
On the Safety and Efficiency of
Virtual Firewall Elasticity Control

Juan Deng†∗, Hongda Li†∗, Hongxin Hu†, Kuang-Ching Wang†, Gail-Joon Ahn‡, Ziming Zhao‡, and Wonkyu Han‡
† Clemson University

{jdeng, hongdal, hongxih, kwang}@clemson.edu
‡Arizona State University

{gahn, zzhao30, iamhwk}@asu.edu

Abstract—Traditional hardware-based firewall appliances are
placed at fixed locations with fixed capacity. Such nature makes
them difficult to protect today’s prevailing virtualized environ-
ments. Two emerging networking paradigms, Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
offer the potential to address these limitations. NFV envisions
to implement firewall function as software instance (a.k.a virtual
firewall). Virtual firewalls provide great flexibility and elasticity,
which are necessary to protect virtualized environments. In
this paper, we propose to build an innovative virtual firewall
controller, VFW Controller, to enable safe, efficient and cost-
effective virtual firewall elasticity control. VFW Controller
addresses four key challenges with respect to semantic consistency,
correct flow update, buffer overflow avoidance, and optimal scaling
in virtual firewall scaling. To demonstrate the feasibility of our ap-
proach, we implement the core components of VFW Controller
on top of NFV and SDN environments. Our experimental results
demonstrate that VFW Controller is efficient to provide safe
elasticity control of virtual firewalls.

I. INTRODUCTION

Firewall is the most critical and widely deployed network
security function that protects networks against suspicious
traffic and unauthorized access. Traditional hardware-based
firewalls are often placed at fixed network entry points and
have a constant capacity with respect to the maximum amount
of traffic they can handle per time unit. Given such rigid nature,
it is difficult to leverage hardware-based firewalls to protect to-
day’s prevailing virtualized environments. First, the perimeter
of a network in virtualized environments becomes fluid, as
VMs and applications may span across racks within a data
center or even across multiple data centers, and they are often
migrated for the purpose of flexible resource management
and optimization [20]. Second, traffic volume in virtualized
environments varies frequently and significantly [17] [18]. A
study on network traffic characteristic in virtualized environ-
ments suggests that traffic volume depends on time-of-day and
day-of-week, and the traffic volume variations are nearly an

∗The first two authors contribute equally to the paper.

order of magnitude [17]. This leads to an expensive option of
over-provisioning hardware-based firewalls with the capacity
to process peak traffic load that occurs occasionally.

Two emerging networking paradigms, Network Function
Virtualization (NFV) [6] and Software-Defined Networking
(SDN) [39], push forward a new breed of firewalls, virtual
firewalls (VFW), which feature flexibility and elasticity, and
are well suited to protect virtualized environments. NFV
implements firewall function as software instance that can
be created or destroyed quickly to handle traffic volume
variations. For example, ClickOS [38], a high-performance and
open-source NFV platform, can create a virtual instance in
less than 30 milliseconds. SDN, recognized as complimen-
tary technology to NFV [26], seamlessly provides dynamic
traffic steering support toward flexible, on-demand placement
of virtual firewalls. Given these benefits, major commercial
virtualized environments (e.g., VMware vCloud [37], Amazon
AWS [2] [9], VCE Vblock [11]) have recently started to
embrace virtual firewalls. Virtual firewalls can also be used
to protect traditional enterprise networks [47].

However, to fully take advantage of virtual firewall benefits,
our study reveals that there are great challenges to enable
virtual firewall elastic scaling. When a virtual firewall is over-
loaded due to a large amount of incoming traffic and needs to
scale out, new instances via NFV are quickly created. Selective
firewall rules and states (in case of stateful firewall) on the
overloaded virtual firewall are migrated to new instances,
and the corresponding traffic flow rules in SDN switches are
updated alongside to redistribute traffic. When multiple virtual
firewall instances are underloaded and need to scale in, some
instances are destroyed, all firewall rules and states on them
are migrated to remaining instances, and flow rules are also
updated accordingly. The scaling of virtual firewalls must be
safe, efficient and optimal. A safe scaling does not cause legal
traffic to be dropped or illegal traffic to be allowed. An efficient
scaling ensures that the latency overhead caused by scaling is
bounded. An optimal scaling consumes minimum compute and
network resources.

To achieve safe, efficient, and optimal virtual firewall
scaling, the following key challenges should be addressed:

• Semantic Consistency The split and mergence of
firewall rules in virtual firewall scaling must not
change the semantics of security policies. Otherwise
safety is violated (see §II B for examples). Keeping
the semantic consistency after rounds of splits and

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23013



mergences is non-trivial, because firewall rules are
often logically entangled with each other resulting
in complicated rule dependencies. Sometimes rule
dependencies are intentionally introduced by system
administrators to obtain fewer firewall rules [29] [49].

• Correct Flow Update When migrating firewall rules
and states to new/remaining firewall instances, net-
work flow rules in SDN switches must be cor-
rectly updated to re-route corresponding traffic to
new/remaining instances. Incorrect flow update may
cause some traffic is missent to an instance that does
not have the firewall rules intended for the traffic,
hence violates safety. Finding correct flow update is
difficult, since flow rules in an SDN switch may
be dependent [31] [32] and the traffic space defined
by the flow rules often does not exactly match that
defined by the firewall rules.

• Buffer Overflow Avoidance A safe scaling also
requires buffering in-flight traffic during a migra-
tion [27] [28]. In-flight traffic refers to the traffic that
arrive at the source instance after the matching firewall
rules and states have been migrated, or the traffic that
arrive at the destination instance before correspond-
ing firewall rules and states become ready. However,
buffer space is not unlimited. We also observe that
migration of different firewall rules incurs different
amount of in-flight traffic. Therefore, care must be
taken while selecting firewall rules to migrate so that
buffer overflow 1 can be avoided.

• Optimal Scaling Compute and network resources for
building virtual firewalls are neither unlimited nor free.
Resource optimization is an important goal that needs
to be achieved in virtualized environments. Creations
of virtual firewalls consume compute resource, and
flow rule updates are constrained by the limited ca-
pacity of the Ternary Content Addressable Memories
(TCAMs) used for holding rules in each SDN switch.
It is NP-hard to achieve optimization of resource usage
during virtual firewall scaling.

In this paper, we propose a novel virtual firewall controller,
VFW Controller, that enables safe, efficient, and optimal
virtual firewall scaling. To address the challenge of semantic
consistency, VFW Controller applies packet space analysis
to identify intra-dependencies of firewall rules. A group-based
migration strategy is applied to guarantee the semantic consis-
tency. To find correct flow update, intra-dependencies of flow
rules and inter-dependencies between firewall rules and flow
rules are identified, which help locate the subset of flow rules
to update and the correct update operations (e.g., change, in-
sertion). To avoid buffer overflow, we model migration process
and predict the amount of in-flight traffic generated during the
migration. Firewall rules that may cause buffer overflow when
migrating them are not selected to move. To achieve optimal
scaling-out of virtual firewalls, VFW Controller adopts a
three-step heuristic approach to minimize resource usage. To
achieve optimal scaling-in, integer linear programming (ILP) is
used to ensure maximum resources can be released. We design

1In this paper, we use the term ‘buffer overflow’ to refer to the situation
when buffer space is inadequate to buffer in-flight traffic, causing traffic drop.

and implement the core components of VFW Controller
on top of ClickOS [38]. Our evaluations in CloudLab [3]
show that our VFW Controller provides efficient virtual
firewall scaling control. To the best of our knowledge, VFW
Controller provides the first solution for the safety and
efficiency of virtual firewall elasticity control.

The rest of the paper is organized as follows. Section II
presents the motivation and challenges of this paper. Section III
gives an overview of VFW Controller. The following four
sections present how VFW Controller guarantees semantic
consistency, finds correct update, avoids buffer overflows,
and achieves optimal scaling, respectively. We describe the
implementation of VFW Controller and our experiments
in Section VIII. Section IX discusses related work. Conclusion
and future work are addressed in Section X.

II. BACKGROUND AND CHALLENGES

A. New Networking Paradigms

Network functions (NFs) are systems that examine and
modify packets or flows in a sophisticated fashion. Hardware-
based NFs have become fundamental elements in enterprise
networks [38] [48]. They are expensive, often vendor pro-
prietary, difficult to manage, and inflexible with respect to
location and capacity. These demerits hinder the evolution of
network architecture and new service introduction. Network
Function Virtualization (NFV) aims to overcome these limita-
tions leveraging virtualization and cloud technologies [6]. NFV
shifts NF from hardware appliances to virtualized instances
running on standard high volume resource (servers, storage and
switches). Built on cloud platforms for resource management,
NFV shares resource across services and different customer
base. In addition, NFV promises the benefits of low cost,
management ease, scalability, openness, convenient service
introduction, etc.

Traditional network devices have the control plane, which
makes decision on traffic forwarding, and the data plane,
which forwards traffic, tightly coupled. This makes them very
difficult to implement network policies and introduce new
services or protocols. Also, it is impossible to automatically
respond to network faults or load changes [34], [41]. By decou-
pling forwarding hardware from control decisions, Software-
Defined Networking (SDN) centralizes network intelligence
in software-based controller, making network devices sim-
ple packet forwarding devices. Network devices can be pro-
grammed via an open interface, such as OpenFlow [39].

Given their benefits, NFV and SDN have recently attracted
significant attentions from both academia and industry. A re-
cent survey indicates that 97% of the major network operators
plan to deploy SDN and 93% plan to deploy NFV [46].
Google, Amazon, AT&T, and Intel have announced their
deployment plans [12]–[14], [19], [42]. NFV does not rely on
SDN to exist, but the programmable feature of SDN greatly
facilitate NFV [26] [45].

B. Challenges in Virtual Firewall Elasticity Control

Recent research efforts, notably Split/Merge [44] and
OpenNF [28], have laid the groundwork for supporting the
elastic scaling of a variety of virtualized network functions.

