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ABSTRACT

Existing online social networks (OSNs) only allow a singéeuto
restrict access to her/his data but cannot provide any mérhao
enforce privacy concerns over data associated with meltipers.
This situation leaves privacy conflicts largely unresolaed leads
to the potential disclosure of users’ sensitive informatido ad-
dress such an issue, a MultiParty Access Control (MPAC) iinode
was recently proposed, including a systematic approacden-i
tify and resolve privacy conflicts for collaborative datashg in
OSNSs. In this paper, we take another step to further studpribte
lem of analyzing the strategic behavior of rational comérsl in
multiparty access control, where each controller aims trimiae
her/his own benefit by adjusting her/his privacy setting dtlab-
orative data sharing in OSNs. We first formulate this prob&sn
a multiparty control game and show the existence of uniqughNa
Equilibrium (NE) which is critical because at an NE, no cotiar
has any incentive to change her/his privacy setting. We phesent
algorithms to compute the NE and prove that the system can con
verge to the NE in only a few iterations. A numerical analysis
also provided for different scenarios that illustrate thietiplay of
controllers in the multiparty control game. In addition, wen-
duct user studies of the multiparty control game to explbegap
between game theoretic approaches and real human behaviors

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls; H.2.Aiiformation
System$: Security, integrity, and protection
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1. INTRODUCTION

Online social networks (OSNs) have experienced exploswettp
in recent years and becomela factoportal for hundreds of mil-
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lions of Internet users. Facebook, for example, claims ithaas
more than 1.2 billion monthly active users [2]. As the popityeof
OSNs continues to grow, a huge amount of possibly sensitide a
private information has been uploaded to OSNs. To protexdt au
large volume of sensitive information, access control leagived
considerable attention as a central feature of OSNs [1, 3].

Today, nearly 4 out of 5 active Internet users visit OSNsIgdd-
ing to a fundamental shift in the patterns of informationtege
over the Internet. Users in OSNs are now required to be cbnten
creatorsand managers rather than just being conteabnsumers
Even though OSNSs currently provide privacy control mectiasi
allowing users to regulate access to information containgteir
ownspaces, users, unfortunately, have no control over dadtings
outsidetheir spaces [8, 28, 34, 36]. For instance, if a user posts a
comment in a friend’s space, s/he cannot specify which usars
view the comment. In another case, when a user uploads a photo
and tags friends who appear in the photo, the tagged frieamisot
restrict who can see this photo. Since multiple associagetsunay
have different privacy concerns over the shared daiaacy con-
flicts occur and the lack of collaborative privacy control incesas
the potential risk in leaking sensitive information by frés to the
public. In addition, federal and state government sectave lbeen
leveraging social networks to exchange information andtdish
specialized groups/communities/task forces [27]. Evepridfes-
sionals started adopting social networks to look for sohgiand
best practices for their daily tasks while willingly shagitheir
tasks over OSNs [37]. Also, social networks have been widely
cepted by a wide variety of patients who need to search foicakd
advices and exchange their experiences and other relefannia-
tion [15]. Such environments desperately need to protetican-
trol the shared data due to its potential sensitivity antcetity.
Therefore, it is essential to accommodate the special gyriean-
trol requirements coming from multiple associated usersdtab-
oratively managing the shared data in OSNs.

To address such an issue, we recently proposed a multiparty a
cess control (MPAC) model [22] to capture the core featufes o
multiparty authorization requirements, which have notrtaecom-
modated by other access control systems for OSNs (e.g.1[10,
16, 17]). In particular, we introduced a systematic contlitiection
and resolution approach [21] to cope with privacy confliatsu-
ring in collaborative management of data sharing in OSNsga
ing the need for privacy protection and the users’ desirérfimr-
mation sharing by quantitative analysis of privacy risk ahdring
loss. However, the proposed privacy conflict resolutionimacsm
assumes that all controllers amell-behavedo provide their pri-



vacy settings for collaborative sharing. In practice, aseay at-
tempt toselfishlymaximize their own profits without respecting the
benefit of the entire system.

In this paper, we take a further step toward analyzing ttegesjic
behaviors of rational users who aim to maximize their owrefien
in collaborative data sharing in OSNs. To this end, we foataul
a multiparty control game, which models the interaction ofi-c
trollers in multiparty access control. In addition, we derthe
conditions and expressions of Nash Equilibrium (NE) fortsac
game. At an NE, no controller has an incentive to adjust eer/h
privacy setting when others fix their strategies. Moreowes,in-
troduce two interactive adjustment algorithms to caleauthe NE
with respect to two different conditions, synchronous atipent
and non-synchronous adjustment, respectively. Our axeertal
analysis illustrates the system can converge to an NE inaifedyv
iterations. We also provide a numerical analysis of the ipalty
control game in terms of several different situations te#lect dif-
ferent incentives for controllers to change their privaeytiags.
Furthermore, we carry out user studies of the multipartytrobn
game and articulate the gap between our game model and real hu
man behaviors. We believe our game theoretic analysis geevi
important implications for the design of future collabdratshar-
ing systems in OSNs.

