
Toward Discovering and Exploiting Private
Server-side Web APIs

Jia Chen†, Xingmin Cui‡, Ziming Zhao§, Jie Liang¶ and Shanqing Guo*†‖
†School of Computer Science and Technology, Shandong University‡The University of Hong Kong

§Arizona State University
¶China Information Technology Security Evaluation Center

‖Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

Email: chenjia@mail.sdu.edu.cn, xmcui@cs.hku.hk, zmzhao@asu.edu, liangj228@gmail.com, guoshanqing@sdu.edu.cn

Abstract—Many service providers including large enterprises
have released their own applications (apps) that incorporate
HTTP clients to facilitate the communications with their servers.
The workflows of and APIs used by a web app and its cor-
responding mobile app are not always the same. We call the
APIs found in apps private web APIs in that they are only
supposed to be invoked by apps that developed by the service
providers themselves. However, checking the origin of an HTTP
request is very difficult, and private web APIs can be easily
invoked by other entities. Hence, it is imperative to study if
private web APIs provide the same level of security checks
and validations as their public counterparts. To automatically
discover the undocumented private APIs in Android apps, we
design a system that uses static analysis to find the activities that
invoke web APIs. Our system then runs the discovered activities
on a customized Android system to monitor its HTTP requests
and responses. We evaluated our system on 76 popular apps
on the Google Play market. Our system successfully run 48 apps
and discovered many private server-side APIs from more than 30
apps. Further manual investigation discovered that 9 of the apps
have vulnerabilities that would enable API misuse and session
hijacking.

Index Terms—Web APIs, Android Apps, Static Analysis, Dy-
namic Analysis

I. INTRODUCTION

In the era of personal computers, users use one web browser,

such as Internet Explorer, Chrome, or Firefox, to visit different

websites. Web browsers usually provide an address bar where

users can use a keyboard to input a uniform resource locator

(URL) to specify their destinations. However, using web

browsers on small-sized and keyboard-free mobile devices,

such as smartphone and tablets, is much more unwieldy. As

mobile devices gain more popularity and the Internet usage

from them has surpassed the usage from PC [4], more and

more service providers release an alternative app for users

to access their services in hopes of providing better user

experiences.

Apps usually use a web client, such as WebView or

DefaultHttpClient on the Android platform, to invoke

web APIs provided by the servers. Since these apps are de-

veloped by the service providers themselves, they are usually

mistakenly regarded as a part of the trusted computing base.
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The web APIs invoked in these apps are usually designed

as private and only supposed to be called by the right apps.

However, it is difficult for the server-side to verify if the

requests sent to these private web APIs are actually from

legit apps. We argue that this is a bad practice of achieving

security through obscurity, and attackers can either discover

these APIs and craft malicious requests or modify the original

apps to send crafted requests. Since app usage (80% of time)

dominates browsers (20% of time) in mobile usage [4], it

is imperative to study if the private web APIs can provide

the same level of security checks and validations as regular

web interfaces that are designed to be accessed by general

browsers.
To answer this question, the first step is to discover the

URLs and parameters of such private APIs. Since these APIs

are not documented, we propose an approach to automatically

discover them from Android apps by hooking the relevant

methods in the Android system to monitor HTTP requests and

responses. To this end, we design a novel system to first use

static analysis to find the Android activities that invoke web

APIs. Then, our system triggers these activities and monitors

them on our customized Android system. The customized

Android system is responsible for logging information of

HTTP requests and responses, such as URLs, parameters

and HTTP headers. By analyzing the HTTP responses, we

can check whether they are vulnerable to typical web-based

attacks, such as session hijacking, web API misuse, etc. Even

though we use Android apps to demonstrate our approaches,

our approaches are not limited on the Android platforms and

are applicable to iOS and other mobile systems as well. The

discovered private API vulnerabilities are agnostic to other

mobile platforms too.
To evaluate our approach, we use 76 out of the 120 most

popular apps on the Google Play market as our test dataset.