2



f1###tcp#10.10.3.*##any#192.1.2.*###80##send#to#VFW2
f2###tcp#10.10.3.*##any#192.1.2.7###80##send#to#VFW1
f3’##tcp#10.10.2.*##any#192.1.1.9##80##send#to#VFW2
f3###tcp#10.10.2.*##any#192.1.1.*###80##send#to#VFW1,#IDS1
f4###tcp#10.10.4.1##any#192.1.1.9###80#send#to#VFW2######################################################################

v1###tcp##10.10.2.*###any###192.1.1.9###80##deny
v2###tcp##10.10.2.*###any###192.1.1.*###80##allow
v3###tcp##10.10.1.*###any###192.1.1.9##any##deny
v4###tcp##10.10.1.5###any###192.1.1.*###80##deny
v5###tcp##10.10.1.*###any###192.1.1.*###80##deny#
v6###any##10.10.1.*###any###192.1.1.9##80##deny#
v7###tcp##10.10.3.*###any###192.1.2.7###80##allow
v8###tcp##10.10.3.*###any###192.1.2.*###80##deny##
v9###tcp##10.10.4.1###any##192.1.1.9###80##allow

SDN#Switch

10.10.*.* 192.1.*.*

SDN#Switch

Firewall#Rules#on#VFW1##

Flow#Rules# Flow#Rules#

(a) Before scaling out. (b) After scaling out.

VFW1

v2###tcp##10.10.2.*###any###192.1.1.*###80##allow
v3###tcp##10.10.1.*###any###192.1.1.9##any##deny
v4###tcp##10.10.1.5###any###192.1.1.*###80##deny
v5###tcp##10.10.1.*###any###192.1.1.*###80##deny#
v6###any##10.10.1.*###any###192.1.1.9##80##deny#
v7###tcp##10.10.3.*###any###192.1.2.7###80##allow

Firewall#Rules#on#VFW1##

Firewall#Rules#on#VFW2##
v1###tcp##10.10.2.*###any###192.1.1.9###80##deny
v8###tcp##10.10.3.*###any###192.1.2.*###80##deny##
v9###tcp##10.10.4.1###any##192.1.1.9###80##allow

VFW1 VFW2

10.10.*.* 192.1.*.*

f1###tcp#10.10.3.*##any#192.1.2.*###80##send#to#VFW1
f2###tcp#10.10.3.*##any#192.1.2.7###80##send#to#VFW1
f3###tcp#10.10.2.*##any#192.1.1.*###80##send#to#VFW1,#IDS1
f4###tcp#10.10.4.1##any#192.1.1.9###80#send#to#VFW1######################################################################

Fig. 1: Example of virtual firewall scaling out. Note that a firewall
rule r is a 6-tuple of {protocol, source IP, source port, destination
IP, destination port, action}. A flow rule in an SDN switch may
have more than 40 fields [39]. Here, we only show the fields that
are pertinent to our illustration.

Both Split/Merge and OpenNF mainly focus on controlling the
state migration of virtualized network functions. Especially,
OpenNF provides APIs that help migrate given internal states
of the source instance to the destination instance when scaling
out an overloaded instance. The state migration mechanism
provided by OpenNF satisfies two properties: loss-free and
order-preserving. Loss-free property guarantees that all in-
flight traffic generated during the state migration are buffered
and processed. Order-preserving property guarantees that in-
flight traffic are processed in the order of their arrival. Even
though state migration is also a necessary operation in enabling
the elastic scaling of virtual firewalls, more critical challenges
are needed to be addressed in virtual firewall elasticity control.

When a virtual firewall is overloaded, one option for
solving the overload is to copy the whole set of firewall rules
on the overloaded firewall to each new instance and distribute
traffic. However, the copy option has a major drawback of
performance degradation. A firewall processes a packet by
sequentially searching its rule space until the first-matching
rule is found. Larger the firewall rule size is, larger the search
overhead is and hence lower the processing capacity is. Exist-
ing research efforts have been devoted to compressing firewall
rule set in order to improve firewall performance [35] [36].
We have also conducted experiments to quantify the effect
of firewall rule size on virtual firewall performance (see
§ VIII-B1). Our experimental results show a linear decrease
in virtual firewall processing capacity as the firewall rule size
increases (see Figure 7). Therefore, we prefer to split firewall
rules to deal with the overload, enabling each new instance
to hold only a subset of the firewall rules and thus achieving
higher processing capacity. Below we articulate new challenges
in virtual firewall scaling.

1) Semantic Consistency: When splitting a set of firewall
rules across multiple virtual firewall instances, care must be

taken with respect to firewall rule dependencies so that the
semantics of the rules are unchanged after the split. Changes
in the semantics may lead to safety violations.

Figure 1 shows an example 2 where a virtual firewall,
VFW1, is scaled out. Firewall rule v1 and v2 on VFW1 before
scaling (Figure 1(a)) are dependent. Together they express a
security policy dictating that “any host in network 10.10.2.*
can access any HTTP server in network 192.168.1.*, except
server 192.168.1.9.” Consider a split example where v1 and
v8 are migrated to VFW2, and others stay put (Figure 1
(b)). After split, VFW1 grants any host in 10.10.2.* access to
192.168.1.9, which should be denied. Thus, safety is violated.
A remedy is to rely on the SDN switch to be aware of the
dependency of v1 and v2 and route traffic from 10.10.2.* to
192.168.1.9 to VFW2. The remedy, while seems plausible, is
impractical for a large set of firewall rules with complicated
dependencies. To see why, consider another example if we
were to move dependent firewall rules v3, v4, v5, and v6 on
VFW1 to four different instances. It requires very complicated
routing support. For every flow that matches more than one
rule, the SDN switch must remember its first matching rule,
in order to compensate the reckless split that disrespects the
dependencies.

Overlooking rule dependencies may also create safety
issues for later mergence. For example, suppose VFW1 and
VFW2 in Figure 1 (b) are going to be merged back into
one. Without care, the mergence may produce a rule order
where v2 precedes v1, in which case it falsely grants access
to http server 192.1.1.9, leading to safety violation. In reality,
a firewall comprises hundreds of firewall rules with logical
intertwinement [29] [40] [49]. And they may undergo a number
of splits and mergences. This makes maintaining semantic
consistency a challenge in virtual firewall scaling.

2) Correct Flow Update: When migrating firewall rules,
flow rules in SDN switches are updated alongside. Finding the
correct flow update is challenging due to a number of reasons.

First, an SDN switch generally comprises thousands of flow
rules that are dependent [31]. Modification of a flow rule which
has dependency relations with others is error-prone. Consider
again the split example in Figure 1. Flow rules f1 and f2 are
dependent. To account for the migration of firewall rule v8

from VFW1 to VFW2, we search the flow rule space and find
the first flow rule f1 exactly matches v8. Therefore, we change
the action of f1 to ‘send to VFW2’. Because f1 overshadows
f2, f2 will never take effect. In this case, when traffic matching
v7 arrives at the switch, f1 applies and the traffic is wrongly
sent to VFW2. But v7 is actually on VFW1.

Second, a flow rule in an SDN switch may be used by
more than one applications. Update of flows to account for
firewall rule migration may undesirably change the routing
intentions of other applications. For example, f3 in Figure 1 (a)
serves both firewall and IDS. To account for the migration of
firewall rule v1, f3 needs to be updated. The correct update is
to insert f ′3 right before f3 (Figure 1 (b)). Together they express
the correct routing for migrating v1. But this changes routing
intentions of IDS1, because traffic matching “tcp 10.10.2.* any

2For the elucidation purpose, we use stateless firewalls here. The same
challenges also apply to stateful firewalls.

3



Virtualization Layer
Dependency Analysis

Flow Update
 Analysis

Buffer Cost 
Analysis 

Optimal Scaling Calculation

Provision 
Control

Migration 
and Update 

Control

VFW Controller

Servers

SDN 
Swtiches

Virtual 
Firwalls

Condition Detection

Resource

Fig. 2: VFW Controller components and workflow.

192.1.1.9” is not sent to IDS1, as intended, instead it is sent
to VFW2.

Third, flow rules do not always exactly match firewall rules.
This requires split of flow rules or insertion of new flow rules
do handle traffic steering. For example, we inserted f ′3 for
migrating v1. The split or insertion operation is non-trivial and
also increases the number of flow rules in SDN switches, which
are limited by the number of flow rules they can support 3.

3) Buffer Overflow Avoidance: A safe migration must
be loss-free, meaning in-flight traffic must be buffered [28].
Existing systems, such as Split/Merge and OpenNF, buffer
all in-fight traffic at the central controller, which could lead
to serious scalability issue. In particular, they assume infinite
buffer space at the controller and ignore the potential problem
of buffer overflow. Therefore, a preferable migration control
method should adopt distributed buffering that buffers in-flight
traffic at each destination instance, as a way to lower the risk
of buffer overflow [27]. In addition, we observe that different
firewall rules incur different amounts of in-flight traffic. For
example, migrating a firewall rule with hit rate of 0 4 does
not incur any in-flight traffic, while migrating a firewall rule
with high hit rate requires large buffer space. To avoid buffer
overflow, we need a prior calculation of the amount of in-flight
traffic for each firewall rule, and design a firewall rule selection
mechanism so that only firewall rules that do not cause buffer
overflow are selected for the migration.

4) Optimal Scaling: Resources for creating virtual fire-
walls are valuable and limited, hence must be optimally used.
When a virtual firewall is overloaded, solving the overload with
a minimum number of new virtual firewall instances is prefer-
able. When multiple virtual firewall instances are underloaded,
a merge operation should kill as many virtual firewall instances
as possible. Also, updating flow rules may entail insertions of
new flow rules, which consume limited TCAM space in SDN
switches as discussed above. Some firewall rule is matched by
only one flow rule, migration of such firewall rule only needs
to update one flow rule and doesn’t need to add new flow rules.
However, since some wildcard firewall rules can be matched
by multiple flow rules, the migrations of those firewall rules
involve modifying multiple flow rules and possibly creating
new flow rules. Therefore, the firewall rules that incur high
update costs should be given low priority to be migrated.

3These rules are in TCAM and an SDN switch can only support a few
thousand rules (e.g., 1.5k TCAM entries in 5406zl switch [23]).

4Hit rate of a firewall rule is the rate that rule is matched. A 0 hit rate
means there is no flow matching the rule.