The rest of the paper is organized as follows. In Section 2,
we overview the multiparty access control mechanism, fiogus
on privacy conflict detection and resolution. In Section 8, dis-
cuss our game model, along with the Equilibrium analysistaed
convergence of our game. The details about evaluationtsesrd
described in Section 4. We overview the related work in $adhi
Section 6 discusses several important issues and our funie
We conclude this paper in Section 7.

2. OVERVIEW OF MULTIPARTY ACCESS
CONTROL

Users in OSNs can post statuses and notes, upload photos an
videos in their own spaces, tag others to their content, haces
the content with their friends. On the other hand, users tem a
post content in their friends’ spaces. The shared contegtbaa
connected with multiple users. For example, consider aggnaph
contains three users, Alice, Bob and Carol. If Alice uploade
her own space and tags both Bob and Carol in the photo, Alice is
called theowner of the photo, and Bob and Carsiakeholderof
the photo. In another case, if this photo is posted by Aliceadb’s
space, Alice is called theontributor of the photo. In addition, if
Alice views a photo in Bob’s space and decides to share thitoph
with her friends, the photo will be in turn posted to her spacd
she can authorize her friends to see this photo. In such aghse
ice is adisseminatof the photo. In all these cases, all associated
users may be desired to specify privacy policies to contret aho
can see this photo. However, current online social netwailish
as Facebook and Google+, only allow the dataerto fully con-
trol the shared data, but lack a mechanism to specify and@nfo
the privacy concerns from other associated users, leadipgMacy
conflicts being largely unresolved and sensitive infororatieing
potentially disclosed to the public. In order to enable dadm-
rative management of data sharing in OSNs, the multipadgss
control (MPAC) model [22] was recently proposed.

When two users disagree on whom the shared data item should
be exposed to, it causespaivacy conflict The essential reason
leading to the privacy conflicts is that multiple associaiedrs of
the shared data item often have different privacy concevasthe
data item. For example, assume that Alice and Bob are two con-

trollers of a photo. Each of them defines a privacy policyisgat
only her/his friends can view this photo. Since it is almast i
possible that Alice and Bob have the same set of friendsagyiv
conflicts mayalwaysexist considering collaborative control over
the shared data item. A systematic conflict detection anolues
tion mechanism has been presented in [21] to cope with privac
conflicts occurring in collaborative management of dataisbén
OSNSs, balancing the need for privacy protection and thesuder
sire for information sharing by quantitative analysis af/acy risk
and sharing loss.

Privacy Conflict Identification Through specifying the privacy
policies to reflect the privacy concern, each controllehefshared

data item defines a set of trusted users who can access the data
item. The set of trusted users representaeeessor spactor the
controller. In [21], a space segmentation approach wasigedv

to partition accessor spaces of all controllers of a shaatal itlem

into disjoint segments. Then, conflicting accessor spagmests
calledconflicting segmentsvhich contain accessors that some con-
trollers of the shared data item do not trust, are identifiedch
conflicting segment contains at least one privacy conflict.
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Figure 1: Privacy Conflict Identification

Figure 1 gives an example of identifying privacy conflictség
on accessor space segmentation. Circles are used to mepaese
essor spaces of three controllers, co andcs, of a shared data
em. This example illustrates that three of accessor spawerlap
with each other, indicating that some accessors within tieelap-
ping spaces are trusted by multiple controllers. After quaning
the space segmentation, seven disjoint accessor spacergsgre
generated as shown in Figure 1. The accessor space segmeents a
classified into two categoriesion-conflictingsegments andon-
flicting segments. Aon-conflictingsegment covers all controllers’
access spaces, which means that any accessor within thersegm
is trusted by all controllers of the shared data item, inilicano
privacy conflict occurs. Aonflictingsegment does not contain all
controllers’ access spaces, which means that accessdrs seg)-
ment are untrusted by some controllers. Eaoctrustingcontroller
points out a privacy conflict. In Figure 1, the segmestis anon-
conflictingsegment, ands; throughcss areconflictingsegments,
wherecsi, cs2 andess indicateone privacy conflict, respectively,
andcsy, css andcesg are associated wittwo privacy conflicts, re-
spectively.

Once multiparty privacy conflicts are identified, a systeoap-
proach for resolving privacy conflicts is needed. The preazs
privacy conflict resolution makes a decision to allow or démy
accessors within the conflicting segments to access thedgdata
item. In general, allowing the assessors contained in cbinflj
segments to access the data item may catisacy risk but deny-
ing a set of accessors in conflicting segments to accessthéeia
may result insharing loss

Measuring Privacy Risk The privacy risk of a conflicting segment
is an indicator of potential threat to the privacy of corled in



terms of the shared data item: the higher the privacy riskaufra
flicting segment, the higher the threat to controllers’ aciz The
basic premises for the measurement of privacy risk for a iwbnfl
ing segment are: (a) the lower the number of controllers wingt t
the accessors within the conflicting segment, the higheptivacy
risk; (b) the stronger the general privacy concerns of clietrs,
the higher the privacy risk; (c) the more sensitive the shalata
item, the higher the privacy risk; and (d) the wider the détani
spreads, the higher the privacy risk. In order to measurevbeall
privacy risk of a conflicting segment denoted byP R(«), the fol-
lowing equation is used to aggregate the privacy risks dtie to
different untrusting controllers.

