
FLOWGUARD: Building Robust Firewalls
for Software-Defined Networks

Hongxin Hu†, Wonkyu Han‡, Gail-Joon Ahn‡, and Ziming Zhao‡

†Clemson University ‡Arizona State University
hongxih@clemson.edu, {whan7,gahn,zzhao30}@asu.edu

ABSTRACT

Software-Defined Networking (SDN) introduces significant granu-
larity, visibility and flexibility to networking, but at the same time
brings forth new security challenges. One of the fundamental chal-
lenges is to build robust firewalls for protecting OpenFlow-based
networks where network states and traffic are frequently changed.
To address this challenge, we introduce FLOWGUARD, a compre-
hensive framework, to facilitate not only accurate detection but
also effective resolution of firewall policy violations in dynamic
OpenFlow-based networks. FLOWGUARD checks network flow
path spaces to detect firewall policy violations when network states
are updated. In addition, FLOWGUARD conducts automatic and
real-time violation resolutions with the help of several innovative
resolution strategies designed for diverse network update situations.
We also implement our framework and demonstrate the efficacy
and efficiency of the proposed detection and resolution approaches
in FLOWGUARD through experiments with a real-world network
topology.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network monitoring; D.4.6 [Security

and Protection]: Access controls

Keywords

Firewalls; Software-Defined Networking; OpenFlow; Security

1. INTRODUCTION
One primary goal of SDN is to enable a network controller to

run various network services and manage the entire network di-
rectly by configuring packet-handling mechanisms in underlying
devices. Consequently, enterprises adopt OpenFlow [16] for man-
aging their networks in a cost-effective manner and at the same
time, it is inevitable for their legacy security appliances such as
firewalls and intrusion detection and prevention systems (IDS/IPS)
to be migrated to OpenFlow-based networks by re-designing and
implementing these systems as compatible security applications or

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’14, August 22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.

http://dx.doi.org/10.1145/2620728.2620749.

services. In this paper, we focus on the challenges in designing and
implementing robust firewalls for OpenFlow-based networks.

Firewalls are the most widely deployed security mechanism in
most businesses and institutions. A conventional firewall sits on the
border between a private network and the public Internet, and ex-
amines all incoming and outgoing packets to defend against attacks
and unauthorized access. However, one key assumption under this
traditional model is that all insiders of the protected network are
trusted, since internal traffic is not seen and cannot be filtered by the
firewall [10]. That assumption has been invalid for a long time, be-
cause insiders could easily launch attacks on others in the network
by circumventing security mechanisms [21]. With OpenFlow, such
a problem could be potentially alleviated, since OpenFlow offers a
deeper level of control granularity by placing enforcement points
in any entries of traffic flows in a network. Our study reveals that
OpenFlow not only presents tremendous opportunities to network-
ing, but also brings great challenges for building SDN firewalls as
follows:

• Examining Dynamic Network Policy Updates: In an Open-
Flow network, network states are dynamically updated and
configurations are frequently changed. Thus, simply check-
ing flow packet violation by monitoring packet-in behaviors
in a firewall application is not effective, since flow policy

violation, which indicates existing flow policies violate the
firewall policy induced by the proactive installation of flow
policies, or the changes of network states and configurations
such as updating flow entries and firewall rules, should be
detected and resolved in real time as well.

• Checking Indirect Security Violations: OpenFlow allows
various Set-Field actions that can dynamically change
the packet headers. Adversaries could take advantage of this
feature to strategically leverage flow rules that would evade
network security mechanisms (e.g., firewalls) [19]. In addi-
tion, flow rules may overlap each other in a flow table, indi-
cating intra-table dependency of flow rules [11]. The rules in
a firewall policy may also overlap each other [26]. These rule
dependencies could also be leveraged by malicious Open-
Flow applications to bypass firewalls.