III. VFW CONTROLLER OVERVIEW

The components and workflow of VFW Controller
are shown in Figure 2. VFW Controller monitors each
virtual firewall and detects traffic overload and underload
conditions. Once a condition is detected, VFW Controller
first performs Dependency Analysis, Flow Update Analysis,
and Buffer Cost Analysis. Those analysis results are utilized
by Optimal Scaling Calculation. Then, Provision Control and
Migration and Update Control interact with the compute and
network resources and execute virtual firewall scaling.

Dependency Analysis (§IV) in VFW Controller identi-
fies three dependency relations: (1) the dependency relations
of firewall rules on the virtual firewalls; (2) the dependency
relations of the flow rules in SDN switches; and (3) the inter-
dependency relations between the firewall rules and the flow
rules. Understanding the dependency relations of the firewall
rules is critical to ensure the semantic consistency after scaling.
The dependency relations of the flow rules and the inter-
dependency relations serve to find the flow rules to be updated.
Dependency Analysis divides both firewall rules and flow rules
into groups based on their dependency relations. Flow Update
Analysis (§V) determines the correct update of flow rules
and the update cost for each firewall rule group. Buffer Cost
Analysis (§VI) predicts the amount of in-flight traffic generated
by the migration of each firewall rule group. This prediction
is necessary to avoid buffer overflow.

Optimal Scaling Calculation (§VII) component considers
previous analyses and uses a three-step heuristic approach to
determine, in the case of overload, (1) the minimum number
of new instances to be created; (2) selective firewall rule
groups to be migrated to each new instance; and (3) flow
rules to be updated. This approach also achieves minimum
update cost and no buffer overflow. In the case of underload,
Optimal Scaling Calculation component uses an ILP approach
to determine (1) which instances are to be killed among all
underloaded instances; (2) how to redistribute firewall rule
groups; and (3) corresponding flow rule updates. The ILP
approach guarantees that the most resources are released after
the mergence of instances.

Provision Control creates or deletes instances according the
calculation results from Optimal Scaling Calculation compo-
nent. Migration and Update Control coordinates the migration
of firewall rules and states, and flow rule updates.

IV. DEPENDENCY ANALYSIS AND SEMANTIC
CONSISTENCY

Firewall policies used in enterprise networks are known to
be complex due to their large rule sizes 5 and complicated
rule dependencies [24] [29]. Flow rules in SDN switches are
complex as well [31] [32]. In this section, we first analyze
the intra-dependency relations of firewall rules and flow rules
respectively, and the inter-dependency relations between fire-
wall rules and flow rules. We then discuss our approach for
maintaining semantic consistency in virtual firewall scaling.

5A recent study uncovered that the average number of firewall rules in an
enterprise network is 793 [22].

4



A. Dependency Relation

We start by giving the following definitions. Note that the
definitions of direct dependency and indirect dependency apply
to both firewall rules and flow rules.

Definition 1 (Packet space). Packet space of a rule r, denoted
as PS(r), is defined as a 5-dimensional hyperspace with
dimensions being protocol, source IP, source port, destination
IP, destination port.

For a firewall rule, which is generally represented as a
6-tuple of {protocol, source IP, source port, destination IP,
destination port, action} with either ‘deny’ or ‘allow’ action,
finding its packet space is straightforward and just needs to
use the first 5 fields of the firewall rule. For a flow rule,
we must consider various Set-Field actions, which can
rewrite the values of respective header fields in packets [15].
For example, if a flow rule f has “protocol = tcp, source IP
= 10.10.3.*, source port = any, destination IP = 192.1.2.7,
destination port = any” without a Set-Field action, its
packet space can be represented with these five fields as <
tcp, 10.10.3.∗, any, 192.1.2.7, any >. However, if a flow rule
has Set-Field actions, which rewrite some header fields, its
packet space must be represented using the rewritten values of
fields. For instance, if the above f has a Set-Field action,
“Set destination IP = 192.1.2.10”, its packet space should be
represented as < tcp, 10.10.3.∗, any, 192.1.2.10, any >.

Definition 2 (Direct dependency). Two rules ri and rj in a
rule set R are directly dependent iff PS(ri) ∩ PS(rj) 6= ∅,
where PS(ri) is the packet space defined by ri, and PS(rj)
is the packet space defined by rj .

Definition 3 (Indirect dependency). Two rules ri and rj in a
rule set R are indirectly dependent iff PS(ri) ∩ PS(rj) = ∅
and there exists a subset R ⊆ R\{ri, rj} such that PS(ri) ∩
PS(R) 6= ∅ and PS(rj) ∩ PS(R) 6= ∅.

Note that indirect dependency is associative, that is, if rule
ri and rj are indirectly dependent, and rj and rl are indirectly
dependent, then ri and rl are indirectly independent.

VFW Controller uses Algorithm 1 to partition a rule
set R to disjoint groups. Rules inside a group are in the same
order as they are in R, and are either directly or indirectly
dependent. Across groups, there is no dependency relation.
The inputs of Algorithm 1 are the rule set R to be partitioned
and a set G that is used to store rule groups and initially set to
be empty. Algorithm 1 sequentially examines each rule r ∈ R
against each existing rule group G ∈ G. We use a set Γ to store
all the rules in R that precede r and have dependency relation
with r, and Γ is initially set to be empty. If G is empty (i.e. r
is the first rule in R), then we append r to Γ, add Γ as a new
group to G, and move the next rule in R. Otherwise, if there
exists a rule ri ∈ G that has dependency relation with r, then
all the rules in G are appended to Γ, and group G is removed
from G. After all existing groups in G have been checked, all
the rules in R that precede r and have dependency relation with
r are now stored in Γ. We append rule to r to Γ. At last Γ is
added as a new group to G. After R has been iterated through,
all the rule groups are stored in G. Applying Algorithm 1 to
a set of firewall rules on a virtual firewall produces a set of

Algorithm 1: Partitioning of a rule set to disjoint groups.
Input: R, a set of ordered rules to be partitioned;

G = ∅, a set, initially set to be empty, to store
rule groups.

Output: G, the set of rule groups;
1 foreach r ∈ R do
2 Γ = ∅; /* A set to store preceding rules that has

dependency relation with r . Initially ∅. */
3 if G = ∅ then

/* That is to say r is the first rule in R */
4 Γ.Append(r);
5 else
6 PS(r)←− PacketSpace(r);
7 foreach G ∈ G do
8 foreach ri ∈ G do
9 PS(ri)←− PacketSpace(ri);

10 if PS(r) ∩ PS(ri) 6= ∅ then
11 Γ.Append(G);/* Sequentially append

each rule in group G to Γ. */
12 G.Remove(G);/* Remove group G from

G. */
13 break;

/* Now all the rules that precede r and have
dependency relation with r are stored in Γ.

*/
14 Γ.Append(r); /* Append r to Γ. */

15 G.Add(Γ); /* Add Γ as a new group to G. */

16 return G;

firewall rule groups, which we denote as V = {V1, ..., Vm}
throughout this paper.

Applying Algorithm 1 to a set of flow rules on an SDN
switch produces a set of flow rule groups, which we denote
as F = {F1, ..., Fn} throughout this paper. We identify the
relation between a firewall rule group V and a flow rule group
F is one of the following:

• Independency iff PS(V ) ∩ PS(F ) = ∅. We denote
independency as V indF .

• Congruence iff PS(V ) = PS(F ). We denote congru-
ence as V conF .

• Superspace iff PS(V ) ⊃ PS(F ). We denote super-
space as V supF .

• Subspace iff PS(V ) ⊂ PS(F ). We denote subspace
as V subF .

• Intersection iff PS(V ) ∩ PS(F ) ⊂ PS(V ) and
PS(V ) ∩ PS(F ) ⊂ PS(F ). We denote intersection
as V intF .

Definition 4 (Inter-dependency). A firewall rule group V and a
flow rule group F are inter-dependent if PS(V )∩PS(F ) 6= ∅.

When V and F are inter-dependent, they are related by
one of Congruence, Superspace, Subspace and Intersection
relation.

B. Association and Class

We next introduce association relation between two firewall
rule groups, and the concept of firewall rule class. We will
show in §V that class-based migration serves to achieve less
update cost.

Definition 5 (Direct association). Two firewall rule groups Vi
and Vj in a firewall rule set V are directly associated iff there

5



PS(F1)

PS(V2)PS(V1)

PS(F4)

PS(V6)
PS(V7)

PS(F2)

PS(V3)

PS(F3)

PS(V5)PS(V4)

PS(F5) PS(F6)

PS(V8)

Fig. 3: Example of firewall rule associations and classes.

Algorithm 2: Classification of firewall rule groups to
classes.

Input: V = {V1, ..., Vm}, a set of firewall rule groups; F = {F1, ..., Fn},
a set of flow groups;

C = ∅, a set of firewall rule classes which is initially set
to be empty;

Output: C;
/* Identify direct associations. */

1 foreach F ∈ F do
2 V̄ = ∅; /* A set to store firewall rule groups that

are directed associated via F, initially set to
be empty; */

3 foreach V ∈ V do
4 if V and F are inter-dependent then
5 V̄ .Append(V );/* Each firewall rule in V is

sequentially appended to V̄ . */

6 if V̄ 6= ∅ then
7 C.Add(V̄ );/* V̄ is added to C as a class. */

/* Identify indirect associations. Any two classes that
intersect are united to make a bigger class. */

8 foreach V̄i ∈ C and V̄j ∈ C do
9 if V̄j ∩ V̄j 6= ∅ then

10 V̄i.Append(V̄j); /* Each firewall rule in V̄j is
sequentially appended to V̄i. */

11 C.Remove(V̄j);

12 return C;

exists a flow rule group F in a flow rule set F such that Vi and
F are inter-dependent, and Vj and F are inter-dependent. We
use the notation Vi dir-assoVj to denote Vi and Vj are directly
associated.

Definition 6 (Indirect association). Two firewall rule groups Vi
and Vj in a firewall rule set V are indirectly associated iff they
are not directly associated and there exists V̄ ⊆ V\{Vi, Vj},
such that Vi and V̄ are directly associated, and Vj and V̄ are
directly associated.