>

BEcontrollersqyt(a)

PR(a pcg X slg) X ng
B B

@

where functiorcontrollers.:(«) returns all untrusting controllers
of a conflict segment, pcs denotes the general privacy concern of
an untrusting controlleg (0 < pcg < 1), slg denotes the sensitiv-
ity level of the shared data item explicitly chosen by an wsting
controller (0 < slg < 1), andn. denotes visibility of the data
item with respect to a conflicting segment captures how many a
cessors are contained in the segment

Measuring Sharing Loss When the decision of privacy conflict
resolution for a conflicting segment is “deny”, it may caussskes
in potential data sharing since there are controllers dxpedo
allow the accessors in the conflicting segment to accessatse d
item. The overall sharing l0sSL(«) of a conflicting segment is
computed as follows:

>

Becontrollerss(a)

SL(a) = (1 —=pcg) x (1 —slg) xna  (2)

where functioncontrollers:(a) returns all trusting controllers of
a segmenty.

Conflict Resolution Based on Privacy Protection and Data $ha
ing: An optimal solution for privacy conflict resolution showdduse
lower privacy risk when allowing the accessors in some ottirilj
segments to access the data item, and get lesser loss irhdatags
when denying the accessors to access the shared data iters, Th
for each conflict resolution solutian a resolving scor&S(r) can

be calculated using the following equation:

1
/\Za]ecs; PR(an) + (1 —=X) Zazecsg SL(a2)

3
whereC'S; and C'S; denotepermittedconflicting segments and
deniedconflicting segments respectively in the conflict resohutio
solutionr. And A and1 — )\ are preference weights for the privacy
risk and the sharing los8,< \ < 1, reflecting the privacy-sharing
tradeoff. A can be calculated in terms of the average of sensitivity

levels of all controllers. That is\ = 256“’"';‘;:”“) 5 where
controllers(d) returns all controllers of the shared data itdm
andn is the number of these controllers. Then, the optimal cdnflic
resolutionC R,,: on the tradeoff between privacy risk and sharing
loss can be the maximum resolving sca@l&R.,: = max, RS(r).

To find the maximum resolving score, the privacy riskF(«))
and the sharing lossS{C(«)) are first calculated for each conflict
segment ¢), individually. Finally, the following equation can be
utilized to make the decisions for privacy conflict resaati

RS(r)

Deny
Permit

if APR(c)
ifAPR(a)

AN)SL(«a

> (1
< A)SL(a

(1

NN

Decision = { _ 4)

3. GAME MODEL

The privacy conflict resolution mechanism for multipartgess
control presented in Section 2 assumes that all contralensell-
behavedo provide their privacy settings for collaborative shgrin
However, in practice, controllers may attemps#dfishlymaximize
their own profits without respecting the benefit of entiretsys
For example, if a controller in the multiparty control syst@o-
tices that the current privacy-sharing tradeoff (représgivy A in
Equation 3) for the conflict resolution is lower than her/&igec-
tation, s/he may set a much stronger privacy preference ke tha
privacy-sharing tradeoff close to her/his expectation.this sec-
tion, we first introduce the basic game theory concepts aed th
articulate our multiparty control game model.

3.1 Basic Concepts in Game Theory

Game theory [31] is a discipline aiming at modeling situasio
where decision makers have to choose specific actions that ha
mutual or possibly conflicting consequences. A game cansist
asetP = {1,2,...,n} of players. Each player € P has a non-
empty strategy sefil;. Lets; € II; denote the selected strategy
by i. A strategy profiles consists of all the players’ strategies,
i.e.,s = (s1,...,8n). Obviously, we haves € II = X;epll;.
Let s_; denote the strategy profile excludirg Hence, we then
haves = (si,s—;). The utility functionu;(s) of ¢ measures’s
valuation on strategy profile. We say that preferss; to s; if
;i (8i,8—3) > ui(s;,s,i).

Given other players’ strategies_;, ¢ can select a strategy, de-
noted byp;(s—;), which maximizes its utility function. Such a
strategy is known abest responsg81] in game theory, which can
be formally defined as follows:

DEFINITION 1. (Best Response). Given other player's strate-
giess_;, a best response strategy ©fs a strategys, € II; such
that p;(s—s) = argmaxs,em; ui(si, s—;), wherell; is the strat-
egy space of.

To study the interactions of players, we adopt the concept of
Nash Equilibrium(NE) [31], which is formally defined as follows:

DEFINITION 2. (Nash Equilibrium). A strategy profile™® =
(sT¢, ..., sn¢) is called a Nash Equilibrium, if for every play we
haveu;(s7¢, s™%) > ui(ss, s75) for everys; € I1;.

In an NE, none of the players can improve its utility by unilat
erally deviating from its current strategy. Mathematigall means
pi(s™) = sy foralli e P.

3.2 Multiparty Control Game

We model and study the interaction of controllers asutiparty
control gamewhere each controller tries to maximize her/his own
utility function. We derive conditions and expressionstfoe NE.
This consists of the privacy setting strategy of each cdlettsuch
that no controller can benefit in terms of improving the tytily
unilaterally deviating from the NE.