• Architecture Option: A centralized SDN firewall, which
centrally defines and enforces the firewall policy on top of
a controller, can immediately enforce updated rules in the
firewall policy to check security violations. However, when
a flow policy violation is detected, it can only reject the new
flow policy or flush resident flow policy that causes the vi-
olation. OpenFlow allows wildcard rules in flow policies.
Thus, if only partial packets matching a flow policy violate
the firewall policy, eliminating the flow policy may drop legal
traffic. In contrast, a distributed SDN firewall may directly

resolve flow policy violations by propagating and enforcing
the firewall policy at each individual entry (ingress switch) of
the flow in the network. However, a distributed firewall needs
a complicated revocation and repropagation mechanism [10]
to handle dynamic policy updates.

• Stateful Monitoring: Currently, OpenFlow only provides
very limited access to packet-level information in the con-
troller [23]. In addition, the OpenFlow forwarding plane is
almost stateless and unable to actively monitor flow status
without the involvement of the controller [5]. Therefore, it
is challenging to fully support stateful packet inspection in
SDN firewalls.

In this work, we seek a systematic solution for building robust

firewalls that enable effective network-wide access control in emerg-

ing SDNs. We first analyze and articulate several typical chal-
lenges in designing and implementing SDN firewalls, focusing on
OpenFlow-based networks. To mitigate those challenges, we pro-
pose a comprehensive framework called FLOWGUARD that facili-
tates not only accurate detection but also flexible resolution of fire-
wall policy violations in dynamic OpenFlow-based networks. The
violation detection approach in FLOWGUARD detects violations by
examining flow path spaces against the authorization space speci-
fied in the firewall, and is capable of tracking flow paths in the
entire network and checking rule dependencies in both flow ta-
bles [11] and firewall policies [26]. Besides, FLOWGUARD de-
termines violations dynamically when network states or configura-
tions are changed. Especially, we introduce a flexible and effec-
tive violation resolution mechanism in FLOWGUARD to enable an
automatic and real-time violation resolution, which has not been
addressed by existing verification approaches for SDNs (e.g., [11,
13]), with the help of five resolution strategies, namely flow re-

jecting, dependency breaking, update rejecting, flow removing, and
packet blocking, considering diverse update situations in networks.
In order to effectively implement and deploy the proposed solution,
we also integrate a variety of toolkits for supporting visualization,
optimization, migration, and integration of SDN firewalls in FLOW-
GUARD.

This paper is organized as follows. We overview the related work
in Section 2. Section 3 presents the FLOWGUARD framework in
detail. We address the implementation and evaluation of FLOW-
GUARD in Section 4. We conclude this paper along with our future
work in Section 5.

2. RELATED WORK
Several recent efforts have been devoted to address various se-

curity challenges, such as scanning attack prevention [17], DDoS
attack detection [6], vulnerability assessment [14], and saturation
attack mitigation [22], in SDNs. Differentiating from those work,
our work focuses on exploring how to build robust firewalls for
SDNs.

An exemplar SDN firewall application has been introduced in
Floodlight [1] where each packet-in behavior triggered by the first
packet of a traffic flow is matched against a set of existing fire-
wall rules that allow or deny a flow at its ingress switch. Nev-
ertheless, such a preliminary implementation of OpenFlow-based
firewall application can only examine flow packet violations when
new flows come in the network and cannot check flow policy viola-

tions with respect to dynamic network policy updates. Pyretic [18]
was recently introduced as a higher-level language in the Frenetic
Project [2] that allows SDN programmers to write modular net-
work applications. Pyretic’s sequential composition operator could
potentially resolve direct policy conflicts by compiling conflicting

policies into a prioritized rule set. However, Pyretic cannot dis-
cover and resolve indirect security violations caused by dynamic
packet modifications without a flow tracking mechanism [7]. Fort-
NOX [19] was proposed as a software extension aiming to pro-
vide security constraint enforcement for OpenFlow controllers, be-
ing able to identify indirect security violations. However, we can-
not directly adopt FortNOX approach to design SDN firewalls by
virtue of several reasons. On one hand, the rule conflict analysis
algorithm provided by FortNOX records rule relations in alias sets,
which are unable to accurately track network traffic flows. In par-
ticular, the conflict detection algorithm in FortNOX only conducts
pairwise conflict analysis between new flow rule(s) and each single
security constraint without considering rule dependencies within
flow tables [11, 13] and among security constraints (represented as
a firewall policy in our approach) [26]. On the other hand, when
FortNOX detects a security violation caused by new rule(s) in-
stalled by a non-security application, it simply rejects the rule(s)
without offering a fine-grained violation resolution. In [25], an ear-
lier solution for building a security-enhanced firewall application
was introduced. However, this solution only focuses on addressing
bypass threats in OpenFlow-based networks. In contrast, FLOW-
GUARD is a comprehensive framework for building robust SDN
firewalls to enable both accurate detection and flexible resolution
of various firewall policy violations in dynamic OpenFlow-based
networks.