Definition 7 (Firewall Rule Class). A firewall rule class is the
union of firewall rule groups that are directly or indirectly
associated.

Figure 3 demonstrates association relation and firewall rule
class using an example where the firewall rule set is V =
{V1, ..., V8} and the flow rule set is F = {F1, ..., F6}. In the
example,

• Direct association: V1
dir-assoV2, V3

dir-assoV4,
V4

dir-assoV5, V6
dir-assoV7

• Indirect association: V3
ind-assoV5

Based on the association relations, the firewall rule set
V = {V1, ..., V8} is further divided into four classes V =
{V̄1, ..., V̄4}, where class V̄1 = V1 ∪ V2, V̄2 = V3 ∪ V4 ∪ V5,
V̄3 = V6 ∪ V7, V̄4 = V8.

VFW Controller uses Algorithm 2 to classify firewall
rule groups V = {V1, ..., Vm} into classes V = {V̄1, ..., V̄m̄}.
Firewall rule groups inside a class are either directly or
indirectly associated. There is no association across classes.
The inputs of Algorithm 2 are V (the set of firewall groups to
be classified), F (the set of flow rule groups of an SDN switch),
and C (a set to store firewall rule classes). The algorithm has 2
steps. First, it identifies all the direct association relations. For
each flow rule group F ∈ F, the algorithm finds the firewall
rule groups that are directly associated via F , unites these
firewall rule groups together to make a class, and adds this
class to C. Now each class in C contains firewall rule groups
that are directly associated. Take for example the firewall rule
set and flow rule set in Figure 3, the first step will generate
6 classes: V̄ ′1 = V1 ∪ V2, V̄ ′2 = V3 ∪ V4, V̄ ′3 = V4 ∪ V5,
V̄ ′4 = V6 ∪ V7, V̄ ′5 = V8, and V̄ ′6 = V8. Second, the algorithm
unites the classes that intersect. This is to identify the indirect
associations. For example as V̄ ′1 and V̄ ′2 both have V4, they will
be united. In this way, the indirect association between V3 and
V5 are identified. Similarly V̄ ′5 and V̄ ′6 will be also united.
So the second step will generate 4 classes: V̄ ′1 = V1 ∪ V2,
V̄ ′2 = V3 ∪ V4 ∪ V5, V̄ ′4 = V6 ∪ V7, V̄ ′5 = V8.

C. Semantic Consistency

Semantic consistency of firewall rules must be maintained
in virtual firewall scaling, otherwise safety violations may
occur. Two causes lead to semantic inconsistency (see §II for
examples). First, firewall rules that are dependent are split
across multiple virtual firewall instances. Second, the order
of firewall rules that are dependent is changed after migration.
Therefore, we propose the following group-based strategy to
maintain semantic consistency in VFW Controller:

Group-Based Migration Strategy: To guarantee semantic
consistency, firewall rules in a group are migrated to the
same destination virtual firewall instance and are in the same
order as they are in the source virtual firewall instance. The
destination virtual firewall instance can only start to process
traffic matching rules in a group until all the rules and flow
states associated with the group are ready on the destination
instance.

We have studied a number of real-world firewall policies
(see § VIII-B2) and found that rule dependencies are common
in firewalls policies. Hence, dependency analysis is necessary
in VFW Controller. We also found that it is a very rare
case in reality that a firewall policy only contains one big
group. Therefore, we ignore the discussion of such a special
case in this paper.

V. FLOW UPDATE ANALYSIS

In this section, we analyze how to update flow rules in
SDN switches to provide the required traffic steering support
for the migration of a firewall rule group. We identify a set of
necessary update operations and define update cost. Strategy
to reduce update cost is presented as well.

6



ToR Switch 
(SW)

Servers

Aggregation 
Switch

VFW1 VFW2

Case (a) Case (b) Case (c)

10.10.*.* 192.1.*.*

Core Switch

Servers

Aggregation 
Swtich (SW)

VFW1 VFW2

ToR 
Switches

192.1.*.*

Server

VFW1

10.10.*.*

ToR Switch

Open vSwtich
(SW)

VFW2

Core Switch

Aggregation 
Switch

10.10.*.* 192.1.*.*

Core Switch

Fig. 4: SW in three different cases with respect to a classic 3-tire
cloud architecture.

A. Update Operations

Let Vi ∈ V be the firewall rule group to be migrated from
a source virtual firewall VFW1 to a destination virtual firewall
VFW2. The key SDN switch is the last SDN switch, through
which all the traffic matching Vi will pass before diverging
on their paths to reach VFW1 and VFW2. In what follows,
we denote such key SDN switch as SW. Figure 4 shows SW
switches in different cases: (a) VFW1 and VFW2 are on the
same server; (b) VFW1 and VFW2 are in different servers on
the same rack; and (c) VFW1 and VFW2 are in different racks.
In case (a), the SW is an open vSwitch on the server. In case
(b), the SW is the Top-of-Rack (ToR) switch that connects the
two servers. In case (c), the SW is the Aggregation Switch that
connects the two racks. We consider case (a) will be the most
common, as it introduces the least traffic overload and update
efforts. Only when two virtual firewalls cannot be placed on
the same sever due to resource inadequacy, they will be placed
on separate servers.

To update the SDN switches on the path from SW to
VFW1, the existing flow rules that route the matching traffic
to VFW1 will be deleted. To update the SDN switches on
the path from SW to VFW2, new flow rules to route the
matching traffic to VFW2 will be added. The updates on SW is,
however, less straightforward, hence we focus on the update of
SW in this paper. VFW Controller tracks SWs, leveraging
the capability provided by SDN where a central controller
maintains a panoramic view of the entire network.

Let F = {F1, ..., Fn} be the set of flow groups (obtained
using the partition algorithm in §IV) on SW. To find the updates
on F, VFW Controller iterates through F = {F1, ..., Fn}
sequentially, and compares the inter-dependency relation be-
tween Vi and each Fj ∈ F to determine the updates. We iden-
tify two types of update operations: CHANGE and INSERT.

• If Vi indFj , no update is required.

• If Vi conFj or Vi supFj , only CHANGE operation is
required. For every flow rule f ∈ Fj , if its forwarding
actions contain ‘send to VFW1’, the forwarding action
is changed to ‘send to VFW2’. Note that the same flow
rule may contain forwarding actions for the routing
intentions of other applications (see the example flow
rule f3 in Figure 1). Flow update should not change
any of those actions.

• If Vi subFj or Vi intFj , both CHANGE and INSERT
operations are required. Comparisons between PS(v),
the packet space defined by each v ∈ Vi, and PS(f),
the packet space defined by each f ∈ Fj , will be
performed in order to find the correct update.
(1) If PS(v) ∩ PS(f) = ∅, f needs no update.

(2) If PS(v) ⊇ PS(f), then CHANGE operation
is performed to change the ‘send to VFW1’
action of f to ‘send to VFW2’.

(3) If PS(v) ⊂ PS(f), then INSERT operation
is performed. A new flow rule f ′ is inserted
right before f to express that traffic matching
v is sent to VFW2. Take the v and f below
for example.

v tcp 10.10.2.* * 192.1.1.9 80 deny

f * 10.10.2.* * 192.1.1.* 80 send to VFW1

and IDS1

Then f ′ below is inserted right before f .

f ′ tcp 10.10.2.* * 192.1.1.9 80 send to VFW2

and IDS1

(4) If PS(v) ∩ PS(f) ⊂ PS(v) and PS(v) ∩
PS(f) ⊂ PS(f), INSERT operation is per-
formed. A new flow rule f ′ is inserted right
before f . Each field of f ′ is the same as f ,
except that the protocol, source IP, source port,
destination IP, destination port fields of f ′ are
the intersection of the respective fields of v and
f , and the forwarding action of f ′ is ‘send
to VFW2’. For example, for the following v
and f

v * 10.10.2.* * 192.1.1.9 80 deny

f * 10.10.2.1 * 192.1.1.* 80 send to VFW1

and IDS1

the new flow rule f ′ is:

f ′ * 10.10.2.1 * 192.1.1.9 80 send to VFW2

and IDS1

After all the groups in F = {F1, ..., Fn} have been
examined, VFW Controller obtains the update of SW to
support the migration of Vi. When comparing Vi with each Fj
as above, VFW Controller also keeps track of the number
of new flow rules that are INSERTed. In what follows we
denote that number as αij .

B. Update Cost and Cost Reduction

As presented above, updates of the flow rules on SW consist
of INSERT and CHANGE operations. Each INSERT operation
causes an increase in the number of flow rules in the SW
switch. The TCAM space for holding flow rules in an SDN
switch is valuable and limited, therefore increases in the size
of flow rules must be tracked. We define the update cost of
firewall rule group Vi as follows.

Definition 8 (Update Cost). The update cost of a firewall rule
group is the total number of new flow rules inserted in SW
during its update to support the migration of Vi.

Let γi be the update cost of Vi, then we have

7



 Controller
2. Call 

transfer(VFW 2 , 

fsapce)

VFW1

1. Call 
accept(VFW

1 )

 

SW

Buffers3. Export firewall 
rules and states

4. U
pdate

VFW2

Fig. 5: Workflow of migration control.

γi =

n∑
j=1

αij

Given a large number of virtual firewalls in a virtualized
environment and the fact that constant firewall rule migrations
are expected, the total update cost must be reduced. There are
two ways to reduce the total update cost:

• Select firewall rule groups that cause smaller update
cost for migration.

• Analyze the relationships between firewall rule class
and flow rule group. The comparison we have per-
formed in §V-A is pairwise between a firewall rule
group Vi and a flow group Fj .