Consider a set of controller®, = {1, 2, ..., n}, who collabora-
tively control the sharing of a data item in a social networke
multiparty control games played among: controllers in the set
‘P. Each controlleg € P can specify her/his privacy policy. Then,



conflict detection and resolution mechanisms in the systerpex-
formed to discover and resolve privacy conflicts. Feedbatkise
conflict resolution are in turn provided to associated amlgrs.
Based on the feedbacks, controllers can adjust their prisat
tings to maximize their own utilities. For simplicity, we sasne
that the feedback returned to each controller indicateptivacy-
sharing tradeoff, and the controller adjusts her/his psiveetting
through changing the sensitivity level,, for the shared data item.
The goal for each controller to adjust her/his privacy sgtis to
make the privacy-sharing tradeoff close to her/his expiectzep;.
However, changing privacy setting may also result in thigyitoss
of the controller. For example, if a controller increases $ensi-
tivity level for the shared data item, sharing loss valuedc{dated
by Equation (2)) of the conflicting segments contained is tun-
troller's access space are reduced. That means these tingflic

segments have a higher chance to be denied due to such ayprivac

setting change, implying potential sharing loss for thetiailer.
Therefore, we present the utility function of controliexs follows:
@)2 — Ti(Sli — epi)2 . (5)

In this utility function, if s, is greater tharep;, which means
the controller; strengthens her/his privacy setting, denotes the
number of accessors in the conflicting segmemsustedby the
controllers, and7; is the number of accessors in the conflicting
segmentgrustedby the controlleri. Otherwise, in case the con-
troller + weakens her/his privacy setting; and7; in this utility
function indicate the numbers tlistedanduntrustedaccessors in
conflicting segments, respectively. Tiirst termin the utility func-
tion quantifies the utility gained by the controlleand thesecond
termin the utility function represents the utility loss of thenco

u; (sli, sl—;) = —pi(ep; —

egy profilesl_; of the other controllers, the best response strategy
pi(sl—;) of controlleri is unique, if it exists. Setting the first deriva-
tive of u; to 0, we obtain

) 8l
E (epi — Zicr®h 1) — 7i(sli —epi) = 0. 9)
n
Solving forsl; in (9), we get
P Gl Tin*)epi = ¥ jepy iy 8 _ (10)

M + Tin?
If all controllers have the same numbers of trusted/urgaistc-
cessors in conflicting segments, i.e; = p andr; = 7 where

Vi € P, an explicit expression can be calculated for the unique
NE. Through simple algebraic manipulations, we get

Lp Ly m e Senst
( +H+T”ﬂ2)8i_ w4 Tn? ’
and
* un + ™n?
dosli=— > eps (12)
icp n+Tn —|—n—1j673
Then, the unique NE of the game is gotten as
2 - 1 v
sl = (pn 4+ %) (eps Py e Z]»Ep ep;) 13)

w+mn?—1

Even though the controllers have different numbers of édfsintrusted
accessors in conflicting segments, we can still get the enidfg.
The best response functions of the controllers can be esguiest

troller i when s/he changes her/his privacy setting. For instance, if thesi™ in matrix form

the privacy-sharing tradeoff is lower than the controfiexkpecta-
tion in current system state, this means the controllenapy risk
is higher than her/his expectation after resolving priveasflicts.
The controller may increase the sensitivity lewé&l of the shared
data item to make the privacy-sharing tradeoff close tohiegx-
pectation for reducing her/his privacy risk. At the samestjrsuch
a privacy setting change may also cause the sharing loss obtit
troller.

The set of controllersP, the strategy spacH, and the utility
function/ define together the multiparty control garg&€P, 11, U1).
In this game, each controllémaximizes her/his own utility; by
choosing @est responsstrategy (privacy settingyl; € I1;, given
the strategies (privacy settings) of othets;, i.e.,

(6)

pi(sl—;) = arg max u;(sls, sl—s) .

sl €11,

3.3 Equilibrium Analysis

Based on the definition of NE (Definition 2), each controller
plays her/his best response strategy in an NE. In other worls
controller has any incentive for changing her/his own stgpivhile
the other controllers fix their strategies. To study the besponse
strategy of controlle, we calculate the derivatives aof with re-
spect tosl;:

E)uz- (Sli, Slfi)
83[1-

) ) sl
2N2 (6pi _ ZJG’IZ) J

) —27i(sly —eps) . (7)
82ui(sli7sl,i) o i
TI?__F_TZ<O' (8)

Since the second-order derivative ©f is negative, the utility
u; IS astrictly concave functiom si;. Therefore, given any strat-

sl* = Asl* + B, (14)
whereB = (by, ba, ..., b,) andb; = % and
01 T pitrin? - H1+f1n2
A= T potran? " patran?
L L . :
T wntman?  pntran?z 0
Thus, the NE is
si*=(I—-A)""'B, (15)

where T is the identity matrix and.)™" indicates the matrix in-
verse.

3.4 Converging to Nash Equilibrium

In the multiparty control game, the controllers interacthnach
other and adjust their privacy settings, unless the systeat the
Nash equilibrium. They usually cannot reach a stable stiatas
single round. We model controller dynamics with interaetad-
justment algorithms.

Synchronous Adjustmentin synchronous adjustment (SA), con-
trollers adjust their privacy settings simultaneously éinze step

t = 1,2,...,n in terms of their own best response functions de-
rived from (10):

(rintpin?)ep;—(sl—sl;(t))

P , ifep; > il
sli(t+1) = sli(t), , B if ep; = SEZ; (16)
(Min+7'in#3ip7—ii;(23l75li(t))7 if epi < %L



wheresl = 3. sl;.

