics as follows:

• Sensitivity = TP/(TP + FN);

• Specificity = TN/(FP + TN); and

• Accuracy = (TP + TN)/(TP + FN + FP + TN).

Table 4 demonstrates the measured accuracies of the 30
detection heuristics. We next present our empirical analysis
on the average accuracies from three aspects.

5.2.1 File, API, and Property Heuristics

97.8%File heuristics

62.9%API heuristics
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89.5%Property heuristics
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We first inspected the average accuracies of the heuristics
according to the categories of their exploited observable ar-
tifacts. As shown in the above bar chart and Table 4, the
file heuristics enjoyed both high sensitivities and specifici-
ties with an average accuracy of 97.8%. The API heuristics,
despite of their acceptable sensitivities, suffered from sig-
nificantly low specificities. For example, A2, A9, and A10
performed no better than 50/50 guesses as their accuracies
were less than 50%. The property heuristics performed fairly
good with an average accuracy of 89.5%.

One possible explanation for the API heuristics’ low ac-
curacies is that the Android APIs are designed to provide
some sort of hardware/software abstraction. An evidence
is the Android Compatibility Program4, which precisely de-
fines the behaviors of Android APIs to ensure that Android
applications run in“a consistent and standard environment.”

4https://source.android.com/compatibility

https://source.android.com/compatibility


To build such an environment, the APIs that reveal the un-
derlying details are not necessary, and they are subject to be
removed or deprecated. However, we argue that this envi-
ronment also requires a well-configured application sandbox
to prevent applications from bypassing the APIs. Unfortu-
nately, our discovered file and property heuristics imply that
the current sandbox should be reinforced.

5.2.2 Type E and Type D Heuristics
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We investigated the differences between the Type E and
Type D heuristics. As we have discussed in Section 3.3,
Type E and Type D detection heuristics respectively indi-
cate emulators and real devices. In our experiments, the
Type E heuristics outperformed the Type D ones.
We note that almost all of the heuristics in Table 4 with

low specificities are of Type D. We believe that it is due to
the diversified and fragmented nature of real devices. Type
D heuristics expect the artifacts/tokens that are prevalent in
real devices. However, device manufacturers inevitably cus-
tomize devices and change artifacts, which makes it harder
to find the artifacts that exist in every real device. On the
contrary, emulators are much more unified in terms of cus-
tomizations, which is possibly due to the difficulty in modi-
fying and maintaining software-emulated hardware.

5.2.3 Artifact-based and Content-based Heuristics

95.3%Artifact-based heuristics
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Finally, we compared the artifact-based and content-based
heuristics. The bar chart shows that the artifact-based heuris-
tics had an average accuracy of 95.3%. The content-based
heuristics fell behind with 77.0%. However, we stress that
F1, F4, and P9 are also content-based heuristics and their
accuracies were among the top of the 30 heuristics.
In addition to the factors of abstraction and customiza-

tion that we discussed earlier, a possible explanation is that
content-based heuristics are more subtle and vulnerable to
intended or unintended changes. Content-based heuristics
exploit artifacts’ contents (e.g., configurations), which are
subject to change in a rapidly evolving system like Android.
On the contrary, artifact-based heuristics rely on the pres-
ence of certain artifacts. Compared with the contents, the
artifacts (e.g., kernel modules) are relatively consistent in
emulators and real devices, because developers are usually
reluctant to remove them as to avoid unexpected problems.

5.3 Case Study: A9
Finally, we present a case study on heuristic A9 because

it involves an Android API getDeviceId, which has been
popular among the known detection heuristics. A9 exploits
the same API but in a slightly different way. Specifically,
it looks for a token “\0\0\03” in the Binder IPC message
returned from the implementation of getDeviceId in Tele-

phonyManagerService. In other words, A9 uses the IMEIs
whose first character is“3”to indicate real devices. However,

it turned out that A9 had a sensitivity of 66.7% and an un-
bearable specificity of 43.8%. We investigated the evaluated
emulators and real devices to find out how they reacted to
A9. The investigation led us to flaws in an existing anti-
detection technique and improvements for A9.