Our system successfully run 48 apps and discovered many

private server-side APIs from more than 30 apps. We manually

analyze the discovered APIs and find that 9 of the apps

are vulnerable to attacks such as session hijacking and API

misuse.
Our contributions are the following:

• We designed and implemented a system that can automate
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the process of discovering private web APIs in Android

apps.

• We tested our system on 76 of the most popular apps

on Google Play. Further investigation demonstrated that

the vulnerabilities exposed in the discovered private web

APIs are exploitable.

The rest of this paper is organized as follows. Section

II introduces some background information as well as a

motivation example. In Section III we present the details of

our approach. Section IV shows the experimental results and

findings with several case studies. Section V discusses the

limitations of our approach. Section VI overviews the related

work, and Section VII concludes the paper.

II. BACKGROUND AND A MOTIVATING EXAMPLE

In this section we first discuss some background knowledge

of Web APIs and Android apps. Then we present a motivating

example, which shows the differences in a web page version

and an Android app of the same online video sharing service.

A. Background

1) Web API: A server-side web API is a programmatic in-

terface consisting of one or more publicly accessible endpoints

exposed via the web. A web API is addressed by a Uniform

Resource Identifier (URI). It can be called with a standard

HTTP method, such as GET, PUT, or POST. It usually passes

the return values back in JSON or XML format.

2) HTTP Clients in the Android Framework: An

Android app needs to ask for the network permission

android.permission.INTERNET to perform network

operations. Android provides two basic HTTP clients for

application developers to use, namely Apache HTTP client

and HttpURLConnection. DefaultHttpClient
and AndroidHttpClient are extended from the

Apache HTTP client. Compared with Apache HTTP

client, HttpURLConnection is more lightweight and

efficient due to its use of transparent compression and

response caching. Simple APIs and smaller size make it more

popular in apps that target at Android 2.3 and higher versions.

3) AsyncTask: Network operations usually involve

unpredictable delays, which will hang the residing thread.

To avoid hanging the user interface (UI) thread and achieve

a smooth user experience, the Android framework provides

app developers with a dedicated class AsycTask to

implement network operations. AsycTask encapsulates

another thread to keep the UI thread separated. The virtual

functions onPreExecute, doInBackground and

onPostExecute define the operations that should be

performed at different stages of the new thread. If the task

is cancelled by invoking cancel(), onCancelled
will be invoked instead of onPostExecute after

doInBackground.

B. A Motivating Example

Youku is the most popular online video sharing service

provider in China. Tapped as the Chinese Youtube, Youku is

(a) Web Page (b) Mobile App

Fig. 1: Screenshots of Youku Web Page and Mobile App.

The web page version has a Captcha, whereas the mobile app

version does not.

the 110th most visited website in the world according to the

Alexa 2016 report1. The Youku Android app has also been

downloaded more than 5 million of times according to Google

Play2.

As shown in Figure 1, to register as a Youku member one

is required to answer a Captcha in the web page version.

However, this step is omitted if a user registers through the

corresponding mobile app. By extracting and invoking the

private web APIs in the mobile app, an attacker can easily

bypass Captcha. Note that even though both the web and

app versions require an SMS verification, this step, however,

cannot tell if the registree is human or machine. Attackers

can use mobile verification code platform APIs to automate

the process of obtaining phone numbers and SMS verification

code for registering zombie accounts.

Moreover, this private registration API can be used by

attackers to send SMS spam. The APIs used in web pages to

send SMS usually have IP and time limit to prevent users from

continuously sending SMS. And the time interval between

two consecutive requests increases very fast after multiple

requests. However, the APIs used by mobile app are not

properly implemented, which makes using them for spamming

possible.

III. OUR APPROACH

In this section we present our approach to automatically

discover private web APIs via a hybrid analysis of the mobile

apps. The discovered APIs would help security experts under-

stand the functionality and working mechanism of an app and

facilitate security auditing.