A couple of verification tools [11, 12, 13, 15] for checking net-
work invariants and policy correctness in OpenFlow networks have
been proposed. Especially, VeriFlow [13] and NetPlumber [11] are
capable of checking the compliance of network updates with spec-
ified invariants in real time. Even though these tools can be po-
tentially used to detect firewall policy violations, they could not
support automatic and effective violation resolution. Also, they ig-
nore rule dependencies within security constraints, such as firewall
policies, for compliance checking. In addition, they are unable to
check stateful network properties [24].

Numerous firewall algorithms and tools have been designed to
assist system administrators in managing and analyzing firewall
policy anomalies [4, 8, 9, 26]. Yuan et al. [26] presented FIRE-
MAN, a toolkit to check for misconfigurations in firewall poli-
cies through static analysis. Our previous work [8, 9] introduced
FAME, a visualization-based firewall anomaly management envi-
ronment, for detection and resolution of firewall anomalies. How-
ever, existing firewall policy analysis tools only detect policy anoma-
lies within a firewall policy, but cannot be directly applied to deal
with firewall policy violations against flow policies in dynamic Open-
Flow networks with respect to network-wide access control.

3. FLOWGUARD DESIGN
In this work, our goal is to design a robust SDN firewall that

supports network-wide access control by effectively managing fire-
wall policy violations in dynamic OpenFlow-based networks. To
achieve our goal and address the aforementioned challenges and
limitations, we seek a solution that fulfills following design require-
ments.

1. Accuracy. The SDN firewall should precisely detect viola-
tions caused by traffic modifications as well as rule depen-
dencies in both flow tables and firewall policies. Also, the
identified violations should be effectively resolved with re-
spect to different violation situations, such as partial or en-

tire violations. 1

1The detailed definitions are given in Section 3.1.3.

Network State/Configuration Updates

V
io
la
tio
n
 D
e
te
c
tio
n

Flow Packet

Violation

Detection

Flow Policy Violation Detection

Flow Path

 Space Analysis

V
io
la
tio
n

R
e
s
o
lu
tio
n

Visualization

Migration

IntegrationFlow Tracking

Flow Path Space

Calculation

Firewall Authorization

 Space Analysis

Authorization Space

Partition

Flow Policy Violation Resolution

Flow Rejecting

Update Rejecting

Flow Removing

Packet Blocking

Toolkits

Deployment

New Flow Flow Policy Update Firewall Policy Update

Language

Optimization

Dependency Breaking

Figure 1: FlowGuard framework overview.

2. Flexibility. The SDN firewall should have the capability to
inspect any network state and configuration updates, which
may potentially incur firewall policy violations. In addition,
flexible resolution strategies should be provided to deal with
fine-grained violation resolutions.

3. Efficiency. The SDN firewall needs to continuously work in
a timely fashion. Also, the state of an OpenFlow-based net-
work generally evolves rapidly. Thus, it naturally requires
that the response time of an SDN firewall should be fast
enough and its performance overhead should not affect other
network utilities.

We propose a comprehensive framework, FLOWGUARD, to ac-
commodate our design requirements. As shown in Figure 1, FLOW-
GUARD addresses several significant challenges in building SDN
firewalls to facilitate accurate detection as well as flexible resolu-
tion of firewall policy violations in dynamic OpenFlow networks
along with a variety of toolkits for visualization, optimization, mi-
gration, and integration of SDN firewalls. We next articulate the
core components within the FLOWGUARD framework.

