
https://doi.org/10.1145/3266444.3266449
https://doi.org/10.1145/3266444.3266449

can be done on the response after an attack is detected and veri-

fied. Looking deeper into the what inspection tools to run in case

CacheLight flags potential malicious code and the appropriate

response mechanisms to employ if the tool does find malicious code

in memory.

10 CONCLUSION

In this paper we present CacheLight, a lightweight approach to

preventing malicious use of cache locking mechanisms while allow-

ing time-critical applications to legitimately utilize them to ensure

execution times in embedded and real-time systems. CacheLight

allows the Normal World to perform cache locking through request-

ing it as a service from the Secure World. All that is needed is a

minimal increase in the Trusted Code Base to handle a new SMC,

which the OS running in the TEE can then validate and verify to

prevent any malicious code from being hidden in the cache.

Upon world switch, the Secure World can now handle and verify

the validity of any cache lock request to ensure that any data that

will persist in the cache not only maps to a valid address in mem-

ory but is also consistent with what is present in main memory;

effectively bringing the contents of the cache to light. Additionally,

because the Secure World does not hand control back to Normal

World after verifying the address, but rather performs the loading

and locking on behalf of the Normal World, the attacker cannot

bypass the security checks by passing different addresses in the

arguments. Should CacheLight find that the attempt to lock the

cache is malicious, it can then flush the caches and run memory in-

trospection tools to determine the nature of the attack and retrieve

any relevant data for forensic analysis. On the other hand, if the

request is determined to be legitimate, CacheLight can service it

by taking advantage of World-Shared Memory.

Therefore, CacheLight can successfully prevent malicious code

from hiding from SW introspection tools in the NW cache for

any significant amount of time. Additionally, while we present a

solution for the ARM architecture, the approach can be generalized

to any architecture that employs the same execution separation

idea. If the attack can be modified to a new architecture, then so

can the defense. Moreover, CacheLight incurs the overhead of

a world-switch for the set-up of the time-critical data. However,

the initial setup of locking data in the cache is already expected

to be expensive so that the performance and timing requirements

can be met once the setup is done and the application running.

CacheLight makes additional overhead to the setup process but

not the execution of the time-critical process that requested the lock.

Given that it provides security against an otherwise undetectable

attack, the trade-off in setup time is extremely worthwhile.

REFERENCES

[1] ARM. 2006-2010. ARM Cortex-A8 Technical Reference Manual.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_

cortex_a8_r3p2_trm.pdf. (2006-2010).

[2] ARM. 2009. ARM Security Technology Building a Secure System using Trust-

Zone Technology. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

prd29-genc-009492c/index.html. (2009).

[3] ARM. 2012. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R

edition. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/

index.html. (2012).

[4] ARM. 2015. ARM Cortex-A Series Programmerś Guide for ARMv8-A. http:

//infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html. (2015).

[5] ARM. 2016. SMC CALLING CONVENTION System Software on ARM

Platforms. http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_

DEN0028B_SMC_Calling_Convention.pdf. (2016).

[6] AhmedM. Azab, Peng Ning, and Emre C. Sezer. 2009. A hypervisorbased integrity

measurement agent. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC). ACM, Honolulu, Hawaii, 461–470.

[7] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time

Kernel Protection from the ARM TrustZone Secure World. In Proceedings of the
21st ACM Conference on Computer and Communications Security (CCS). ACM,

Scottsdale, Arizona, 90–102.

[8] Ellick Chan, Shivaram Venkataraman, Francis David, Amey Chaugule, and Roy

Campbell. 2010. Forenscope: A framework for live forensics. In Proceedings of
the Annual Computer Security Applications Conference (ACSAC). ACM, Austin,

Texas, 307–316.

[9] Francis M. David, Ellick M. Chan, Jefferty C. Carlyle, and Roy H. Campbell. 2008.

Cloaker: Hardware supported rootkit concealment. In Proceedings of the 29th
IEEE Symposium on Security and Privacy (Oakland). IEEE, Oakland, CA, 296–310.

[10] Advanced Micro Devices. 2013. Amd64 Architecture Programmer’s Manual. AMD.

[11] Shawn Embleton, Sherri Sparks, and Cliff Zou. 2013. Smm rootkit: a new breed

of os independent malware. Security and Communication Networks. (2013).

[12] Norman Fenske. 2017. Genode Operating System Framework Foundations.

(2017).

[13] John Heasman. 2007. Implementing and detecting a pci rootkit. BLackhat DC.

(2007).

[14] Gene H. Kim and Eugene H. Spafford. 1994. The design and implementation of

tripwire: A file system integrity checker. In Proceedings of the 2nd ACMConference
on Computer and Communications Security (CCS). ACM, Fairfax, VA, 18–29.