We observed that new flow rules are inserted only when
Vi
subFj or Vi intFj . If there is a class V̄ that consists of Vi

and other firewall rule groups and V̄ supFj , then no new flow
rules will be inserted. To see why, consider a simple case as
follows. Two firewall rule groups V1 and V2 are to be migrated.
Fj ∈ F is one flow rule group in SW and we have V1

intFj
and V2

intFj , and V1∪V2
supFj . Both INSERT and CHANGE

operations are required for the migration of V1 and V2. Let α1j

be the number of new flow rules that will be inserted to Fj in
order to support the migration of V1, and α2j be the number
of new flow rules needed in order to support the migration of
V2. Thus the total number of new flow rules to be inserted to
Fj is α1j + α2j . Let V̄ = V1 ∪ V2, because V̄ supFj , then no
INSERT operation is required to support the migration of V̄ ,
hence the total number of new flow rules to be inserted is 0.
Based on such observation, we propose the following class-
based migration strategy in VFW Controller to reduce the
total update cost:

Class-Based Migration Strategy: If the update cost of
migrating a class V̄ = ∪m′i=1Vi is smaller than the sum of the
update cost of each Vi that constitutes V̄ , then V̄ is migrated
as a big group to the same destination virtual firewall to reduce
update cost.

VI. BUFFER COST ANALYSIS

Migration of a firewall rule group Vi from a source virtual
firewall VFW1 to a destination virtual firewall VFW2 consists
of the following key procedures: moving Vi and corresponding
flow states on VFW1 to VFW2, installing of Vi and the states
on VFW2, and updating the flow rules in the involved SDN
switches to reroute traffic matching Vi to VFW2, and deleting
Vi and the states on VFW1.

SW VFW1
VFW2

t0: transfer begins

t1: update finishes

t0-d1

t1+d2: begins to buffer packets

t1+d1

t1+d1+b1
t1+d1+b1+d3

t1+d1+b1+d3+b2: begins to 
process buffered packets

process time b1

reprocess time b2

Fig. 6: Packet paths during the migration.

During the migration, in-flight traffic will be generated and
need to be buffered until the installation completes. Then, in-
flight traffic will be flushed to VFW2 for processing. Prior
knowledge on the amount of in-flight traffic is crucial to
avoid buffer overflow. We observed that the migration of each
firewall rule (group) incurs different amount of in-flight traffic.
Based on the prior knowledge, we can select firewall rule
groups to migrate in order to avoid overflowing the buffers
of the destination virtual firewalls.

We define the buffer cost of a firewall rule group as follows:

Definition 9 (Buffer Cost). The buffer cost of a firewall
rule group is the amount of in-flight traffic that are generated
during the migration of the group.

We next present the migration control mechanism used
in VFW Controller, followed by how to calculate buffer
cost. The challenge is to model the migration control and
quantify the time period from the start of buffering to the
release of the buffered traffic. Factors affecting the time period
include delays introduced by end-host (OS, compute resource
assigned to a virtual firewall, etc.), which depend on cloud
infrastructure.

As shown in Figure 5, VFW Controller adopts dis-
tributed buffering mechanism derived from [27] to buffer in-
flight traffic at each destination instance. First, the central
controller invokes API function accept(VFW1) on VFW2 to
inform on the upcoming export of firewall rules and flow
states from VFW1. Second, the controller invokes another API
function transfer(VFW2, fspace) to instruct VFW1 to transfer
the firewall rules and the flow states defined in fspace to
VFW2. Then VFW1 transfers the specified firewall rules and
states to VFW2. After receiving them, VFW2 installs them
immediately. The controller waits for the installation to be
completed and issues updates to SW switch. Before the update
finishes, SW keeps sending traffic to VFW1, and VFW1

continues processing these traffic. If any traffic, which VFW1

processes after the transfer of the firewall rules and flow states,
causes the state of a flow to evolve, then the traffic is sent by
VFW1 to VFW2. VFW2 reprocesses this traffic to bring its
state up to date. After the updates on SW complete, VFW2

receives traffic directly from SW. The traffic directly from SW
must be buffered at VFW2. VFW2 can only start to process
the buffered traffic until it has received and processed all the
traffic from VFW1. This is to ensure that VFW2 has the most
updated states before process the buffered traffic.

8



A. Buffer Cost Calculation

Figure 6 shows the packet paths during the migration of
Vi. In Figure 6,

• t0: is the time that VFW1 starts to transfer the firewall
rules and flow states specified in fspace;

• t1: is the time that SW finishes the update;
• d1: is the transmission delay between SW and VFW1;

• d2: is the transmission delay between SW and VFW2;

• d3: the transmission delay between VFW1 and VFW2;

• b1: is the average time that VFW1 spends processing
a packet; and

• b2: is the average time that VFW2 spends processing
a packet.

At SW, the traffic matching Vi that arrives before t1 is
sent to VFW1, and after t1 it is sent to VFW2. Let Γ be a set
comprising the matching traffic that arrives during (t0−d1, t1).
Γ is shown as the blue part in Figure 6. Traffic in Γ is sent to
VFW1.

At VFW1, the firewall rules and flow states defined in
fspace are sent to VFW2. Traffic in Γ starts to arrive after
t0, and the last packet in Γ arrives before t1 + d1. VFW1

processes all the traffic in Γ. VFW1 finishes processing Γ
before t1+d1+b1. If any traffic in Γ whose processing causes
the state of a flow to evolve, VFW1 will send the traffic to
VFW2 for reprocessing in order to keep state consistency. For
generality, we assume all the traffic in Γ are sent to VFW2

for reprocessing. This assumption will lead to an estimate of
buffer cost that is larger than the actual cost in some cases.
Given that we want to avoid buffer overflow, over-estimates
are preferable.

At VFW2, traffic directly sent from SW starts to arrive after
t1+d2. However, the traffic directly from SW must be buffered
until VFW2 has received and reprocessed all the traffic in Γ.
The last packet in Γ arrives at VFW2 before t1+d1+ b1+d3
and it is processed before t1 + d1 + b1 + d3 + b2. Therefore,
traffic that is directly sent from SW and arrives at VFW2 during
(t1 + d2, t1 + d1 + b1 + d3 + b2) is buffered.

Suppose there are ki flows matching Vi and the rate (bits
per second) of flow j is λj . Then we estimate the buffer cost
of Vi as

βi = (

ki∑
j=1

λj)× {(t1 + d1 + b1 + d3 + b2)− (t1 + d2)}

= (

ki∑
j=1

λj)× (d1 + b1 + d3 + b2− d2)

(1)
VFW Controller can leverage the capability of SDN

to conveniently obtain λj , d1, d2 and d3. SW periodically
reports the statistics of flows to VFW Controller, which
are used to obtain λj . d1, d2 and d3 are transmission delays,
which can be measured in practice and collected by VFW
Controller. b1 and b2 depend on the resource assigned to
VFW1 and VFW2, and can be obtained through experiments
(see Figure 7(b)). For simplicity, VFW Controller assigns
the same resource to each virtual firewall, hence b1 = b2.

VII. OPTIMAL SCALING

In this section, we present an three-step heuristic approach
VFW Controller uses to solve for optimal scaling-out
and the ILP approach for optimal scaling-in. We start with
modeling a virtual firewall.

A. Virtual Firewall Modeling

The processing capacity c of a virtual firewall depends on
the resource granted and the number of loaded firewall rules.
For easier management, each virtual firewall created by VFW
Controller is granted the same resource. Therefore, we
model c as a function of S, i.e. c(S) where S is the number
of loaded firewall rules. As S increases, c decreases. Because
when processing a packet, a firewall search through its rule
space until the first matching rule is found. Then the packet
is processed according to the first matching rule. Larger S
means larger the average search overhead, hence smaller c. Our
experiments in §VIII-B1 validate such a relationship between
c and S.

The runtime throughput of a virtual firewall, η, is a function
of Λ, the aggregated rate of the incoming traffic flows.

η(Λ) =

{
Λ if Λ ≤ c
c if Λ > c

When Λ > c, packet loss may be expected at a virtual firewall,
because the rate of traffic coming to the virtual firewall exceeds
the rate of traffic leaving. Service Level Agreement (SLA) on
performance generally requires the processing capacity of a
virtual firewall to meet a predefined value Φ, that is, c(S) ≥ Φ.
Since c decreases as S increases, Φ essentially places an upper
bound on S. The upper bound is c−1(Φ). Therefore, c(S) ≥ Φ
is equivalent to S ≤ c−1(Φ).

B. Optimal Scaling-Out

Accurate overload detection is not the focus of this paper.
VFW Controller simply deems a virtual firewall over-
loaded if one of the following conditions occurs: (i) η > 0.9c;
(ii) c(S) < Φ (or equivalently S < c−1(Φ)). Condition
(i) states that a virtual firewall is using above 90% of its
processing capacity. 10% remnant is intentional to avoid packet
loss. Condition (ii) states that the processing capacity of a
virtual firewall fails to meet the SLA agreement.

To solve an overload, new virtual firewall instances, each
of which has a limited buffer space of B, are created, selective
firewall rule groups and the associated flow states on the
overloaded virtual firewall are migrated to the new instances.
The migration of each firewall rule group causes both a
buffer cost and a update cost. VFW Controller solves
the overload using the minimum number of instances while
incurring the least total update cost and no buffer overflow.

After a virtual firewall is detected overloaded, VFW
Controller runs Dependency Analysis, Flow Update Anal-
ysis, Buffer Cost Calculation, and has the following parame-
ters:

• A set of m firewall rule groups V = {V1, V2, ..., Vm}
with group Vi having a rule size of si, an update cost

9



of γi, a buffer cost of βi, and ki matching traffic flows
with the flow rates of λi1, λi2, ..., λiki .

• A processing capacity of c(
∑m
i=1 si), and a runtime

throughput of η.
• An overload condition that c(

∑m
i=1 si) < Φ or η >

0.9c(
∑m
i=1 si).

Then, VFW Controller adopts a three-step heuristic ap-
proach to work out the minimum number of new instances to
create and the firewall rule group distribution.

Step 1: VFW Controller estimates the minimum
number of new instances to create. Let n be the number.

n =

b
∑m

i=1

∑ki

j=1
λij−0.9c(

∑m

i=1
si)

Φ c if η > 0.9c(
∑m
i=1 si)

b
∑m

i=1
si−c−1(Φ)

c−1(Φ) c if S < c−1(Φ)

In the case when η > 0.9c(
∑m
i=1 si), the amount of traffic that

should be shunted away from the overloaded virtual firewall
is
∑m
i=1

∑ki
j=1 λij − η, which will be undertaken by the new

instances, each of which must guarantee a processing capacity
of Φ as dictated by the SLA. In the case when S < c−1(Φ), the
number of firewall rules that must be migrated is

∑m
i=1 si −

c−1(Φ), which will be split among the new instances, each
of which is constrained by an upper bound c−1(Φ). The floor
operation in the estimate above implies that the estimate may
be smaller than required.