5.3.1 A9 vs DroidBox 4.1

As we discussed in Section 4.1, our implementation of
the artifact retriever employs a Java function caller and a
Binder IPC caller to probe Android APIs. When we tested
A9 against DroidBox 4.1, we found that these two callers
returned disparate values, namely “357242043237511” and
“000000000000000.” We note that both callers should re-
turn the same value, because the application-side Binder
proxies of Android APIs are not supposed to modify the
IPC messages returned by the underlying Binder stubs in
system services.

We inspected DroidBox’s source code and found that Droid-
Box rewrites the Binder proxy of getDeviceId to return a
dummy IMEI without involving the Binder stubs. Although
such a countermeasure could neutralize the detection heuris-
tics that call getDeviceId in a normal way, it is not effec-
tive against the Binder IPC caller, which bypasses the coun-
termeasure and reads the actual full-zero IMEI. Therefore,
we believe that the countermeasure implemented in Droid-
Box 4.1 is not complete. We note that ApkScan demon-
strated the same issue, implying that ApkScan might have
integrated DroidBox 4.1 for its dynamic analysis.

However, A9 was not effective against DroidBox 2.3. We
found that DroidBox 2.3 opts for a similar countermeasure
but implements it in the service-side Binder stub. In such
a case, bypassing the stub and observing the actual IMEI
would require root privileges, i.e., the actual IMEI is not
observable. Therefore, such a countermeasure is effective
and the dummy IMEI would appear realistic.

5.3.2 A9 vs Non-U.S. Devices

A9 assumes that an Android device whose IMEI starts
with “3” is a real device, otherwise it is an emulator. We
checked the IMEIs of the 128 real devices and found that
this assumption is incorrect.

According to IMEI Allocation and Approval Guidelines [7],
the first digit of an IMEI is part of Reporting Body Iden-
tifier (RBI), which identifies the GSMA-approved authority
that issues the IMEI. Typically, IMEIs of mobile devices are
issued by the authorities in the same area where the de-
vices are sold. For example, IMEIs of the devices sold in the
U.S. are issued by the British Approvals Board for Telecom-
munications (BABT) and thus start with BABT’s code“35.”
Similarly, IMEIs of the devices sold in China start with“86.”
We note that about half of the 128 evaluated real devices
were from Baidu MTC that uses Android phones sold in
China. Given that A9 was based on the devices in the U.S.,
A9 naturally got a low specificity, and it could be improved
with wild cards that match multiple RBIs.

The lesson of A9 indeed illustrates the future of the armed
race between emulator detection and anti-detection. First,
Android malware could check the semantics of the observed
artifacts. For example, the dummy IMEI in DroidBox 4.1
is invalid and could be noticed by a sophisticated adversary.
Second, emulator-based malware analysis tools should con-
sider the observability of actual artifacts and the semantics
of dummy artifacts to be less distinguishable.



6. DISCUSSION
The evaluation results imply an imminent threat that An-

droid malware may thwart existing emulator-based dynamic
analysis systems. In this section, we suggest the potential
countermeasures and discuss the limitations of our work.

6.1 Countermeasures
Provisional countermeasures. We suggest the meth-

ods that detect the usage of detection heuristics in Android
malware as provisional countermeasures. Although they do
not prevent Android malware from detecting Android em-
ulators, they can raise alarms for analysts and thus thwart
the malware’s original purpose of evading analysis. For ex-
ample, dynamic analysis systems could monitor accesses on
files and properties seldom used by benign applications. API
heuristics are much more stealthy because benign applica-
tions also frequently use them. In such a case, we suggest
static data-flow analysis to locate branches that involve de-
tection heuristics and lead to disparate code blocks.
Short-term countermeasures. Next, we discuss the

countermeasures that allow an emulator to appear “realis-
tic” to Android malware. First, we suggest a comprehensive
deployment of dummy artifacts. Some existing works can
be adapted to facilitate such countermeasures. For exam-
ple, AirBag [26] supports a decoupled and isolated runtime
environment based on OS-level virtualization. ASM [13] pro-
vides programmable interfaces that interpose Android APIs
and return dummy values to applications. These works, if
combined and extended, can enable a “brain in a vat” setup
where an application runs in an emulator but gets dummy
and valid data originated from real devices. Second, we
suggest denying accesses on unnecessary observable artifacts
with strict DAC and MAC policies. For example, artifacts
in sysfs exploited by our file heuristics seem unnecessary for
general Android applications. However, the usability impact
of denying accesses still needs further verification.
Long-term countermeasures. The ideal countermea-