[15] Genode Labs. 2017. An Exploration of ARM TrustZone Technology. Genode OS

Documentation and Articles. (2017). https://genode.org/documentation/articles/

trustzone

[16] Genode Labs. 2017. Genode: Operating System Framework. https://github.com/

genodelabs/genode. (2017).

[17] Genode Labs. 2017. An in-depth look into the ARM virtualization extensions. Gen-

ode OS Documentation and Articles. (2017). https://genode.org/documentation/

articles/arm_virtualization

[18] Y. Liang, T. Mitra, and L. Ju. 2015. Instruction Cache Locking Using Temporal

Reuse Profile. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 34, 9 (Sept 2015), 1387–1400. https://doi.org/10.1109/TCAD.2015.

2418320

[19] Tiantian Liu, Minming Li, and Chun Jason Xue. 2012. Instruction Cache Locking

for Embedded Systems using Probability Profile. Journal of Signal Processing
Systems 69, 2 (01 Nov 2012), 173–188.

[20] Y. Lu, L. Lo, G. R. Watson, and R. G. Minnich. 2006. CAR: Using Cache as RAM

in LinuxBIOS. http://rere.qmqm.pl/âĹĳmirq/cacheasramlb09142006.pdf. (2006).

[21] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh. 2004.

Copilot - a coprocessor-based kernel runtime integrity monitor. In Proceedings of
the 13th USENIX Security Symposium (Security). USENIX, San Diego, CA, 179–194.

[22] Joanna Rutkowska. 2006. Subverting vistatm kernel for fun and profit. Black Hat

Briefings. (2006).

[23] Sherri Sparks and Jamie Butler. 2005. Shadow walker: Raising the bar for rootkit

detection. Black Hat Japan (01 2005), 504–533.

[24] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia. 2014. Trustdump: Reliable memory

acquisition on smartphones. In Proceedings of the 19th European Symposium on
Research in Computer Security (ESORICS). Springer, Wroclaw, Poland, 202–218.

[25] Intel Trusted Execution Technology. 2016. Intel Software Development Guide.
Intel.

[26] F. Zhang, J. Wang, K. Sun, and A. Stavrou. 2014. HyperCheck: A Hardware-

AssistedIntegrity Monitor. IEEE Transactions on Dependable and Secure Computing
11, 4 (July 2014), 332–344.

[27] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Y Thomas Hou. 2016. CacheKit:

Evading memory introspection using cache incoherence. In Proceedings of the 1st
IEEE European Symposium on Security and Privacy. IEEE, Saarbrücken, GERMANY,

337–352.

[28] V. J. Zimmer, M. A. Rothman, and S. M. Datta. 2004. Using a processor cache as

ram during platform initialization. US Patent 20,040,103,272.. (2004).

Session 3: Resource-Constrained Hardware and IoT Security ASHES’18, October 19, 2018, Toronto, ON, Canada

51

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
https://genode.org/documentation/articles/trustzone
https://genode.org/documentation/articles/trustzone
https://github.com/genodelabs/genode
https://github.com/genodelabs/genode
https://genode.org/documentation/articles/arm_virtualization
https://genode.org/documentation/articles/arm_virtualization
https://doi.org/10.1109/TCAD.2015.2418320
https://doi.org/10.1109/TCAD.2015.2418320
 http://rere.qmqm.pl/∼mirq/cache as ram lb 09142006.pdf

	Abstract
	1 Introduction
	2 Background: ARM, Cache and TrustZone
	2.1 ARM Architecture
	2.2 ARM TrustZone
	2.3 ARM Cache

	3 Background: CacheKit Attack
	3.1 Loading
	3.2 Locking
	3.3 Hiding

	4 Defeating CacheKit Attacks: Naïve Approaches
	4.1 Naïve Prevention
	4.2 Naïve Detection

	5 Defeating CacheKit Attacks: CacheLight
	5.1 Workflow
	5.2 Virtual to Physical Address Translation
	5.3 Verifying Memory Contents
	5.4 Mapping Normal World Memory to Secure World
	5.5 World-Shared Memory
	5.6 Locking NW Memory Into Cache From SW
	5.7 Comparing Approaches

	6 CacheLight Implementation
	6.1 Genode: A Secure World OS
	6.2 Building and Deploying The Environment
	6.3 Deploying the CacheKit Attack
	6.4 Deploying the CacheLight Defense

	7 Evaluation
	7.1 Effects of World-Shared Memory
	7.2 Performance Evaluation

	8 Related Work
	9 Future Work
	10 Conclusion
	References