Step 2: VFW Controller applies ILP to solve for fire-
wall rule distribution. Let x = {x11, ..., xmn} be a set of
unknown variables, where xij ∈ {0, 1} is an indicator of
migrating firewall rule group Vi to new instance j. The ILP
formulation to solve x is below:

min
∑m
i=1

∑n
j=1 xijγi

s.t.

(1) xij ∈ {0, 1} for 1 ≤ i ≤ m, 1 ≤ j ≤ n
(2)

∑n
j=1 xij ≤ 1 for all 1 ≤ i ≤ m

(3)
∑m
i=1 xijβi ≤ B for all 1 ≤ j ≤ n // Prevent

buffer overflow on each new instance.
(4)

∑m
i=1 xijsi ≤ c−1(Φ) for all 1 ≤ j ≤ n // Each

new instance must satisfy the SLA.

(5)
∑m
i=1 xij(

∑ki
l=1 λil) ≤ 0.9c(

∑m
i=1 sixij) for all 1 ≤

j ≤ n // Each new instance must not be over-
loaded.

(6) (
∑m
i=1

∑ki
j=1 λij −

∑m
i=1

∑n
j=1

∑ki
l=1 xijλi,l) ≤

0.9c(
∑m
i=1 si−

∑m
i=1

∑n
j=1 xijsi) // After scale

out, the old firewall is not overloaded. This constraint
is used when overload condition (i) occurs.

or
(6’) (

∑m
i=1 si −

∑m
i=1

∑n
j=1 xijsi) ≤ c−1(Φ) //After

scaling out, the old virtual firewall must satisfy the
SLA. This constraint is used when overload condition
(ii) occurs.

Solving the above ILP formulation, we obtain x. If xij = 1
then firewall rule group Vi is to be migrated to new instance j.
If xij = 0 for all j, then firewall rule group Vi stays on the old

virtual firewall. If the above ILP formulation has no solution,
which implies that the estimate of n at Step 1 is smaller than
required, then go to Step 3.

Step 3: Increase n by one and perform Step 2 again until
a solution is found.

C. Optimal Scaling-In

VFW Controller deems a virtual firewall underloaded,
if its runtime throughput is 50% smaller than its processing
capacity. When more than one virtual firewall are underloaded,
VFW Controller merges them. VFW Controller ap-
plies the following ILP formulation to determine the maximum
number of virtual firewalls to be killed while meeting the
following constraints:

• Each remaining virtual firewall must not be overloaded
after the mergence.

• Each remaining virtual firewall must not have its
buffer space overflowed.

• Each remaining virtual firewall must satisfy the SLA.

• The total update cost in the mergence is bounded by
a predefined value γ.

Suppose there are n underloaded virtual firewalls. under-
loaded virtual firewall j has:

• A set of mj firewall rule groups Vj =
{V j1 , V

j
2 , ..., V

j
mj} with group V ji having a rule

size of sji , an update cost of γji , a buffer cost of βji ,
and kji matching traffic flows with the flow rates of
λji1, λji2, ..., λj

ikj
i

.

• A processing capacity of c(
∑mj

i=1 s
j
i ), and a runtime

throughput of ηj .

Let x = {x11, ..., xnn} be a set of unknown variables, where
xqj ∈ {0, 1} is an indicator of merging underloaded virtual
firewall j onto q. The ILP formulation to solve x is presented
below:

max
∑n
j=1

∑n
q=1 xqj

s.t.

(1) xqj ∈ {0, 1} for all 1 ≤ q ≤ n, 1 ≤ j ≤ n
(2) xqq = 0 for all 1 ≤ q ≤ n
(3)

∑n
q=1 xqj ≤ 1 for all 1 ≤ j ≤ n

(4)
∑mq

i=1 s
q
i +

∑n
j=1

∑mj

i=1 xqjs
j
i ≤ c−1(Φ) for all 1 ≤

q ≤ n

(5)
∑mq

i=1

∑kq
i

l=1 λ
q
il +

∑n
j=1

∑mj

i=1

∑kj
i

l=1 λ
j
ilxqj ≤

0.9c(
∑mq

i=1 s
q
i +
∑n
j=1

∑mj

i=1 xqjs
j
i ) for all 1 ≤ q ≤ n

(6)
∑n
j=1

∑mj

i=1 xqjβ
j
i ≤ B for all 1 ≤ q ≤ n

(7)
∑n
q=1

∑n
j=1

∑mj

i=1 xqjγ
j
i ≤ γ

Solving the above ILP formulation, we obtain all xqj . If xqj =
1, then virtual firewall j is merged onto q. If

∑n
q=1 xqj =

0, then virtual firewall j remains. The maximum number of
virtual firewall to be killed is

∑n
j=1

∑n
q=1 xqj .

10



In reality, there may be cases where conditions of scaling-
out or scaling-in occur frequently thus requiring frequent
scaling-out or scaling-in. To avoid thrashing, a potential solu-
tion is to set a threshold of frequency, above which the scaling
process is not allowed. The suggested threshold depends on
the scaling performance of VFW Controller, which can
be measured in practice.

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation

We have implemented a prototype of VFW Controller
on top of ClickOS [38]. ClickOS is a Xen-based NFV platform
optimized for fast provision of virtualized network functions
in large scale. ClickOS creates small VMs (each less than
12MB) and boots one instance within 30 milliseconds. We
have enhanced ClickOS to provide stateful virtual firewalls
using Click modular router software [33]. Click provides
rich networking processing elements, which can be leveraged
to construct a wide range of virtual middleboxes. We have
used three elements, IPfilter, IPClassifier and IPFragmenter,
provided by Click to implement firewall packet processing
function. We have also developed new Click elements for
firewall rule management, buffer management, and interfaces
for migrating rules and states. In particular, we have developed
a programming interface on top of XL [10] 6, which VFW
Controller uses to exert migration controls on individual
virtual firewalls. Such a control automation is essential to
fully take advantage of virtual firewall benefits [6]. Our VFW
implementation provides useful insights to implement and
control other virtualized network functions as well.

Key functions of VFW Controller have been realized
as individual modules. In particular, we have implemented a
Dependency Analysis module based on Header Space Library
(Hassel) [4], which is a tool for static header space analysis, a
Flow Update Analysis module to find the correct flow updates
and calculate update costs, a Buffer Cost Analysis module
to calculate buffer costs, and an Optimal Scaling Calculation
module that realizes the approaches for optimal scaling by call-
ing a Matlab ILP solver. VFW Controller also includes a
Floodlight module that implements Floodlight SDN controller
functions [8]. VFW Controller uses Floodlight REST APIs
to communicate flow updates to Floodlight module, which
programs SDN switches through an OpenFlow interface. The
same channel is also used by SDN switches to send network
traffic statistics back to VFW Controller.

To improve the performance of VFW Controller, our
implementation uses both online and prior processing. All the
analyses, including dependency analysis, flow update analy-
sis, update cost calculation, and buffer cost calculation are
carried out prior. VFW Controller maintains a copy of
firewall rules for each virtual firewall and the flow rules in
its database for prior analyses. Results from the analyses are
stored and retrieved whenever scaling is to be performed. Over-
load/underload detection, optimal scaling calculation, virtual
firewall creation/deletion, migrations of firewall rules and flow
states, and flow updates are carried out online.

6XL is a toolstack that provides the capability to provision guest VM in
Xen.

B. Evaluation

VFW Controller achieves safe, efficient and optimal
virtual firewall scaling. We evaluate VFW Controller with
the following goals:

• Demonstration of the relationship between virtual fire-
wall performance and the rule size (Figure 7). This
justifies VFW Controller’s choice of rule split
over rule copy.

• Study of the rule dependency relations in firewall
policies (Table I). This justifies the necessity of de-
pendency analysis in VFW Controller.

• Demonstration of VFW Controller’s capability to
quickly scale (Figure 8).

• Quantifying the impact of firewall rule migration on
virtual firewall throughput (Figure 9).

• Evaluating the performance of VFW Controller’s
optimal scaling calculation (Figure 10).

Setup and Methodology: Our experiments were conducted
using CloudLab [3], an open cloud platform providing various
resources (server, storage, and network) for experimenters to
run cloud software stacks such as OpenStack and CloudStack.
In our experiments, we deployed a client machine that gen-
erated traffic, a server machine that received traffic, and a
firewall machine created by VFW Controller to process the
traffic between the client and the server. The client generated
synthetic workloads using scapy 7, a powerful interactive
packet manipulation program.

1) Performance of Virtual Firewalls: In this experiment,
we examined the relationship between the processing capacity,
c, of a virtual firewall and its firewall rule size S. We
used three traffic datasets captured from real-world networks:
1) the CAIDA UCSD anonymized Internet trace [16] is a
representative of Internet traffic; 2) the LBNL/ICSI enterprise
trace [5] is a typical traffic collected from an enterprise
network; and 3) the Campus network trace that was collected
from our campus network gateway. Against each of the dataset,
we conducted experiments to study how the firewall rule
size affects the performance of a virtual firewall. In each
experiment, we let S increase from 1 to 3000, which we
considered as a maximum number of rules in a single VFW.
Then we measured the processing capability for each S value
and repeated each measurement 100 times to calculate the
average processing capacity, as shown in Figure 7(a). The
average processing capacity linearly decreases as S increases
over all datasets. The LBNL enterprise traffic contains packets
with greater length of payload, thus bares a more significant
impact on performance. We applied polynomial curve fitting
linear regress on the CAIDA trace, which was captured by
April 2016 and represents the most up-to-date characteristic
of today’s Internet traffic, and obtained the function c(S) as

c(S) = −0.0043S + 6.2785 (2)

This function fits the corresponding CAIDA curve in Fig-
ure 7(a) with R2 = 0.9864. R2 is a measure of goodness of
fit with a value of 1 denoting a perfect fit. c(S) will be used
by the evaluation of optimal scaling calculation (§ VIII-B5).