A. Challenges and System Overview

To recover the server-side web APIs, we need to discover

the URLs and parameters of these APIs. Both static and

1http://www.alexa.com/siteinfo/youku.com
2https://play.google.com/store/apps/details?id=com.youku.phone
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dynamic approaches are widely used in the analysis of Android

apps [19], [15], [12]. Static analysis is usually faster than

dynamic analysis. However, since API parameters and URLs

are usually concatenated by several substrings, statically simu-

lating the construction process is neither efficient nor accurate.

Moreover, developers seldomly hard-code all the APIs in the

mobile app, URL/parameters of some APIs are constructed

during the execution of the app. Static analysis cannot deal

with these cases. The limitation of static analysis drives us to

resort to dynamic analysis.

However, using dynamic analysis we still face two chal-

lenges: 1) how to simulate the UI interaction with the mobile

app; 2) how to capture the parameters of the web APIs during

the interaction. Some researchers propose to intercept the net-

work traffic to identify the broken SSL certificate verification

using proxy [13], [19], [5]. However, if the network traffic

is encrypted, the proxy cannot capture the original plaintext

information.

Target Activities

Network Call Tree

Backward   Analysis

APK

Decompile
Target Activities

UI   analysis

UI Hierarchy Tree

Test APK

  Run on modified Android

Result 

Method Call Graph

Static    Analysis

Static Analysis Phase Dynamic Analysis Phase

Repacked APK

APK

modify  manifestUI   interaction model

Fig. 2: System Overview

As shown in Figure 2, our system uses a combination of

static and dynamic analysis. In the static analysis phase, our

system has three steps: 1) identifying target activities that

invoke web APIs; 2) building call graphs for target activities;

3) constructing network call tree. Then, our system repackages

the APKs to make it possible for our system to trigger any

target activity. In the dynamic analysis phase, our system

generates test cases to trigger these activities dynamically and

log the information of private web APIs. To solve the first

challenge in dynamic analysis, we represent the UI state with

the status of each widget and model the state transition. To

cope with the second challenge, we choose to intercept URLs

before they are sent out.

B. Identifying Target Activities

Our system first identifies activities that invoke web APIs.

As discussed in section II, Android provides three types of

HTTP clients, two of which are derived from Apache HTTP

client and the other is HttpURLConnection. To discover

the usage of these clients, our system decompiles an APK file

into smali code and identifies the invocation of these HTTP

client instances. Figure 3 shows the corresponding smali code

snippets to make HTTP requests using the clients.

1 / / A n d r o i d H t t p C l i e n t
2 Lorg / apache / h t t p / c l i e n t / H t t p C l i e n t ; −>e x e c u t e ( Lorg / apache / h t t p / c l i e n t /

methods / H t t p U r i R e q u e s t ; ) Lorg / apache / h t t p / H t tpResponse

3

4 / / D e f a u l t H t t p C l i e n t
5 Lorg / apache / h t t p / impl / c l i e n t / D e f a u l t H t t p C l i e n t ; −>e x e c u t e ( Lorg / apache / h t t p

/ c l i e n t / methods / H t t p U r i R e q u e s t ; ) Lorg / apache / h t t p / H t tpResponse

6

7 / / Ht tpURLConnect ion
8 Ljava / n e t /URL;−>openConnec t ion ( ) L java / n e t / URLConnection

Fig. 3: HTTP Request Code Snippets for the Three Different

Clients in Smali

Among these three clients, HttpClient is the built-

in library in the Android system before Android 5.0 and

HttpURLConnection is the recommended way of network

connection by Google. They are widely used in Android apps.

Even if some third-party network libraries encapsulate these

clients (For example, Volley [10], an open-source network

framework provided by Google, uses HttpClient in versions

before Android 2.3 and uses HttpURLConnection in Android

2.3 and higher versions), our approach can still discover the

usage of these clients.

