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can be done on the response after an attack is detected and veri-

fied. Looking deeper into the what inspection tools to run in case

CacheLight flags potential malicious code and the appropriate

response mechanisms to employ if the tool does find malicious code

in memory.

10 CONCLUSION

In this paper we present CacheLight, a lightweight approach to

preventing malicious use of cache locking mechanisms while allow-

ing time-critical applications to legitimately utilize them to ensure

execution times in embedded and real-time systems. CacheLight

allows the Normal World to perform cache locking through request-

ing it as a service from the Secure World. All that is needed is a

minimal increase in the Trusted Code Base to handle a new SMC,

which the OS running in the TEE can then validate and verify to

prevent any malicious code from being hidden in the cache.

Upon world switch, the Secure World can now handle and verify

the validity of any cache lock request to ensure that any data that

will persist in the cache not only maps to a valid address in mem-

ory but is also consistent with what is present in main memory;

effectively bringing the contents of the cache to light. Additionally,

because the Secure World does not hand control back to Normal

World after verifying the address, but rather performs the loading

and locking on behalf of the Normal World, the attacker cannot

bypass the security checks by passing different addresses in the

arguments. Should CacheLight find that the attempt to lock the

cache is malicious, it can then flush the caches and run memory in-

trospection tools to determine the nature of the attack and retrieve

any relevant data for forensic analysis. On the other hand, if the

request is determined to be legitimate, CacheLight can service it

by taking advantage of World-Shared Memory.

Therefore, CacheLight can successfully prevent malicious code

from hiding from SW introspection tools in the NW cache for

any significant amount of time. Additionally, while we present a

solution for the ARM architecture, the approach can be generalized

to any architecture that employs the same execution separation

idea. If the attack can be modified to a new architecture, then so

can the defense. Moreover, CacheLight incurs the overhead of

a world-switch for the set-up of the time-critical data. However,

the initial setup of locking data in the cache is already expected

to be expensive so that the performance and timing requirements

can be met once the setup is done and the application running.

CacheLight makes additional overhead to the setup process but

not the execution of the time-critical process that requested the lock.

Given that it provides security against an otherwise undetectable

attack, the trade-off in setup time is extremely worthwhile.
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