3.1 Violation Detection
Flow packet violations can be handled by using the traditional

technique for firewall packet filtering. However, it is challenging to
deal with flow policy violation, since both firewall and flow poli-
cies support wildcard rules. Moreover, in an OpenFlow network,
the header fields of flow packets could be dynamically changed
when the packets traverse the network. Thus, to support accurate
violation detection and enable network-wide access control, a fire-
wall application needs to not only check violations at the ingress
switch of each flow, but also track the flow path and then clearly
identify both the original source and final destination of each flow
in the network.

3.1.1 Flow Path Space Analysis

Flow Tracking: To support network-wide access control in an Open-
Flow network, a firewall application needs to figure out both the
original source address and final destination address of each flow
in the network through tracking its flow path. Accordingly, we need
an effective flow tracking mechanism to identify flow paths. Sev-
eral existing network invariant verification tools [11, 12, 13] could
check network reachability in real time and be potentially used to
help find flow paths in OpenFlow networks. As a preliminary solu-
tion, we leverage Header Space Analysis (HSA) [11, 12] as a base-
line for building the flow tracking mechanism in our framework,
since it offers several features that can fulfill some of our design

Algorithm 1: Partitioning firewall authorization space

Input: A set of firewall rules, R.
Output: A set of allowed spaces, SF

a ; A set of denied spaces, SF
d .

foreach r ∈ R do1

sr ←− HeaderSpace(r);2

if Action(r) = allow then3

foreach s ∈ SF
d do4

/* sr is overlapping with s*/5

sr ←− sr \ s;6

SF
a .Append(sr);7

if Action(r) = deny then8

foreach s
′

∈ SF
a do9

/* sr is overlapping with s
′

*/10

sr ←− sr \ s
′

;11

SF
d .Append(sr);12

return SF
a , SF

d ;13

requirements for effective flow tracking: (1) it uses a geometric
model (header space) of packet processing to provide a protocol-
independent model of the network; (2) it models networking boxes
using a switch transfer function to support dynamic packets mod-
ifications; and (3) it constructs a graph to represent all next-hop
dependencies and intra-table dependencies of rules, where all flow
paths including both direct and indirect flow paths in the network
can be automatically captured.

Flow Path Space Calculation: For calculating a flow path space,
we only abstract fields needed for checking firewall policy viola-
tions from the pattern expression of a flow rule to represent the flow
path space. In addition, we reorganize these fields with a (source

address, destination address) pair, denoted as [P s, P d], to specify
a flow path space. In the context of IP 5-tuple sense, the source ad-
dress P s consists of bit values from three fields, source IP, source

port, and protocol of the flow rule. The destination address P d

contains bit values from two fields, destination IP and destination

port of the flow rule. Then, we additionally define three kinds of
spaces for representing a flow path space:

1. Incoming Space (SP

i): It represents original header spaces
of packets that can pass through the flow path, denoted as
[P s

i , P
d

i].

2. Outgoing Space (SP

o): It represents final header spaces of
packets after the packets pass through the flow path, denoted
as [P s

o , P
d

o].

3. Tracked Space (SP

t): This space represents original source

address and final destination address of header spaces of pack-
ets that can pass through the flow path. Thus, it is a combi-
nation of the source address of the incoming space (P s

i) and
the destination address of outgoing space (P d

o), denoted as
[P s

i , P
d

o].

3.1.2 Firewall Authorization Space Partition

In many cases, a system administrator may intentionally intro-
duce certain overlaps in firewall rules knowing that only the first
rule is important. In reality, this is a commonly used technique to
exclude specific parts from a certain action, and the proper use of
this technique could result in a fewer number of compact rules [26].
Hence, for the purpose of accurately detecting firewall policy vio-
lations in OpenFlow networks, the dependency relations between
“allow” rules and “deny” rules in the firewall policy should be de-
coupled.