C. Building Call Graphs for Target Activities

Then, our sytem builds a method call graph of each target

activity. Our system looks for the invoke instructions in the

smali code to find method invocations. If a method A explicitly

invokes a method B, our system adds an edge from method A
to B in the call graph. However, the Android framework uses

callback mechanism to invoke app code that is not explicitly

invoked by an app itself. Only dealing with explicit method

invocations would fail to consider many user-defined event

handlers, which are usually implemented in event-listener

classes, and network operations, which usually are defined in

an AsyncTask class. To cope with this challenge, our system

also checks two types of implicit calls: 1) the ones that invoke

methods in an Android event listener class; 2) the ones that

use the AsyncTask class.

1) Event listener class: In Android apps, user-defined

event handlers are registered by implementing the event

listener class in an anonymous class or inner class and

overriding the corresponding methods (e.g. onClick). In

smali code, anonymous classes are also interpreted as inner

classes. If the annotation of a class includes .annotation
system Ldalvik/annotation/InnerClass, then

this class is an inner class. The value follows .annotation
system Ldalvik/annotation/EnclosingMethod
is the method name declared in this inner class. Since inner

classes usually implement Android EventListener interfaces,

they override methods such as onClick and onTouch in

these interfaces. For these cases, we add edges from the event

listener method to the event handler method.

A line ending in the format value=[class name]
indicates the usage of multi-threads. In this case, we will create

a code block of a virtual method to link the start() and

run() methods. After adding this block, multi-thread calls

can be correctly identified and called.
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1 M a i n A c t i v i t y $ 1 :

2 . . .

3 # a n n o t a t i o n s

4 . a n n o t a t i o n sys tem L d a l v i k / a n n o t a t i o n / Enc los ingMethod ;

5 v a l u e = Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y;−>o n C r e a t e ( L a n d r o i d / os /

Bundle ; ) V

6 . end a n n o t a t i o n

7 . . .

8 # v i r t u a l methods

9 . method p u b l i c o n C l i c k ( L a n d r o i d / view / View ; ) V

10 . . .

11 invoke−d i r e c t {v1 , p0} , Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y $ 1 $ 1;−><i n i t

>(Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y $ 1 ; ) V

12 . . .

13

14 M a i n A c t i v i t y $ 1 $ 1 :

15 . . .

16 # a n n o t a t i o n s

17 . a n n o t a t i o n sys tem L d a l v i k / a n n o t a t i o n / Enc los ingMethod ;

18 v a l u e = Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y $ 1;−>o n C l i c k ( L a n d r o i d / view /

View ; ) V

19 . end a n n o t a t i o n

20 . . .

21 # v i r t u a l methods

22 . method p u b l i c run ( )V

23 . . .

24 # i n v o k e s : Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y;−>g e t ( L java / l a n g / S t r i n g

; ) L java / l a n g / S t r i n g ;

25 invoke−s t a t i c {v1} , Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y;−>a c c e s s $ 0 (

L java / l a n g / S t r i n g ; ) L java / l a n g / S t r i n g ;

26 . . .

27

28 M a i n A c t i v i t y :

29 . method s t a t i c s y n t h e t i c a c c e s s $ 0 ( L java / l a n g / S t r i n g ; ) L java / l a n g / S t r i n g ;

30 . . .

31 invoke−s t a t i c {p0} , Lcom / example / u r l d e m o r u n a b l e / M a i n A c t i v i t y;−>g e t ( L java /

l a n g / S t r i n g ; ) L java / l a n g / S t r i n g ;

32 . . .

33 . end method

34

35 . method p r i v a t e s t a t i c g e t ( L java / l a n g / S t r i n g ; ) L java / l a n g / S t r i n g ;

36 . . .

37 invoke−i n t e r f a c e {v1 , v6} , Lorg / apache / h t t p / c l i e n t / H t t p C l i e n t;−>e x e c u t e ( Lorg

/ apache / h t t p / c l i e n t / methods / H t t p U r i R e q u e s t ; ) Lorg / apache / h t t p /

H t tpResponse ;

38 . . .

Fig. 4: Code Snippets in Smali

2) AsyncTask:: As mentioned in section II, develop-

ers often use AsyncTask to perform network operations

in the background. In smali code, the UI thread will

call execute(Ljava/lang/Object;) to start a new

background task. In this case, we add an edge to the

doInBackground method of the AsyncTask subclass.