From (16), we can notice that if a controller’s privacy expgion
(ep:) is higher than the current privacy-sharing tradec%ftf)( the
controller strengthens her/his privacy setting ). If a controller's
privacy expectation is lower than the current privacy-stgatrade-
off, the controller weakens her/his privacy setting. OtVise, the
controller keeps her/his privacy setting. Algorithm 1 skotle
pseudocode of SA algorithm.

Algorithm 1: Synchronous Adjustment (SA)

Input: Initial sensitivity levelsi(0), convergence threshot.
Output: NE of the game.

1 /*Initialize time step¢, and privacy expectatiorp */
2 t<+ 0
3 foreachi € P do
4 |_ ep; < sl; (0);
5 /* Find the stable state */
6 repeat
7 sl(t) < Xicp sli
8 foreach: € P do
9 if controller i adjuststhen
10 it ep; > L) then

rintpgn?)ep;—(51(t)—sl;
1 sli(t+1) = {Zintu iﬁui;;m Li(1)
12 else

) n2Yeps —(ST(t)—sls

13 L sti(t 1) = Leartrindien = GlO—ati (),
14 else
15 |_ Sli(t + 1) = SlT(t)
16 t«—t+1;

17 until There is no controller satisfying the conditiofsl(t) — sl(t — 1)| > ¢ ;

non-synchronous Adjustmentin practice, it is hard to require all
controllers to update their privacy settings simultangoughere-
fore, a more realistic solution is to design a non-synchusnad-
justment (NA) algorithm for practical collaborative shayiscenar-
ios. In non-synchronous adjustment, we consider that clbeits
adjust their privacy settings one by one at one time step NPhal-
gorithm for the controllei is formally defined with the same func-
tion as (16), busl is defined as

sl="> sl(t+1)+ > sl(t).
j<i j>i
The pseudocode of NA algorithm is shown in Algorithm 2.

an

4. EVALUATION

In this section, we present our evaluation results for oultimu
party control game including both experimental analysid aser
studies.

4.1 Experimental Analysis

To explore the convergence to the Nash equilibrium of ourmul
tiparty control game, we implemented and analyzed two autiare
adjustment algorithms discussed above in a simulatioesystVe
also presented a numerical analysis of the multiparty cbgame
based on three different situations with respect to the runob
untrusted accessorg)and the number of trusted accessarsi(
the conflicting segments.

4.1.1 Convergence Analysis

Algorithm 2 : non-synchronous Adjustment (NA)

Input: Initial sensitivity levelsl(0), convergence threshot.
Output: NE of the game.

1 /*Initialize time step¢, and privacy expectatiorp */
2 t+ 0
3 foreach: € P do
4 |_ ep; < sl; (0);
5 /* Find the stable state */
6 repeat
7 foreaihi = 1ltondo
8 sl=730, ;sli(t+1)+ 30,5, sl;(t)
9 if ep; # 2X2 then
10 it ep; > L1 then
rintpgn2)ep; —(31(t)—sl;
1 sli(t+1) = {Zintu iﬁui;;m Li(1)
12 else
) n2Yeps —(T(t)—sls
13 L sti(t+ 1) = Learbrindien = GlO—ati (),
14 else
15 | sli(t+1) = sli(t).
16 t«—t+1;

17 until There is no controller satisfying the conditiofsl(t) — sl(t — 1)| > ¢ ;

controllers have 20 untrusted accessqrs= 20) and 20 trusted
accessorsr(= 20).

For a synchronous scenario (each controller adjusts th&-sen
tively level simultaneously), the interactive adjustmehsensitiv-
ity levels is depicted in Figure 2(a). We can observe thaspezd
of convergence to Nash equilibrium values is very fast (inith
steps) in this scenario.

Regarding a non-synchronous scenario, a similar resulire@s
shown in Figure 2(b). However, the convergence takes mepesst
(approximately 20 steps), since only one controller caratgthe
sensitively level per step in such a scenario.

4.1.2 Numerical Analysis

For the numerical analysis of our multiparty control game, w
only focused on the initial and final (Nash equilibrium) stnisy
levels of the controllers under three different conditions

In the first scenario, we studied a condition in which comgrsl
have untrusted accessors more than trusted accegsorsr{. In
this case, a controller with an expected (initial) sengitilevel
higher than the privacy-sharing tradeoff (the averageitetslevel)
has a strong incentive to enlarge her/his sensitivity léweteduc-
ing her/his privacy risk. However, a controller with an esissl
sensitivity level lower than the privacy-sharing tradesffeluctant
to deviate too much from her/his initial sensitivity leveledto the
small number of trusted accessors in conflicting segmerming
all controllers with 30 untrusted accessaus=£ 30) and 10 trusted
accessorsr(= 10), Figure 3(a) illustrates the initial and final sen-
sitivity levels of all controllers.