We first introduce a concept of Firewall Authorization Space,
which represents a collection of all packets either allowed or de-
nied by the firewall rules. Then, we introduce an approach, which

represents rules with header space and performs various set oper-
ations on rules, to convert a list of firewall rules into two disjoint

authorization sub-spaces, denied authorization space and allowed

authorization space. Algorithm 1 shows the pseudocode of parti-
tioning authorization space for a set of firewall rules R. This algo-
rithm works by sequentially examining a header space sr derived
from a rule r and adding it to corresponding firewall authorization
space sets, SF

a or SF

d , based on its type. For each r in R, if this
rule is an “allow” rule, the header space sr derived from this rule is
compared with existing header spaces in the denied space set SF

d .
If the header space sr is covered by any existing header spaces in
SF

d , the covered space(s) is removed from sr and then the modified
sr is added into SF

a . The similar process is applied to a “deny” rule.
Therefore, one can utilize set operations to separate the overlapped
spaces of a firewall policy into two disjoint authorization space sets
SF

a : {sFa1
, ..., sFan−1

, sFan
} and SF

d : {sFd1 , ..., sFdm−1
, sFdm}. For-

mally, sFai
∩ sFdj = ∅, where sFai

∈ SF

a , sFdj ∈ SF

d , 1 ≤ i ≤ n,
and 1 ≤ j ≤ m. Note that it is unnecessary to eliminate over-
lapping header spaces within SF

a and SF

d , since those overlapping
header spaces could not affect the results of violation detection and
keeping them can potentially reduce the number of header spaces
in each authorization space set.

3.1.3 Violation Discovery

Once the space of a flow path and the firewall authorization space
of the firewall policy are calculated, we identify violations through
checking the tracked space (SP

t) of a flow path, which allows a flow
to pass through the network, against the denied authorization space

(SF
′

d) that is a union of all header spaces in the denied authorization
space set (SF

d) of the firewall policy. If these two spaces overlap
each other, we call the overlapping space as the violated space (Sv

= SP

t ∩ SF
′

d , denoted by [P s

v , P
d

v], where s and d denote source
and destination addresses, respectively), which indicates a firewall
policy violation. There are two kinds of violations.

• Entire Violation: If the denied authorization space SF
′

d in-
cludes the whole tracked space SP

t of the flow path, the
violated space Sv indicates an entire violation. Formally,

SP

t ⊆ SF
′

d .

• Partial Violation: If the denied authorization space SF
′

d par-
tially includes the tracked space SP

t of the flow path, the
violated space Sv points out a partial violation. Formally,

SP

t * SF
′

d and SP

t ∩ SF
′

d 6= ∅.

3.2 Violation Resolution
Since an SDN firewall can directly reject the new flows which

violate the firewall policy, it would be straightforward to resolve
flow packet violations. For resolving flow policy violations, an in-
tuitive means is to simply disable the violated flow policies. That
is, for a new flow policy, the request for installing a target policy
is rejected, if the firewall application detects that the target policy
violates the firewall policy. Regarding existing flow policies that
violate the firewall policy, they are removed from the network de-
vices directly. However, such a solution have several drawbacks.
First, a flow policy may only partially violate the firewall policy
as we discussed above. In this case, rejecting/removing the flow
policy may affect the utility of network services. Second, a rule
in a flow policy may have dependency relations with the rules of
other flow policies. Deleting a rule in a violated policy may impact
other flow policies and even create new violation(s). Obviously, it
is necessary to seek a systematic solution to enable a flexible and
effective violation resolution. To this end, we introduce a compre-
hensive violation resolution mechanism, as depicted in Figure 2,

Modify/DeleteAdd

Yes

Flow Policy Update

Modify/DeleteAdd

Firewall Policy Update

Violation Due to Flow

Rule Dependency

Entire Violation Due to

Flow Policy Update

Entire Violation Due to

Firewall Policy Update
Partial Violation

Dependency Breaking Flow Removing Packet Blocking

Update is

Allowed

No

Update Rejecting

Packet-In

New Flow

Allow

Flow Packet Violation

Yes

No

Flow Rejecting

Flow Policy Violation

Figure 2: FLOWGUARD violation resolution mechanism.

which demonstrates how FLOWGUARD adopts various violation
resolution strategies to resolve different firewall policy violations
in terms of new flows and various update operations on both flow
and firewall policies in OpenFlow-based networks. We next dis-
cuss such a mechanism, focusing on four resolution strategies used
for handling flow policy violations.