7http://www.secdev.org/projects/scapy/.

11



0 600 1200 1800 2400 3000
Number of firewall rules

0

200

400

600

800

1000

1200

P
ro

ce
ss

in
g
 C

a
p
a
ci

ty
 (

M
b
p
s)

(a) Processing capacity

Campus
LBNL
CAIDA

(a) Processing capacity.

0 600 1200 1800 2400 3000
Number of firewall rules

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

ce
ss

in
g
 T

im
e
 (

m
ic

ro
se

co
n
d
)

(b) Processing time

Campus
LBNL
CAIDA

(b) Processing time per packet.

Fig. 7: Relationship between virtual firewall performance and
rule size.

In the experiment, we also recorded the average time a
virtual firewall instance spent to process a packet for each of
the real-world dataset, as shown in Figure 7(b). As S increases,
the average processing time shows an linear increase, which
eventually incurs the latency of the passed packets. These re-
sults of this experiment can be used for buffer cost calculation
(§ VI-A).

2) Rule Dependencies in Firewall Policies: In this experi-
ment, we studied 8 real-world firewall policies from different
resources. Most of them are from campus networks and some
are from major ISPs. We partitioned each policy to disjoint
groups using the partition algorithm given in Section IV. The
experimental results are listed in Table I. The first two columns
of the table show the policies we used and their rule numbers.
The third column gives the number of groups identified in each
policy, and the fourth column shows the number of the firewall
rules in the largest group of each policy. This experiment
demonstrates that rule dependencies are common in real-world
firewall policies. Therefore, the dependency analysis in VFW
Controller is necessary. We also noticed from our study
that the largest group we encountered contains only 18 firewall
rules (from Policy H in Table I).

3) Elasticity of VFW Controller: In this experiment, we
demonstrated VFW Controller’s ability to elastically scale
out an overloaded virtual firewall. We designed three scenarios.
In scenario (1), a single virtual firewall was created and
configured with 400 firewall rules to process the traffic between
the client and the server. In scenario (2), two single virtual

TABLE I: Rule dependencies in real-world firewall policies.

Policy Rule (#) Group (#) Largest Group
Member (#)

A 12 2 3
B 18 3 5
C 25 3 6
D 52 7 7
E 83 9 7
F 132 10 9
G 354 10 12
H 926 13 18

firewalls were created to work in parallel process the same
traffic. The 400 firewall rules in scenario (1) were split and
installed in those two virtual firewalls. In both scenarios, the
virtual firewalls worked in standalone mode, which meant they
were not connected to VFW Controller and no scaling
would be performed. In scenario (3), a single virtual firewall
with the same configuration as that in scenario (1) was created
to work in standalone mode at first, then switched to connected
mode, which meant the virtual firewall was connected to VFW
Controller and was scaled out. We compared the runtime
throughput of the virtual firewalls in the three scenarios as
shown in Figure 8.

Figure 8(a) shows the runtime throughput of the three
scenarios when the client generated 4 UDP flows with an
aggregated traffic rate of about 2.8 Gbps. In scenario (1), the
single virtual firewall achieved a maximum throughput (i.e.
processing capacity) of about 1.5 Gbps. Significant packet
loss was experienced. In scenario (2), the two virtual firewall
were able to handle the incoming traffic, producing a runtime
throughput of about 2.8 Gbps. No packet loss occurred. In
scenario (3), we intentionally let a single virtual firewall to
work from time t = 0s to t = 5s. Packet loss occurred
during this time period. Then we connected this virtual firewall
to VFW Controller and it was scaled into two virtual
firewall instances. The scaling-out took a short period of time
(¡ 1 second), after which we observed the aggregated runtime
throughput increased to around 2.8 Gbps.

We also evaluated VFW Controller against TCP traffic.
Figure 8(b) shows the runtime throughput of the three scenar-
ios when the client established 2 TCP connections with the
server. We observed a boost of runtime throughput between
t = 5s and t = 6s.

In summary, the above results demonstrated that VFW
Controller can quickly scaled out an overloaded virtual
firewall and solved the overload condition.

4) Impact of Migration: During the migration, the in-flight
traffic are buffered until the migration completes, therefore the
runtime throughput of a virtual firewall is expected to degrade
during the migration. According to equation (1) in §VI, if more
traffic flows are associated with the migrated firewall rules,
more in-flight traffic will be buffered. Therefore larger the
degradation will be and longer the degradation will last. In this
experiment, we quantified both the duration and magnitude of
throughput degradation. We set up two scenarios to test UDP
and TCP flows, respectively.

In scenario (1), the client kept sending UDP traffic destined
to the server. The UDP packets were routed through a virtual
firewall created by VFW Controller. In Figure 9(a), the

12



0 2 4 6 8 10
Data Transfer Elapsed Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
R

u
n
ti

m
e
 T

h
ro

u
g
h
p
u
t 

(G
b
p
s)

(a) Split with UDP flows overload

Single VFW
With VFW Split
Two Paralell VFWs

(a) Split with UDP flow overload.

0 2 4 6 8 10
Data Transfer Elapsed Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
u
n
ti

m
e
 T

h
ro

u
g
h
p
u
t 

(G
b
p
s)

(b) Split with TCP flows overload

With VFW Split
Two Paralell VFWs
Single VFW

(b) Split with TCP flow overload.

Fig. 8: VFW Controller for VFW elasticity.

1 2 3 4 5 6 7 8 9 10
Data Transfer Elapsed Time (seconds)

0.0

0.5

1.0

1.5

2.0

U
D

P
 T

h
ro

u
g
h
p
u
t 

(G
b
p
s)

(a) Impact on UDP Throughput

200 flows
600 flows
1200 flows
Without migration

(a) Impact on UDP throughput.

1 2 3 4 5 6 7 8 9 10
Data Transfer Elapsed Time (seconds)

0.0

0.5

1.0

1.5

2.0

T
C

P
 T

h
ro

u
g
h
p
u
t 

(G
b
p
s)

(b) Impact on TCP Throughput

200 flows
600 flows
1200 flows
Without migration

(b) Impact on TCP throughput.

Fig. 9: Performance overhead of migration.

0 100 200 300 400 500 600 700 800 900 1000
Number of Groups

0.00

0.02

0.04

0.06

0.08

0.10

0.12

T
im

e
 (

se
co

n
d
)

(a)

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Number of Under-loaded VFWs

0.00

0.02

0.04

0.06

0.08

0.10

T
im

e
 (

se
co

n
d
)

(b)

Fig. 10: Performance of provision plan calculation.

solid black line, as a base line, shows the throughput of the
virtual firewall when no migration occurred. The dotted lines in
Figure 9(a) show the runtime throughput of the virtual firewall
when migrating 200, 600, 1200 firewall rules, respectively.
The migrations were scheduled at t = 6s. We fabricated
firewall rules so that each firewall rule has one matching
flow. The duration and magnitude of throughput degradation
increased as the number of migrated firewall rules (or the
number of UDP flows) increased. However, the degradation
lasted for a very short period of time (≈0.75s with 1200
flows) and the throughput bounced back very quickly. In
scenario (2), the client sent TCP traffic. Figure 9(b) shows
that the degradation of throughput of the virtual firewall when
processing TCP traffic. As the number of firewall rules (or
TCP flows) increases, the degradation lasted longer and was
bigger. The degradation in the case of TCP traffic lasted
slightly longer than that of UDP, because TCP depends on
congestion avoidance mechanisms to control its traffic rate,
which means TCP flows take more time to recover from a
throughput degradation than UDP flows. For both UDP and
TCP flows, the throughput began to bounce back in less than
0.1 second after it reaching the lowest point (see Figures 9(a)
and (b)).

To sum up, the duration and magnitude of throughput
degradation increase as the number of migrated firewall rules
(or the number of flows) increase. And the degradation shows
an bigger impact on TCP flows than UDP flows.

5) Performance of Optimal Scaling Calculation: We intro-
duced a three-step heuristic approach in VFW Controller
to calculate an optimal solution for scaling out an overloaded
virtual firewall. The performance of this approach depends
almost fully on the ILP formulation and solving used in the
second step. Therefore, we mainly tested the performance of
our ILP formulation and solving. The ILP performance is
influenced by (i) m, the number of firewall rule groups on
the overloaded virtual firewall; and (ii) n, the number of new
virtual firewall instances to be created. In our experiment, we
measured the time to find the optimal solution for varied m and
n values. We let n range from 2 to 6, and m range from 100
up to 1000. Figure 10(a) shows our experiment results. The
time to find an optimal solution increases as m or n increases,
however, the time is very short. Even for m = 1000, our
approach needs less than 0.11 second.

13



Figure 10(b) depicts the time that our approach consumed
to find an optimal solution for scaling in when the number
of underloaded virtual firewall instances is changed. Our
approach is very efficient. Even when 100 virtual firewall
instances are detected to be underloaded, our approach takes
less than 0.08 second to find an optimal scaling-in solution.

IX. RELATED WORK

Several recent research efforts, such as Pico Replica-
tion [43], Split/Merge [44] and OpenNF [28], have been
devoted to designing control systems to address scaling issues
of virtualized network functions. Pico Replication provides
APIs that NFs can use to create, access, and modify internal
states. Split/Merge achieves load-balanced elasticity of virtual
middleboxes, via splitting internal states of NFs among virtual
middlebox replicas and re-routing flows. However, both Pico
Replication and Split/Merge cannot achieve loss-free during
NF state migration. OpenNF provides fine-grained control over
the move of internal NF states from one NF instance to another,
and enables loss-free and order-preserving state migration.
While those control systems attempted to accommodate a wide
range of virtualized network functions, semantic consistency is
specific to virtual firewalls and remains unsolved by those sys-
tems. Besides, neither do existing control systems address the
challenge of correct flow update, nor do they support optimal
scaling. In addition, most of existing control systems, such
as OpenNF, use centralized buffers at the controller to buffer
in-flight traffic. Such a solution has significant drawbacks,
since it consumes valuable bandwidth between the controller
and virtualized functions, and lacks an effective mechanism
to avoid buffer overflow. In comparison with those exiting
systems, VFW Controller is specifically designed as a
controller to address challenges in virtual firewall scaling with
respect to semantic consistency, correct flow update, buffer
overflow avoidance, and optimal scaling.