D. Constructing the Network Call Tree

Our system uses a network call tree to represent the invoca-

tion sequence of methods starting from the entry point until the

triggering of HTTP requests. Once our system builds the call

graph for each target activity, it constructs network call trees

via backward reachability analysis on the call graph, starting

from the methods shown in Figure 3. The backward analysis

continues until the entry point of the activity (e.g. onCreate)

is reached. The constructed network call tree consists of all the

intermediate methods that would be executed from the entry

point to fire an HTTP request.

Our system denotes the widgets that have registered event

listeners as executable widgets and keeps a record list of them.

If our system encounters an event listener method during the

traversal, it records the corresponding executable widget in

the network call tree. Our system leverages this information

to verify whether the exploration paths have clicked all the

executable widgets that would lead to HTTP requests during

UI interaction emulation. Figure 5 shows an example of a

network call tree that is generated from the code snippets

shown in Figure 4.

onCreate()

btn1.onClick() post()access$100()run()onPost()

btn2.onClick() access$000()

doInBack
ground()

btn3.onClick()

run() get()

Fig. 5: The Constructed Network Call Tree from Smali code

shown in Figure 4

E. Repackaging the APK

In the dynamic analysis stage, our system runs the tar-

geted activities and simulates user-interactions with it. To

make sure that all HTTP requests are triggered, our system

modifies the manifest file of the original APK and adds

android.intent.action.MAIN to the attribute of each

target activity so that it can be triggered externally. Our system

also sets debuggable=true to enable debugging. Then, our

system repacks the APK using the modified manifest file.

F. UI Interaction Model

Android UI interaction has been widely explored to enable

automatic testing [23], [1], [14]. Testing tools can generate

events by considering Android apps as either a black box
or white box [7]. To combine the advantages of black and

white box approaches, we adopt a grey box approach as in

[23]. We perform a user interface analysis to extract the UI

widgets of each target activity, after which our system uses

these properties to simulate UI interactions.

1) User Widgets Extraction: Android applications are

event-driven and many important events occur through

UI interactions. Therefore for each target activity, our

system first analyzes its UI to retrieve its UI elements.

To capture both statically and dynamcially generated UI

elements, our system analyzes each activity at runtime.

We use UIAutomator to dump the UI hierarchy. The

dumped information is stored in an XML file of the

same name with the activity class. The given activity’s UI

elements are included in the XML file hierarchically, usually

stemming from container views such as LinearLayout. The

widges of our interest are those defined by developers,

i.e., whose resource-id starts with the activity name (eg.

resource-id="com.example.click:id/button1")

instead of android. We further find the mapping of the

widgets in the XML file with that in the static analysis to get

the list of executable widgets and those would lead to HTTP

requests.

2) UI Interaction Simulation: Our approach involves the

following steps:

• Inferring Input Type: Our system generates test data

based on the data type of the attributes of a widget. If

widget hint is present, we also use hint to predicate

the data type. EditText usually follows a TextView
which tells the user what to input.

• UI State Representation and Transition: We represent

each UI state using the status of each of the executable
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Algorithm 1 Automated UI Interaction

Require:
Converted JSON file

The list of executable widgets L
Current Activity name N

Ensure: Tranverse all UI status to trigger HTTP requests

function UI INTERACTION

for all w ∈ L do
w.status = false

end for
Fill EditText with inferred data

while do ∃ w st. w.status = false
Click w to trigger its event listener method

w.status = true
Get the current activity name N ′

if N ! = N ′ then
Trigger a back button event

end if
end while

end function

widgets. Each widget that is executable has two status:

true for clicked or false for not clicked. Initially each

widget is not clicked. Since we have inferred the data

type to put in each first tier widget, we fill it in each

time before we begin the emulation. Then we click each

executable widget to trigger its event listener method.