sure is to fix all the discrepancies in Android emulators.
Although Garfinkel et al. [12] concludes its infeasibility in
2007 due to the inherent hardness of creating indistinguish-
able software-emulated hardware, hardware-assisted virtual-
ization techniques (e.g., Intel VT-x and VT-d) have evolved
significantly to allow PC emulators to virtualize real hard-
ware. Currently, ARM CPUs have integrated necessary vir-
tualization extensions. Meanwhile, commodity ARM hyper-
visors are also in active development. We envision emerging
Android emulators equipped with virtualized CPUs, sensors,
and radios in the near future.

6.2 Limitations
Despite the robustness of Morpheus, the quality of the dis-

covered detection heuristics is limited by the small number of
real devices used in finding detection heuristics (Section 4).
In general, Morpheus works like supervised learning, and its
performance inevitably depends on the quality of the “train-
ing set,” i.e., the emulators and real devices observed by the
artifact retriever. We note that the artifact retriever needs
approximately 20 minutes to collect the artifacts on a single
device. Unfortunately, online services like AppThwack (Sec-
tion 5) do not allow the artifact retriever to run for such a
long time or upload large bulks of data. As for future work,
we plan to reach out to mobile carriers and device vendors
to collect observable artifacts from more real devices.

Although Morpheus discovered more than 10,000 heuris-
tics, we stress that they were derived only from 3 out of
33 sources of observable artifacts. To better understand
the scope of detection heuristics for effective countermea-
sures, the artifact retriever could be enhanced to address
more sources of artifacts as well as sophisticated usages of
them. Examples include extended modules of the artifact
retriever that can handle callbacks or construct valid input
parameters for Android APIs. We did not cover them in
this work because they require domain-specific knowledge
of each Android system service.

Our heuristic generator produces relatively rigid heuris-
tics, such as A9 that does not match multiple RBIs. This
can be improved with more sophisticated and flexible heuris-
tics. For example, a token-sequence heuristic matches an
ordered set of tokens in the contents of an artifact. More-
over, a näıve Bayes heuristic enables probabilistic matching
by aggregating the empirical probabilities of multiple arti-
fact/token heuristics with the Bayes’ law, assuming that the
occurrences of artifacts/tokens are independent.

7. RELATED WORK
Behavior-based detection heuristics. Researchers

have proposed several heuristics that exploit discrepancies
in runtime behaviors rather than artifacts. For instance,
a piece of specially crafted native code can identify QEMU-
based emulators due to the discrepancies in QEMU’s caching
behaviors [19, 21, 24]. Low video frame rate indicates emu-
lators because of the performance drawbacks in the SDK
emulator’s graphics rendering engine [25]. However, these
heuristics are not evaluated against VirtualBox-based emu-
lators and real devices. Thus, their sensitivities and specifici-
ties require further investigation. In addition, these heuris-
tics do not return a decision until a sufficient number of
events are observed, which tends to increase their footprints
and attract analysis. Along these lines, Morpheus addresses
artifact-based and content-based detection heuristics. More
importantly, Morpheus generates detection heuristics auto-
matically and systematically.

Dynamic analysis frameworks. Researchers have
built several dynamic analysis frameworks to vet the run-
time behaviors of Android malware. TaintDroid [10] tracks
information flows that leak sensitive data to the Internet.
VetDroid [28] further reveals information flows that involve
permissions. AppIntent [27] helps determine if an informa-
tion flow is user-intended. Some of these tools have been
integrated into automated malware analysis systems such as
DroidBox [5], Andrubis [6], CopperDroid [23], SandDroid [3],
and TraceDroid [4]. They are vulnerable to be evaded us-
ing the detection heuristics in this work as long as they are
deployed in Android emulators.

8. CONCLUSION
Recent Android malware demonstrates the capabilities of

detecting Android emulators using detection heuristics. To
convey the severity of this problem, we have presented Mor-
pheus, a system that automatically and systematically gen-
erates detection heuristics. Morpheus analyzes artifacts ob-
servable by Android applications and discovers exploitable
discrepancies in Android emulators. Moreover, we have de-
scribed a proof-of-concept implementation of Morpheus, along
with extensive experiments and findings.
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