NFV and SDN techniques have been recently used to
solve the inflexibility and inelasticity limitations of hardware-
based DDoS defense appliances. Particularly, Fayaz et al. [25]
proposed Bohatei, a flexible and elastic virtual DDoS defense
system, for effectively defending DDoS attacks. In contrast,
we address the unique challenges presented by hardware-based
firewalls, leveraging the features provided by NFV and SDN
as well.

Hu et al. [30] proposed FlowGuard, a framework for
building SDN firewalls, to protect OpenFlow-based networks.
FlowGuard-based firewalls are actually SDN applications run-
ning on top of SDN controllers. Challenges in designing SDN
firewall applications were addressed in FlowGuard. However,
the work presented in this paper investigates solutions for the
safe and efficient management of a new type of firewalls,
virtual firewalls, in the context of both NFV and SDN.

Zhang et al. [50] demonstrated that careless policy updates
may result in security violations. They presented safe and
efficient policy update algorithms for firewall policy updates.
However, the proposed algorithms are only able to deal with
policy updates on a single firewall, while the rule migration
mechanism introduced in VFW Controller coordinates
firewall rules across multiple firewalls.

X. CONCLUSION AND FUTURE WORK

The hardware-based firewall is limited by its inflexible
nature with regard to fixed capacity and fixed deployment
location. We observed two emerging networking paradigms,
NFV and SDN, offer the opportunity to address the limitations
by implementing firewall functions as virtual firewalls. In
this paper, we have proposed VFW Controller, a virtual
firewall controller, which enables safe, efficient and optimal
virtual firewall scaling. To demonstrate the feasibility of our
approach, we have implemented the core components of VFW
Controller on top of ClickOS. In the future, we plan to
implement VFW Controller in other popular open-source
NFV platforms, such as OPNFV [7] and CORD [1]. We
also plan to generalize the buffer cost analysis and optimal
scaling approaches introduced in this paper and integrate them
with other exiting NF control systems, such OpenNF. Besides,
we will investigate solutions to address specific challenges
in the elastic scaling of other network security functions.
For example, data and control dependencies [21] need to be
addressed in building virtual intrusion detection systems.

ACKNOWLEDGMENT

This work was partially supported by grants from National
Science Foundation (NSF-ACI-1642143, NSF-ACI-1642031,
NSF-IIS-1527421, and NSF-CNS-1537924).

REFERENCES

[1] Central Office Re-architected as a Datacenter (CORD). http://opencord.
org/.

[2] Check Point virtual appliance for AWS. https://aws.amazon.com/
marketplace/pp/B00CWNBJOY.

[3] CloudLab. http://www.cloudlab.us/.
[4] Header Space Library (Hassel). http://stanford.edu/∼kazemian/hassel.

tar.gz.
[5] LBNL/ICSI Enterprise Tracing Project. http://www.icir.org/

enterprise-tracing/.
[6] Network Function Virtualisation - Introductory White Paper. https://

portal.etsi.org/nfv/nfv white paper.pdf.
[7] OPENFV. https://www.opnfv.org/.
[8] Project Floodlight. http://www.projectfloodlight.org/projects/.
[9] Scalable Firewall Services with Virtual Systems. https://www.

paloaltonetworks.com/products/features/virtual-systems.html.
[10] Xen Toolstack. http://wiki.xen.org/wiki/XL.
[11] Overview of virtual firewalls on VBLOCKTM infrastructure platforms.

http://www.vce.com/asset/documents/virtual-firewall-whitepaper.pdf,
2012.

[12] AT&T Vision Alignment Challenge Technology Survey. http://www.
att.com/Common/about us/pdf/AT&TDomain2.0VisionWhitePaper.pdf,
2013.

[13] How SDN enabled innovations will impact AT&T’s plans to transform
it’s infrastructure. https://www.youtube.com/watch?v=tLshR-BkIas,
2014.

[14] http://www.prweb.com/releases/opennetsummit/20150217/
prweb12592239.htm, 2015.

[15] OpenFlow Switch Specification Version 1.5.1. https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.1.pdf, 2015.

[16] The CAIDA UCSD Anonymized Internet Traces 2016-0406. http://
www.caida.org/data/passive/passive 2016 dataset.xml, 2016.

[17] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 267–280. ACM, 2010.

14



[18] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data
center traffic characteristics. In Proceeding of SIGCOMM Workshop on
Research on Enterprise Networking, Barcelona, Spain, 2009.

[19] P. Bernier. Google implements NFV, SDN as part of its
Andromeda Effort. http://www.nfvzone.com/topics/nfv/articles/
376827-google-implements-nfv-sdn-as-part-its-+andromeda.htm,
2014.

[20] P. Busschbach. Network functions virtualization: challenges and solu-
tions. http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/
2013/9377-network-functions-virtualization-challenges-+solutions.pdf,
2013.

[21] L. D. Carli, R. Sommer, and S. Jha. Beyond pattern matching: A
concurrency model for stateful deep packet inspection. In Proceeding of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, 2014.

[22] M. Chapel. Firewall rules are meant to be managed, not
broken. http://www.biztechmagazine.com/article/2012/08/
firewall-rule-management-key-network-security, 2012.

[23] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. DevoFlow: scaling flow management for high-performance
networks. In ACM SIGCOMM Computer Communication Review,
volume 41, pages 254–265. ACM, 2011.

[24] Q. Duan and E. S. Al-Shaer. Traffic-aware dynamic firewall policy
management: techniques and applications. IEEE Communications
Magazine, 51:73–79, 2013.

[25] S. Fayaz, Y. Tobioka, and V. Sekar. Bohatei: flexible and elastic DDoS
defense. In Proceedings of the 24th USENIX Conference on Security
Symposium, 2015.

[26] O. N. Foundation. OpenFlow-enabled SDN and network functions vir-
tualisation. https://www.opennetworking.org/images/stories/downloads/
sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf, 2014.

[27] A. Gember-Jacobson and A. Akella. Improving the safety, scalability,
and efficiency of network function state transfers. In ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network Function Virtu-
alization, 2015.

[28] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling innovation in network
function control. In Proceedings of the 2014 ACM Conference on
SIGCOMM, pages 163–174, 2014.

[29] H. Hu, G.-J. Ahn, and K. Kulkarni. Detecting and Resolving Firewall
Policy Anomalies. IEEE Transactions on Dependable & Secure
Computing, 9(3):318–331, 2012.

[30] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. FlowGuard: building robust
firewalls for software-defined networks. In Proceedings of the 3rd ACM
SIGCOMM workshop on Hot Topics in Software Defined Networking
(HotSDN’14), pages 97–102. ACM, 2014.

[31] P. Kazemian, G. Varghese, and N. Mckeown. Header Space Analysis:
Static Checking For Networks. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, 2012.

[32] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veri-
flow: Verifying network-wide invariants in real time. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’13), pages 15–27, 2013.

[33] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
click modular router. ACM Trans. Comput. Syst., 18(3):263–297, 2000.

[34] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: a comprehensive
survey. Proceedings of the IEEE, 13:14–76, 2015.

[35] A. X. Liu and M. G. Gouda. Complete Redundancy Removal for Packet
Classifiers in TCAMs. IEEE Transactions on Parallel & Distributed
Systems, 21(4):424–437, 2010.

[36] A. X. Liu, E. Torng, and C. R. Meiners. Firewall Compressor: An
Algorithm for Minimizing Firewall Policies. In Proceedings of the
27th Conference on Computer Communications (INFOCOM’08), pages
176–180, 2008.

[37] R. Maddipudi. vCloud networking and security 5.1
app firewall. http://blogs.vmware.com/vsphere/2013/04/
vcloud-networking-and-security-5-1-+app-firewall-part-1.html, 2013.

[38] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. ClickOS and the art of network function virtualization.

In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (NSDI’15), pages 459–473, 2014.

[39] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2010.

[40] G. Misherghi, L. Yuan, Z. Su, C.-N. Chuah, and H. Chen. A general
framework for benchmarking firewall optimization techniques. IEEE
Transactions on Network & Service Management, 5(4):227–238, 2008.

[41] A. Nunes, M. Mendonca, X. Nguyen, and K. Obraczka. A survey of
software-defined networking: past, present, and future of programmable
networks. IEEE Communications Surveys & Tutorials, 16(3):1617–
1634, 2014.

[42] R. Ozdag. The day Amazon ended the hardware-
defined network. http://www.cyaninc.com/blog/2013/11/26/
the-day-amazon-ended-the-hardware-defined-network#.VbehsxNViko,
2013.

[43] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Replication: A
high availability framework for middleboxes. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 1. ACM, 2013.

[44] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In
Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’13), pages 227–240, 2013.

[45] S. K. N. Rao. SDN and its Use-Cases-NV and NFV. http://www.
nectechnologies.in/en TI/pdf/NTI whitepaper SDN NFV.pdf, 2014.

[46] I. Scales. Survey indicates NFV/SDN deploy-
ments in 2015. http://www.telecomtv.com/articles/sdn/
survey-indicates-nfv-sdn-deployments-in-2015-11062/, 2015.

[47] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network pro-
cessing as a cloud service. ACM SIGCOMM Computer Communication
Review, 42(4):13–24, 2012.

[48] J. Sherry and S. Ratnasamy. A survey of enterprise middlebox deploy-
ment. In Technical Report UCB/EECS-2012-24. EECS Department,
University of California, Berkeley, 2012.

[49] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra.
Fireman: A toolkit for firewall modeling and analysis. In 2006 IEEE
Symposium on Security and Privacy (S&P’06), pages 15–pp. IEEE,
2006.

[50] C. C. Zhang, M. Winslett, and C. A. Gunter. On the safety and efficiency
of firewall policy deployment. In 2007 IEEE Symposium on Security
and Privacy (S&P’07), pages 33–50. IEEE, 2007.

15