After that we change the status of the widget to be true
and retrieve the current activity name to check whether it

has been transited to another activity. If the control has

flows to another activity, a back button event is triggered

to go back to the tested activity. The simulation continues

until the status of all executable widgets has been set

to true. The algorithm used to emulate UI interaction is

given in algorithm 1. Following this model, we get the

test application and pack it to an APK file.

G. Execution on Our Customized Android

The last step is to execute the repackaged APK on our

customized Android system. We modified Android to enable

automatic logging of web-connection information. This is

achieved by hooking the methods that are triggered during an

HTTP request. We hooked these methods by adding Loggers

to log information such as URI, request headers and body,

response headers and body. Compared with other approaches

such as using proxies to intercept the network traffic, our

approach has several advantages. Firstly, we capture the HTTP

request data before the request is sent out. At this time the

parameters has been completely-constructed but has not been

disguised. Other tools such as Burp Suite [21] intercepts

network traffic after the HTTP request is made. At this time the

request data may have been split or encrypted (e.g. in the case

of VPN). Secondly, we do not need to forge fake certificates to

launch MITM SSL attacks in order to get the network traffic.

Thirdly, some apps (e.g. com.creditkarma.mobile) may stop

working in detection of the proxy.

Since we focus on HTTP requests, we hooked the methods

related to HttpClient and HttpURLConnection. For

HttpClient, we mainly trace the methods httpclient.execute()
and defaulthttpclient.execute(). For HttpURLConnection, we

trace the method URL.openConnection() and its parameters.

We log the traced methods and parameters sequentially fol-

lowing the UI interaction order.

IV. EXPERIMENTS AND FINDINGS

We selected 76 out of the 120 most popular apps on the

Google Play market as our test set. We did not deal with

apps in the Games category since they usually use a different

framework for network connection. Our automated system

successfully run 48 apps and recovered many APIs from more

than 30 apps. Other apps fail due to decompilation or repack

errors since they have imported self-defined frameworks. We

further investigated the recovered APIs manually and found

that 9 apps are possessed of vulnerabilities, such as API misuse

and session hijacking. Next we will present some examples of

the vulnerabilities we have found. For better illustration, we

also compare the web APIs of mobile apps with that of the

browser-based applications.

A. API misuse

Nowadays, with the huge impact of security issues, many

applications already take some measures to protect their APIs.

For example, they usually use HTTPS instead of HTTP and

use signatures to ensure the integrity of the parameters. From

our experiment results, we found that apps such as TextNow,
Flipagram, Smule and lionmobi:battery use signatures to

protect their parameters. Some of them also use HTTPS in

all APIs. Dubsmash even uses HTTPS+MAC to protect its

information.

However, we also found some apps fail to protect their APIs,

which would lead to API misuse. Next we summarize the

problems we found and classify them by their functionality.

Registration API: Zombie account is always a threat for

network companies. So they usually use verification to prevent

machine registration. But some enterprises removed verifica-

tion measures such as captcha and authentication code for ease

of use in their mobile apps. Besides, although some mobile

apps require the email address for verification, they do not

wait for the user to click on the received verification link

before proceeding with other user requests. We found two

apps, Wallapop and Flipagram, have weakness in protecting

their sign up APIs. Although both of them use HTTPS to

protect the network data in transmission, they cannot sign

the parameters, which make replay attacks possible. Besides,

neither of them verify the escheatage of the email address. In

the API of Wallapop, we just changed the email key of the

post parameter to successfully create a zombie account. For

Flipagram, we need to change the email and username keys

of the parameter.
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Fig. 6: Registration parameter of the web application

Since the mobile app and browser app have different in-

terfaces, mismatch may occur when updating the app. We

mentioned in section II-B that the registration API of the

mobile app Youku does not provide captcha verification. We

further found that while the browser web page forbids users

to register a new account with email address (Figure 1a) to

prevent zombie accounts, the mobile app still allows user

registration with email address (Figure 1b).