Dependency Breaking: When a new flow policy is being added
into the network switches, this single flow policy may not violate
the firewall policy. However, the rules in this new flow policy may
overlap with the rules of other existing flow policies. Since rule
dependencies could cause unexpected changes in packet headers of
flows, they may lead to new firewall policy violations. Note that
this kind of violations can be also incurred by other changes of net-
work states, such as modifying flow entries and updating firewall
rules. We next introduce two alternative mechanisms for breaking
the dependencies among flow rules.

1. Flow Rerouting: Using this mechanism, when a new flow
comes in the network and the firewall application detects that
the flow path generated by the controller for this flow causes
a violation due to rule dependencies, the firewall application
asks the controller to find another routing path for the flow to
avoid those dependencies. During this process, the firewall
application maintains a list called switch evading list that
contains all switches associated with the rule dependencies
that cause the violation. The firewall application provides
such a list to the controller, and then the controller calculates
a new routing path evading those switches in the list. Such a
rerouting process may need to be performed recursively until
the controller finds a path that does not induce a violation.

2. Flow Tagging: Inspired by the network update approach in [20],
we explore a flow tagging mechanism to break rule depen-
dencies in our violation resolution. In such a mechanism,
the new flow policy is preprocessed by adding a tag to dif-
ferentiate the match pattern with other policies. The rule of
the policy in the ingress switch takes an additional action on
the packets to stamp them with the same tag. As the pack-
ets leave the network, in the egress switch, the corresponding
rule of the policy strips the tag from the packets.

Using the first mechanism, there are no changes in flow policies
and packets. Unfortunately, it may be costly to find a valid flow
path. Even, in the worst-case scenario, the controller may not find
such a path for a flow that can break all dependencies that cause
violations. In contrast, the second mechanism is able to fully re-
solve the violations. However, it introduces additional processes
for changing the flow policies and flow packets. Thus, for some
cases, a hybrid approach would be desirable, combining both de-
pendency breaking mechanisms to deal with dependency breaking

through multiple steps. In the first step, the flow rerouting mech-
anism is applied for breaking dependencies according to a prede-
fined threshold. If the occurrence of rerouting process exceeds the
threshold, the violation resolution process automatically jumps to
the second step to apply the flow tagging mechanism to dependency
breaking.

Update Rejecting: There are three possible cases that can apply
this strategy: (1) when adding a new flow policy, corresponding
flow path is detected as a violation of the firewall policy and the
violation is an entire violation; (2) changing a rule induces new
entire violation(s); and (3) deleting a rule causes new entire viola-
tion(s), since some rules of other flows have dependency relations
with this rule. Applying this strategy, the update operation is re-
jected directly. Note that, since a change or delete operation on a
rule may be mandatory depending on the privileges of the operator,
this strategy may be partially applied to cases (2) and (3).

Flow Removing: Two cases can apply this strategy: (1) when up-
dating (adding, changing, or deleting) a rule(s) in the firewall pol-
icy, the firewall application examines the current network state ap-
plying the updated rule(s) and detects new entire violation(s); and
(2) a change or delete operation on a rule is allowed, even though
it causes entire violation(s). Using this strategy, all rules associ-
ated with a flow path, which entirely violates the firewall policy,
are removed from the network switches.

Packet Blocking: For any partial violation detected by the firewall
application, this strategy can be applied. There may exist two ways
to block packets of a flow: (1) if the flow is a new flow, the firewall
application only needs to block it in the ingress switch of the flow;
and (2) if the flow is an old flow, the firewall application needs to
block the packets in both ingress and egress switches. In such a
case, blocking packets in the ingress switch can prevent any new
packets of the violated flow entering the network, while blocking
packets in the egress switch can prevent any in-flight packets of the
violated flow from going through the network.

In summary, our solution centrally enforces firewall policies to
eliminate all flow packet violations and entire flow policy viola-
tions. However, for partial flow policy violation, the packet block-

ing strategy in FLOWGUARD requires that corresponding firewall
rules are propagated and enforced in ingress and/or egress switches
of violated flow paths. Thus, FLOWGUARD indeed utilizes a hy-

brid architecture to build SDN firewalls and facilitate an effective
violation resolution.