The second scenario studies the case when all controllges ha
the same number of untrusted accessors and trusted acc@ssor
7). In such a case, the controllers with higher and lowerah#éen-
sitivity levels have similar intentions to change theirsiénity lev-
els. Figure 3(b) shows the results of numerical analysiardkgg
20 untrusted accessors and 20 trusted accessors for edobllean

In case that all controllers have untrusted accessors févaer
trusted accessors in conflicting segmepts( ), a controller with

To view the process of system convergence, we ran the simu-an initial sensitivity level lower than the privacy-shagitradeoff

lation on a 10-controller environment with initial sensity lev-
els ranging from 0.1 to 1 in increments of 0.1, and consideitked

has a much stronger incentive to deviate from her/his irégasi-
tivity level for mitigating her/his sharing loss. Considey 10 un-
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trusted accessors and 30 trusted accessors for each tamtiod
results of numerical analysis are depicted in Figure 3(c).

4.2 User Study

We conducted user studies of the multiparty control gamé wit
respect to real human behaviors. The purpose of user stigdies
to verify if users behave as our game theoretical model eggdec
If there are some deviations of their behaviors from the fode
predictions, we attempt to capture the factors that mayecaush
deviations.

4.2.1 User Study Design and Setup

We designed two different kinds of user studies, which are ap
proved by our institute’s IRB. One is a multiple-round gamiRG)
where participants set their sensitivity levels of photasseh round
and they are told the average sensitivity levels after atigipants
finished inputting values. Another is a single-round ganmRG}p
where participants are told how many friends (trusted s}
and non-friends (untrusted accessors) can view their ghafier
they initiate their sensitivity level settings, and theg anly pro-
vided one chance to change their sensitivity levels.

As part of the user studies, we first explained the motivatibn
our user studies to the participants, which is ‘On Faceboain-
ilar online social networks, a person who uploads a phototagn
other people and get control over who can see this photo. How-
ever, people tagged in the photo have no control over it. \We ar
proposing a system that allows everyone tagged in a photol{o ¢
laboratively control the shared photo *. Therefore, they batter
understand what is the purpose of our proposed system aagidbeh
more rationally. No matter which type of games they are ie pr-
ticipants were asked to finish surveys before and after theega
The survey before a game asks some general questions abouit th
selves and their experiences and feelings towards photmglzand
tagging in OSNs. The survey after a game asks why a participan
makes certain choices in the game.

For both types of games, we did not use actual photos, because
they may introduce privacy violations. Also, we did not leage
the real-world social network platforms, since it is hardfdoce
all people in specific photos to take part in our games simelta
ously. Instead, our current games use imaginary scenessoyilole
ing a photo to the participants and explaining them thatphisto
is shared through a social networking site and s/he is tagged
it. Since each participant’s sensitivity levels, which associated
with their personalities and other factors, for differehbfms may
be different, we designed several storylines of photoswfeich
we believe may enable participants to make different clsoidde
storyline of each photo describes: 1) who are in the phote/igre
they are; and 3) what they are doing. The storylines are wiiyef
designed so that each involved individual is to be equal Bitjmm.
The complete storylines used in our games are listed in Table

For the multiple-round games, in each round, each partitiisa
asked to specify a sensitivity level of an imaginary photedabon
our description of the photo content. In order to make théigar
ipants a more intuitive understanding of the concept of itieitg
level, they are allowed to choose a value between 0.1 anddrewh
0.1 denotes ‘the photo is not sensitive to me at all and | want t
share it with the public’, 0.4 denotes ‘the photo is kind aiisigve
and | want to share it with my friends’, 0.7 denotes ‘the phisto
very sensitive and | only share it with my close friends’, hoes
‘the photo is extremely sensitive and | hope only tagged [gecgn
see it’, and the other numbers denote more fine-grainedslexel
cordingly. The participants are also told that, after evag/spec-
ifies her/his sensitivity level, the average of the imputedsitivity
levels is leveraged for making the final decision of photorisiga
Then, we compute the average of sensitivity levels, whichlss
a number between 0.1 and 1. The number is additionally ralinde
to the nearest tenth and its corresponding meaning is pgezbém
the participants, where 0.1 denotes ‘the photo will be mulaihd
1 denotes ‘only tagged people can see this photo’. Each game ¢



Table 1: Storylines of the Imaginary Photos

Number | Storyline
1 This is a photo about you and your colleagues working in tfieef
2 This is a photo about you and your classmates in the commesrtem
3 This is a photo about you and your family members in the conueeent
4 This is a photo about you having drinks with your friends ireatp
5 This is a photo about you having drinks with strangers in a bar
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Figure 4: Multiple Round Game Results. Each game continue®f at most 10 rounds or stops when an equilibrium has been reded.
tinues for at most 10 rounds or terminates when an equilibhas We now present the user study results and our findings based on
been reached. participants’ choices and survey answers. The results cEMRd

For the single-round games, we first describe a photo to all th SRG are depicted in Figures 4 and 5, respectively.
participants as same as the multiple-round game and asieadbtr-
ticipants to set their sensitivity levels. After that, ieatl of giving
them an average of sensitivity levels, they are told how mafy

Finding 1: Users agree that everyone in a photo should have the
right to decide who can view it.