The registration API’s URL and parameters are

constructed in the getRegistURL method in the file

com.youku.phone/smali/com/youku/http/URLContainer.smali
in the Activity com.youku.ui.activity.HomePageActivity. By

comparing it with the parameters of browser-based app

(Figure 6), we found that captcha has been removed in the

mobile API. Leverage the API information, we wrote a

Python script and successfuly registrated a bunch of accounts

by only providing fake email addresses and passwords.

Login API: For the login API, a secure application should

limit the times to input the wrong password to avoid brute

force attack on the password. But some mobile apps fail to

do so. From the retrieved login API of Youku (Figure 7), we

found that no captcha is presented during the login process.

We further looked into the network call trees of the login

API and investigated its smali code. In combination with the

parameters of the registration API, we can easily infer the

meaning of each parameter. After our test we also found that

the mobile login API does not have restriction on the access

frequency from the same source IP address. In this case we

can do brute force attack by trying each of the <username,

password> pair in a given database (e.g. leaked from other

websites).

API to Send SMS Verification Code: In our experiment, we

found that many mobile applications send SMS verification

code to verify a user’s identity. But they fail to protect the APIs

to send the SMS messages, which enables attackers to abuse

these APIs and send messges to users. To give an example,

we wrote a python script to send messages making use of

the exposed API in JuanPi (an online shopping app). Their

API forbids the same phone number from receiving messages

within 60s. We set a mobile number pool that contains one

hundred phone numbers from 182****2200 to 182****2300.

The script will automatically select a number from the pool

in order, fill it as the mobile parameter of the API and send

it to the server. The successfully sent messages are shown in

Fig. 7: Youku login API

Figure 8.

This kind of attack not only disturbs users (phone numbers

from 182****2200 to 182****2300 will constantly receive

SMS), but also leads to exta cost on the SMS sending platform

which is paid by the enterprise.

API to check account existence: When a new account is

created, the mobile app usually needs to check whether an

account with the same email address already exists. When

a user forgets his password and uses the email address to

find it, the app also needs to check whether the given email

corresponds to an existing account. Our investigation shows

that many apps fail to protect the API to check the existence

of an account. For example, the “forget password” API of the

Weather Channel app and the “check email availability” API

of the Flipagram app can be used to test whether a given

account exists for the app. Advertisers can use these APIs to

test whether an email address is active and send advertisements

to them specifically.

API to fetch content: Many applications provide useful

information to gain a large number of users so that they can

benefit from the pay of users or the ad fee. The Weather
Channel app provides the weather information to attract users

so that they can benefit from Google ads. But from our

analysis, we found its core APIs to fetch the weather info

is open to public. We can fetch the weather information

everywhere around the world by just changing the “geocode”,

a parameter defined by Google Map, without opening the app!

As another example, Zedge is used to download wallpaper for

different mobile phones. But from its private APIs, we can

easily get the detailed download addresses of the wallpaper

and download it in batch automatically. Similarly, the “list

GIF picture” API of the Cute Emoji Keyboard app is ready to

be invoked by external apps to fetch the GIF picture info in

JSON format.

B. Session hijacking

To better understand the behavior of mobile apps after user

login, we manually login in some apps by filling in correct

username and password before running them on our automatic

analysis system. From our experiment, we found that mobile
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Fig. 8: Successfully sent message by SMS verification API

apps either store their session info in the cookie or in the

request parameters.
When we analyze the Youku app, we found many APIs with

a special cookies parameter named “yktk”. So we checked

the browser application of Youku and confirmed that it is

a special string which is used to keep sessions. We further

found from the logged web APIs that the “yktk” value is

saved in a special class. With this information we designed

two kinds of session hijacking attacks. The first one is to copy

the value of the “yktk” parameter to the browser app’s cookie

and get logged in successfully. The second one is to insert

this value to the sharedpreferences files (located at /data/data/-

com.youku.phone/shared prefs/com.youku.phone preferences

.xml). When we restart the application we found that we

successfully logged in the same account. The same attack also

applies to the “BDUSS” cookie keyword of the Baidu app.
As another way of protection, many applicaitons keep

session in the request parameters. Some apps use signatures to

protect the session info securely, eg, TextNow use HTTPS and

parameter signatures to protect the session info. However some

apps, for example Smule:Sing!, use HTTPs for sign up and

login but use HTTP for other services. In this case, the session

parameters can be hijacked by storing the value of /data/-
data/com.smule.singandroid/shared prefs/network.xml on the

attacked phone. Another app, Flipagram, stores the session

info in the HTTP request headers, which is not signed and

enables session hijacking.