4. IMPLEMENTATION AND EVALUATION
We have implemented a firewall application based on FLOW-

GUARD on top of Floodlight. Our implementation consists of three
components: flow tracking, violation detection and violation reso-
lution. To build flow paths, FLOWGUARD collects network infor-
mation by monitoring two modules, Memory Storage Source and
Static Flow Pusher, supported by Floodlight controller and em-
ploys HSA data structure [3] to compute intra-table dependencies.
If the tracked spaces of flow paths overlap with denied authoriza-
tion space of firewall, FLOWGUARD analyzes the root cause of
each violation and leverages a corresponding resolution strategy
to resolve the identified violation as illustrated in Figure 2. At the
same time, FLOWGUARD maintains updated flow rules and net-
work topology information so that it is able to re-propagate header
objects at any associated switches to update flow paths.

We performed experiments based on a real-world network topol-
ogy derived from the Stanford backbone network [11] that includes
14 operational zone Cisco routers, 10 Ethernet switches, and 2
backbone Cisco routers. By using this real-world network, we at-

1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20

25

30

35

40

Flow path building time changes

Number of rules

Tim
e
(m

s
)

Dependency Breaking

Update Rejecting
Flow Removing

Packet Blocking

(a) Flow path building time changes.

1 1.5 2 2.5 3 3.5

x 10
4

0

5

10

15

20

25

30

35

40

Violation resolution time changes

Number of rules

Tim
e
(m

s
)

Dependency Breaking

Update Rejecting
Flow Removing

Packet Blocking

(b) Violation resolution time changes.

Figure 3: Scalability analysis.

tempted to evaluate the efficiency and scalability of our firewall
application. The entire configuration of the Stanford backbone net-
work was retrieved from [3] and thereby we obtained 1, 206 realis-
tic firewall rules and 8, 908 flow rules in the network.

As shown in Table 1, the detection and resolution time for flow

rejecting strategy were only 0.03 milliseconds (ms). Considering
dependency breaking strategy, the elapsed time for building flow
paths and detecting violations were 4.54 ms and 0.04 ms, respec-
tively. If flow tagging mechanism is adopted, FLOWGUARD took
4.34 ms to resolve violations, whereas it only spent, if success-
ful, 1.88 ms resolving violations using flow rerouting mechanism.
Update rejecting and flow removing strategies imposed almost sim-
ilar overheads to the network. Regarding packet blocking mecha-
nism, FLOWGUARD took 6.42ms for building flow paths and 2.53

ms for violation resolution. Since building flow paths for identi-
fying partial violations demands more steps to deal with ingress
and egress switches, FLOWGUARD took a little more time for flow
tracking in such a case.

To evaluate the scalability of FLOWGUARD, we increased the
number of flow rules based on the Stanford network topology. We
only checked the processes for flow tracking and violation resolu-
tion, since the violation detection time for all strategies were very
close as shown in Table 1. By inserting 100 ∼ 1, 000 additional
flow rules in each switch, the Stanford network has 8.9 k ∼ 35

k rules in total since it contains 26 switches. As shown in Fig-
ure 3(a), the flow path building time was increased linearly in ac-
cordance with the growing number of flow rules except update re-

jecting strategy since it does not cause any changes of flow paths.

Table 1: Measurements of flow tracking, violation detection,

and violation resolution time (ms) for different resolution

strategies.

Flow

Rejecting

Dependency Breaking Update

Rejecting

Flow

Removing

Packet

BlockingTagging Rerouting

Tracking - 4.54 4.78 4.32 6.42

Detection 0.03 0.04 0.05 0.07 0.06

Resolution 0.03 4.34 1.88 3.73 3.71 2.53

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Log-10 Scale)

F(x
)

Empirical CDF

Built-in Firewall

FLOWGUARD

(a) Firewall rule update time in microsecond.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Log-10 Scale)

F(x
)

Empirical CDF

Built-in Firewall

FLOWGUARD

(b) Per packet inspection time in microsecond.

Figure 4: Performance comparison.

As depicted in Figures 3(b), FLOWGUARD spent less than 25 ms

to resolve each violation in the network with a large number of flow
rules.