their friends and non-friends can view the photo at that nmime According to the participants’ answers on ‘Do you believérad
We provide one of the three different scenarios, which ar@al)  People in a photo that is posted in an online social netwodkigh
friends and 10 non-friends, 2) 20 friends and 20 non-friiads! give a say about who can view it?’, 100% participants in oudst
3) 10 friends and 30 non-friends, to the participants in egahe. ies believe so and they are not satisfied with the currenbgti
Then, each of them has one chance to change her/his sdpsitivi for photo sharing and tagging in Facebook and Google+. A more
level of the photo. No further feedback is shown to the pamgicts. detailed question revealed that 27% participants allow fHiends

We invited 20 participants who are all students in our ingitin to tag them without their approvals, another 55% partidipaat-
to take part in our user studies. We divided participants ggv- low friends to tag them but sometimes remove those tags, 9% pa
eral groups where all group members know each other in alsocia ticipants only allow tagging with their approvals, and drest9%
network. All games were played by participants in personthegl participants never allow friends to tag them.

were not allowed to interact with other participants diectWe
played MRG 11 times and SRG 5 times, and obtained survey re-
sults from all participants. Even though we have condudtaiidd
number of experiments and the participants in the games haag s
similar background, their tendencies could still providesignifi-

cant insights into users’ decision making in our games.

Finding 2: Games reach an equilibrium in a timely manner.

As shown in Figure 4, 8 out of 11 multiple-round games reached
an equilibrium in only three rounds in our experiments, ahiai-
cates that a game-based multiparty control approach asgedpn
this paper could produce acceptable results for all pagitis in a
timely manner. Even though users’ choices may not alwaysvfol

4.2.2 User Study Results and Findings the best strategy in terms of our game theoretic analysisoural
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Figure 5: Single Round Game Results. Participants have onlgne chance to change their sensitivity levels after the inidl settings.

that our game-based approach could help all the people int@® ph

to collaboratively control who can view the picture.

Finding 3: A user’ sensitivity level settings are highly related to
the content of photos.

When we asked if a user cares more about sharing with friends

or forbidding non-friends to view a photo, 55% participamglied

that it depends on the photo. Another 27% participants arexive
they care more about their privacy. We computed the aveags-s

tivity levels for all users’ inputs on each photo storylir&toryline
2 received the lowest average sensitivity level that is .0.&¥st
participants believe such a photo is not so sensitive andageee
to share it with some strangers. Storyline 4 got the highestage
sensitive level which is 0.66. Most participants only wamshare
such a photo with their close friends.

Finding 4: Users tend to change their sensitivity levels in order

to make the averages closer to their expected sensitivitydels.

were willing to change their sensitivity levels towards kbt
averages, because such behaviors show their respectgto the
peers.

Reason 2: Users seem to be honest and use our system more
for the negotiation than the manipulatiorOur game the-
oretic model suspects that users may choose more extreme
sensitivity values to make the averages closer to theirexpe
tations. In those cases, the sensitivity values chosendrg us
may not reflect their true sensitivity levels of the shared-ph
tos. Even though, as discussed in Find 3, such behaviors
did exist and 50% participants did admit they had such ex-
periences in the games, we found the participants were un-
willing to manipulate the system by deviating from their ex-
pected sensitivity levels. Two evidences support such a con
clusion based on our survey: 1) 60.0% participants said thei
sensitivity value settings always reflect their true sérigit
values; and 2) 53.2% sensitivity value settings are caarsist

According to the survey answers, 50% participants in ouregam
claim that they have the experiences to change their satgsiti
levels to make the averages closer to their own originalisens
ity levels and attempt to maximize their own benefits. Such be e Reason 3: Users care more about others’ privacy protec-
haviors are consistent with what our game theoretic model pr tion than their own data sharingin most cases, users who
dicts. We computed the number of such changing behaviors in chose low sensitivity values tended to increase their sensi

with the previous setting values, which indicates partois
would rather stick to what they have initially chosen.

our collected data. If the multiplication of a user’s cutreensi-
tivity level setting minus her/his last round setting and #verage
of last round minus his/her current setting is negative othxh as

(8lhow — Sliast) X (averageiast — slhow) < 0, We say this change

is towards her/his own sensitivity level instead of the ager In
our collected data, 18.6% sensitivity level changes betonthis

tivity levels to reach agreements with others. Participant
showed strong tendencies with this pattern, because they be
lieved respecting others’ privacy concerns is more imparta
than maintaining their own sharing intentions. In our col-
lected data, 85% average sensitive levels are increased fro
the last rounds.

category, which is an evidence that users’ behaviors doviotur

game theoretic patterns in some cases In summary, our user studies showed that our game theoretic

model could capture many features of the human decisionngaki
Finding 5: Sometimes users may not adopt the best strategies  process in multiparty access control systems. Howeverpthe
when making decisions. posed model still needs to be refined. Especially, we shautd ¢
To measure whether a sensitive level change is towards the av Sider more fine-grained quantification of utility gain anedan our
erage of last round or other directions, we used the critibida model with respect to some other aspects, such as peeracpriv
the multiplication of a user's current sensitivity levektagg mi- concerns, for more accurate analysis of user behaviors iti-mu
nus her/his last round setting and the average of last roindsm  Party access control.
her/his current setting is positive, denoted(85,0. — Sliast) X
(averageiast — slnow) > 0, to indicate such cases. Itturnsout 5, RELATED WORK
28.3% sensitivity level changes fall into this category.sé on Several access control schemes for OSNs have been intebduce
the survey answers and |n-person.d|scu53|ons with the:nmutg (e.g., [10, 11, 16, 17, 24]). Carminati et al. [10] introdderust-
we observed several reasons behind such human behaviors: based access control model, which allows the specificafi@t-o
e Reason 1: Users may not always maximize their own ben- cess rules for online resources, where authorized usetearted
efits without respecting others’ benefitSome participants in terms of the relationship type, depth, and trust leveiveen
indicated that the average sensitivity levels receivenhftioe users in OSNs. They also introduced a semi-decentralizentedi
last round made them reconsider their own choices. And they tionary access control model and a related enforcementanésrh