V. LIMITATIONS

Our approach adopts a hybrid strategy that combines static

and dynamic analysis. In the static analysis part, we filter target

activities by looking for smali code in figure 3. Therefore

we cannot deal with self-defined network frameworks that

are not based on HttpClient or HttpURLConnection. Besides,

not all network connection uses HTTP protocol. For example,

push services usually use TCP to keep connect with the

server to receive messages immediately. Some game or chat

services also use the TCP protocol instead of HTTP protocol

to decrease delay. Our work only focuses on HTTP requests

and cannot deal with these cases.
In the dynamic analysis part, to make sure that all target

activities can be launched, we modified the manifest file to

make these activities, exported and as the launcher activity.

However, during runtime some activities may be launched by

other activities with specified intents. Besides, some activities

may not be launched unless the user provides correct infor-

mation such as user name and password. We cannot simulate

such cases.

VI. RELATED WORK

A. Mobile App Vulnerability Discovery

In the past several years, a considerate amount of efforts

has focussed on discovering various vulnerabilities in mobile

apps. For instance, TaintDroid [12] detects privacy leakage

vulnerability by tracking information flows. PiOS [11] uses

static analysis to detect such leaks in iOS apps. CHEX [15]

detects component hajacking vulnerabilities in Android apps

by using a data-flow based static analysis approach. Flow-

Droid [3] proposes a highly precise and Android lifecycle-

aware taint analysis for Android applications. Similar works

include [22], [8], [9]. [16] discussed a number of attacks on

WebView, including JavaScript injection and event sniffing and

hijacking. They also showed the wide usage of webview hooks

and the addJavascriptInterface API, which indicates

the damage of possbile attacks on WebView. SMV-Hunter

[19] detects man-in-the-middle SSL/TLS vulnerabilities with a

hybrid static and dynamic analysis. However, few efforts have

focused on identifying the vulnerabilities in the apps server

side. AUTOSIGN [6] made such a step in this direction and

demonstrated that there are also serious security vulnerabilities

such as password brute forcing if app server developers do not

perform the necessary security checks.

B. Automated UI Interaction

To enable automatic testing of Android apps, automatic

UI interaction is a necessity. [7] gives an overview of the

automated test input generation approaches and performs a

thorough comparison of them in four dimensions including

their code coverage, fault detection, ability to work on multiple

platforms and ease of use.

Events (including UI events and system events) are gen-

erated following either a random or systematic exploration

strategy. Random test input generators [17], [20] can efficiently

generate events, therefore they are suitable for stress testing.

But they usually generate redundant events since they are not

aware of how much behavior has been covered. Among the

works that adopt a systematic strategy, some follow a model

of finite state machine with activities as states and events as

transitions [1], [23]. Model-based exploration strategy leads
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to more effective results. But these tools may miss the events

that would not result in GUI changes as they usually repre-

sent new states when there are UI changes. Other tools use

more sophisticate techniques such as symbolic execution and

evolutionary algorithms to guide the exploration for a better

coverage [18], [2].

VII. CONCLUSION

Given the popularity of mobile apps, it is imperative to

check if the server-side APIs they use provide the same level

of security checks as their public counterparts. The first step to

achieve this is to automatically discover these undocumented

web APIs. In this paper, we designed and implemented a sys-

tem that can automate the process of discovering private web

APIs. We tested our system on 76 out of the 120 most popular

apps on Google Play and successfully recovered many APIs.

Our experiments have demonstrated that the vulnerabilities

disclosed by the private server-side APIs can be exploited.
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