We also compared the performance of FLOWGUARD with the
performance of the Floodlight built-in firewall (FW). As shown in
Figure 4(a), FLOWGUARD has almost the same update time as FW
does under the same network conditions. Most rules could be up-
dated in less than 63 µs in the Stanford topology. As depicted in
Figure 4(b), the inspection time of 90% packets for FLOWGUARD

was less than 79 µs, while FW spent less than 40 µs inspecting
90% packets. In summary, even though FLOWGUARD took longer
to inspect packets than FW, the processing performance was still
noticeable.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a comprehensive framework,

FLOWGUARD, to facilitate accurate detection as well as flexible
resolution of firewall policy violations in dynamic OpenFlow net-
works. In addition, we have implemented a prototype of FLOW-
GUARD in Floodlight. Our experimental results show that FLOW-
GUARD has the manageable performance overhead to enable real-

time monitoring of SDNs.
As our on-going work, we are currently developing and integrat-

ing stateful packet inspection and analysis modules in the FLOW-
GUARD framework to support the stateful firewall for SDNs. We
will also explore various toolkits for supporting visualization, opti-
mization, migration, and integration of SDN firewalls proposed in
the FLOWGUARD framework. Furthermore, we plan to integrate
our conflict detection and resolution solution into popular SDN
controllers to build robust security enforcement kernels for SDN
controllers.

Acknowledgments

The work of W. Han, G.-J. Ahn and Z. Zhao was partially supported
by the grant from Department of Energy (DE-SC0004308).

6. REFERENCES
[1] Floodlight: Open SDN Controller.

http://www.projectfloodlight.org.
[2] Frenetic: A Family of Network Programming Languages.

http://frenetic-lang.org/.
[3] Header Space Library. https:

//bitbucket.org/peymank/hassel-public.
[4] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in

distributed firewalls. In INFOCOM’04.
[5] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.

OpenState: programming platform-independent stateful
openflow applications inside the switch. ACM SIGCOMM
Computer Communication Review, 2014.

[6] B. Braga, M. Mota, P. Passito, et al. Lightweight DDoS
flooding attack detection using NOX/OpenFlow. In LCN’10.

[7] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul. Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags. In NSDI’14.

[8] H. Hu, G.-J. Ahn, and K. Kulkarni. FAME: a firewall
anomaly management environment. In SafeConfig’10.

[9] H. Hu, G.-J. Ahn, and K. Kulkarni. Detecting and resolving
firewall policy anomalies. IEEE Transactions on Dependable
and Secure Computing, 9(3):318–331, 2012.

[10] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith. Implementing a distributed firewall. In CCS’00.

[11] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In NSDI’13.

[12] P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: static checking for networks. In NSDI’12.

[13] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: verifying network-wide invariants in real
time. In NSDI’13.

[14] D. Kreutz, F. Ramos, and P. Verissimo. Towards secure and
dependable software-defined networks. In HotSDN’13.

[15] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and
S. T. King. Debugging the data plane with anteater. In
SIGCOMM’11.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 2008.

[17] S. A. Mehdi, J. Khalid, and S. A. Khayam. Revisiting traffic
anomaly detection using software defined networking. In
RAID’11.

[18] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software-defined networks. In NSDI’13.

[19] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for openflow
networks. In HotSDN’12.

[20] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In
SIGCOMM’12.

[21] E. E. Schultz. A framework for understanding and predicting
insider attacks. Computers & Security, 21(6):526–531, 2002.

[22] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard:
scalable and vigilant switch flow management in
software-defined networks. In CCS’13.

[23] S. Shirali-Shahreza and Y. Ganjali. Flexam: Flexible
sampling extension for monitoring and security applications
in openflow. In HotSDN’13.

[24] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu.
Symnet: static checking for stateful networks. In
HotMiddlebox’13.

[25] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng.
Towards a security-enhanced firewall application for
openflow networks. In Cyberspace Safety and Security, 2013.

[26] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra,
and C. Davis. Fireman: A toolkit for firewall modeling and
analysis. In 2006 IEEE Symposium on Security and Privacy.