for controlled sharing of information in OSNs [11], and pospd a
semantic web based access control framework for socialankesw
Fong et al. [17] presented an access control model that ferma
izes and generalizes the access control mechanism impledhen
in Facebook, admitting arbitrary policy vocabularies tha based
on theoretical graph properties. Carrie [12] claimed retethip-

will study other alternative game theoretic approache§fizor-
mulating our game model.

We will also conduct more extensive user studies of the mul-
tiparty control game to analyze the strategic interactiohasers
in real-world social network platforms, considering a variety of
factors, such as the numbers of trusted/untrusted acsessoon-

based access control as one of new security paradigms that adflicting segments, different trust levels of accessors amdrollers,

dresses unique requirements of Web 2.0. Then, Fong [16] for-
mulated this paradigm called a Relationship-Based AccesirQl
(ReBAC) model that bases authorization decisions on tlaioa-
ships between the resource owner and the resource accessor i
OSN. However, none of these work could accommodate privacy
control requirements with respect to tb@laborativedata sharing

in OSNs.

The need of collaborative management for data sharing,- espe
cially photo sharing, in OSNs has been addressed by sometrece
research [8, 20, 25, 34, 36]. Also, game theory as a rich saatf-
ematical tools has been used to model and analyze the ititgrac
of agents in security and privacy problems [5, 6, 13, 18, 8932,

33]. Alpcanet al.[6] introduced a game theoretic model to study
the evolution of trust for digital identity in online commities.
Chenet al.[13] presented a weighted evolutionary game-theoretic
model to study the behavior of users in OSNs regarding how the
choose their privacy settings. In particular, Squicciagnal.[34]
proposed a solution for collective privacy management fuotp
sharing in OSNs that adopted Clarke-Tax mechanism [14]dblen
the collective enforcement of privacy preferences and géueery

to evaluate the scheme. However, the auction process atlopte
their approach indicates only the winning bids could finalier-
mine who was able to access the data, instead of accommgaiitin
stakeholders’ privacy preferences. In contrast, we pr@@osim-
ple but flexible mechanism for collaborative managemenhafed
data in OSNs. And game theory is leveraged in this paper temod
and analyze the strategic interaction of users in mulypaccess
control.

Measuring privacy risk in OSNs has been recently addresged b
several work [7, 26, 35]. Beckeat al.[7] presentedPrivAware a
tool to detect and report unintended information loss tghoguan-
tifying privacy risk associated with friend relationship ©OSNs.
Talukderet al.[35] discussed a privacy protection tool, calRgvome-
ter, which can measure the risk of potential privacy leakagsedu
by malicious applications installed in the user’s friendffjes and
suggest self-sanitization actions to lessen this leakegerdingly.

Liu et al.[26] proposed a framework to compute the privacy score
of a user, indicating the user’s potential risk caused byhigepar-
ticipation in OSNs. Their solution also focused on the pywaet-
tings of users with respect to their profile items. Comparétth w
those work, the multiparty access control can help meakerpri-
vacy risk caused by different privacy concerns from mudtipsers.

6. DISCUSSION AND FUTURE WORK

and different relationships among controllers. Those expntal
studies can additionally articulate thap between game theoretic
approaches and real human behaviors [9], and potentialfyuse
capture some missing aspects of our game-theoretic model.
Another issue for multiparty privacy control is that a grooip
users coulctolludewith one another so as to manipulate the final
decision. Consider an attack scenario, where a set of roafici
users may want to make a shared photo available to a wider au-
dience. They could collude with each other to assign a vesy lo
sensitivity level for the photo and specify policies to grarwider
audience to access the photo. We will also investigate a ¢faoe
retic mechanism to tackle collusion activities in multiggprivacy
control in OSNs with the consideration of the proposed aggies
in the recent work [23, 30, 38].

7. CONCLUSION

In this paper, we investigated the problem of analyzing traes-
gic behavior of rational controllers in multiparty accesmirol,
where each controller aims to maximize her/his own benefit by
adjusting her/his privacy setting in collaborative datarsig in
OSNs. We formulated such a problem as a multiparty contnolega
and proved the existence of unique NE of this game. In additi@
introduced interactive update algorithms to compute theMi&e-
over, a numerical analysis was provided for several scendhniat
illustrate the interplay of controllers in multiparty assecontrol in
OSNs. We further carried out user studies of the multipastytiol
game to examine the gap between game theoretic approaathes an
real human behaviors. We believe our game theoretic asaysl
additional insights gained from this study would help idgnim-
portant implications in designing the enhanced multipadgess
control systems in OSNs.
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